ディジタル信号処理基礎 平成 28 年 4 月 7 日実施 問題 1: 次の入力信号 x[n],インパルス応答 h[n] について,畳み込み演算によって,出力信号 y[n] = x[n] ∗ h[n] を求めよ. Determine output signal y[n] = x[n] ∗ h[n] by using convolution, where x[n] is input signal and h[n] is impulse response as follows. (a) x[n] = 5δ[n − 6], (b) x[n] = u[n], h[n] = δ[n − 1] − 3δ[n − 5] h[n] = u[n] − u[n − 5] 問題 2: 次のシステムについて,以下の問に答えよ.ただし,x[n] はシステムの入力,y[n] は出 力である. In the following system, x[n] is input and y[n] is output signal. 1 y[n] = 2x[n] − y[n − 1] 3 (a) 入力 x[n] = δ[n] のとき,このシステムのインパルス応答 h[n] を求めよ. Determine the impulse response h[n] when x[n] = δ[n]. (b) 入力 x[n] = u[n] のとき,このシステムの出力 y[n] を求めよ. Determine output signal y[n] when x[n] = u[n]. 問題 3: 次の離散時間信号 x[n] の z 変換 X(z) を求め,その収束領域を示せ. Determine the z transform X(z) of discrete time signal x[n] and its convergence region. (a) x[n] = δ[n + 1] + 2δ[n] − 3δ[n − 5] (b) x[n] = (−5)n u[n − 5] (c) x[n] = 2−n u[−n] − (−3)−n u[n] 問題 4: 次の X(z) を逆 z 変換し,その離散時間信号 x[n] を求めよ. Determine the discrete time signal x[n] of X(z) by using inverse z transform. (a) X(z) = 1 − 5z −8 + 8z −10 3 (b) X(z) = 4 − z −1 (|z| > 0) (|z| > 14 ) 解 答 問題 1: (a) y[n] = 5δ[n − 7] − 15δ[n − 11] n<0 0 (b) y[n] = n+1 0≤n≤4 5 n>4 1 問題 2: (a) h[n] = 2(− )n u[n] 3 1 1 (b) y[n] = {3 + (− )n }u[n] 2 3 問題 3: (a) X(z) = z + 2 − 3z −5 (b) X(z) = − 55 z −5 1 + 5z −1 1 3 (c) X(z) = − 1 − 2z 3 + z −1 問題 4: (a) x[n] = δ[n] − 5δ[n − 8] + 8δ[n − 10] (b) x[n] = 34 (4)−n u[n] (|z| > 0) (|z| > 5) ( 12 > |z| > 13 )
© Copyright 2024 ExpyDoc