ボルト継手計算書 H200×200×8×12 土木仕様 (SI単位) ヒロセ株式会社 ボルト継手(H200×200)の設計 1.設計条件 母材にボルト孔がある場合、引張力に対し、ボルト孔分が抵抗できないため、ボルト孔を控除 した母材の抵抗力を設計強度とする。 添接板の設計は、設計強度に対し、添接板の断面性能に応じて、フランジとウエブに応力を分 配する。 (1)許容応力度 (母材と添接板の材質は同一とする。) (鋼材コ-ド) SS400-D (ボルトコ-ド) F10T-D 「道路土工 仮設構造物工指針(日本道路協会)」に準拠する。 仮設鋼材の許容応力度の割増 係数 = H 形 鋼 の 許 容 曲 げ ・ 引 張 応 力 度 Hσba=Hσta= H 形 鋼 の 許 容 せ ん 断 応 力 度 Hτa = H 形 鋼 の 許 容 支 圧 応 力 度 Hσa = 添 接 板 の 許 容 曲 げ ・ 引 張 応 力 度 Pσba=Pσta= 添 接 板 の 許 容 せ ん 断 応 力 度 Pτa = 添 接 板 の 許 容 支 圧 応 力 度 Pσa = ボルト の 許 容 せ ん 断 応 力 度 Bτa = (2)設 計 母 材 コ-ド: (3)添 接 板 H 形 鋼: H200×200×8×12 <pt> <pb> フランジ:2・PL− 9 × 200 4・PL− 9 × 80 ウ ェ ブ:2・PL− 6 × 145 平 面 図 fp2 e2 fpL fpb1 e2 B N/mm2 N/mm2 N/mm2 N/mm2 N/mm2 N/mm2 N/mm2 (SS400) (SS400) (SS400) (SS400) (F10T) H200 ボ ル ト 直 径 ( M20 ) d = 2.00 ボ ル ト 孔 径 (d+3mm) dh = 2.30 本 (軸方向) フランジのボルト本数 n1 = 3 本 (軸方向) ウ ェ ブのボルト本数 m1 = 2 縁端距離 ( 応 力 方 向 ) e1 = 4.00 cm 縁端距離 ( フランジその他 ) e2 = 4.00 cm (4)ボ ル ト 1.50 210 120 355 210 120 355 285 <pL> 420 420 290 × × × 80 83 cm cm 本 (軸横断) n2 = 2 本 (軸横断) m2 = 2 フランジボルトの軸方向間隔 6.5 cm fp1 = フランジボルトの横断方向間隔 12.0 cm fp2 = ウエブボルトの軸方向間隔 6.5 cm wp1 = ウエブボルトの横断方向間隔 6.5 cm wp2 = 断 面 図 e1 2・e1 e1 (n1-1)・fp1 (n1-1)・fp1 B tw 側 面 図 wpL e1 (m2-1)・wp2 e1 H tf fpb2 wpb wpt H wpb fpt2 fpt1 e1 2・e1 e1 (m1-1)・wp1 (m1-1)・wp1 1 fpb1 2.継手部の設計 (1) 母材の断面性能計算 B 1) 母材 H200×200×8×12 tf H 形 鋼 の 高 H 形 鋼 の ウ ェ ブ フ ラ ン ジ フ ィ レ ッ 断 面 断 面 係 断面二次モ−メン さ 幅 厚 厚 ト 積 数 ト H = 20 cm B = 20 cm tw= 0.8 cm tf= 1.2 cm r = 1.3 cm A = 63.53 cm2 Z = 472 cm3 I = 4720 cm4 H/2 tw H dh r H/2 tf dh 2) ボルト穴を控除した断面性能 ボ ル ト 孔 径 dh = フランジボルトの本数 n2 = ウ ェ ブ ボ ル ト の 本 数 m2 = 2.30 cm 本 (軸横断) 2 本 (軸横断) 2 (断 面 積) (ウエブボルト孔) ΔBAw= dh・tw・m2 = 2.30 × 0.80 × tw(H − 2・tf) − ΔBAw = 0.80 ×( 20 − 2 = 10.40 cm 3.68 cm2 2 = 2 × 1.20 2 = 5.52 cm2 − 2 × 10.40 = ( ウエブ ) HAw'= (フランジボルト孔) ΔBAf= = dh・tf・n2 2.30 × 1.20 × A − tw(H − 2・tf) − 2・ΔBAf = 63.53 − 0.80 ×( 20 − 2 × 5.52 = 38.41 cm2 )− 3.68 ( フランジ ) HAf'= A' = HAf'+ HAw' = 38.41 + 1.20 48.81 cm2 (断面二次モ−メント:ウエブ孔は控除しない場合) ΔBIf= dh・tf3・n2 12 = (片フランジボルト孔) BIf 2.30 = 1.20 3 × 12 × 2 0.662 cm4 = ΔBAf・(1/2・H−1/2・tf)2 + ΔBIf = 5.520 (両フランジボルト孔) BIf'= 2 ・BIf × = I'= I - BIf'= 9.400 2 + 0.662 = 488 cm4 cm4 2 × 488 = 976 4720 − 976 = 3744 cm4 3744 10.00 = 374 (断面係数) Z'= I' 1/2・H = 2 cm3 ) (2) 添接板の断面積の計算 外 側 板 幅 fpb1= 板 厚 fpt1= 内 側 板 幅 fpb2= 板 厚 fpt2= ボルト孔径 dh = ボルト本数 n2 = 1) フランジ添接板 (外側添接板) 20.0 0.90 8.00 0.90 2.30 2 cm cm cm cm cm 本 (軸横断) BAf1 = dh・fpt1・n2 = PAf1 = 2.30 × 0.90 × 2 = 4.14 cm2 0.90 − 4.14 = 13.86 cm2 0.90 × 2 = 4.14 cm2 0.90 − 4.14 fpb1・fpt1−BAf1 = 20.00 × (内側添接板) BAf2 = dh・fpt2・n2 = PAf2 2.30 × = 2・fpb2・fpt2 − BAf2 = 2 × 8.00 × = 10.26 cm2 (フランジ合計) PAf = 2・(PAf1+PAf2 ) = 2 × ( 13.86 + 10.26 ) 板 幅 wpb = 板 厚 wpt = ボルト本数 m2 = 2) ウェブ添接板 BAw 14.5 cm 0.60 cm 本 (軸横断) 2 = dh・wpt・m2 = PAw1 = 48.24 cm2 = 2.30 × wpb・wpt = 14.50 0.60 × 2 = 2.76 cm2 0.60 − 2.76 = 5.94 cm2 5.94 = 11.88 cm2 = 60.12 cm2 − BAw × (ウェブ合計) PAw = 2 ・ PAw1 = 2 × 3) 断 面 積 ΣPA = PAf + PAw ≧ A' = 48.24 + 11.88 > -OK- 3 48.81 cm2 (3) 添接板の断面二次モ−メントの計算 1) フランジ添接板 ボルト孔径 dh = フランジ n2 = ウ エ ブ m2 = 外 側 板 幅 fpb1= 20.00 板 厚 fpt1= 0.90 面 積 PAf1= 13.86 内 側 板 幅 fpb2= 8.00 板 厚 fpt2= 0.90 面 積 PAf2= 10.26 2.30 cm 本 (軸横断) 2 本 (軸横断) 2 (外側添接板) fpb1'= = ΔPIf1 = PIf1 = = cm cm cm2 cm cm cm2 fpb1− dh・n2 ) = 15.40 cm 20.00 − ( 2.30 × 2 3 15.40 × 0.90 3 fpb1'・fpt1 0.936 cm4 = 12 12 2 PAf1・(1/2・H+1/2・fpt1) + ΔPIf1 2 = + 0.936 1514 cm4 13.860 × 10.450 (内側添接板) fpb2'= 2・fpb2 − dh・n2 ) = 11.40 cm = 2 × 8.00 − ( 2.30 × 2 3 11.40 × 0.90 3 fpb2'・fpt2 ΔPIf2 = 0.693 cm4 = 12 12 2 PIf2 = PAf2・(1/2・H−tf−1/2・fpt2) + ΔPIf2 = = 10.260 × 8.350 2 + 0.693 716 cm4 (フランジ合計) PIf = 2・(PIf1+PIf2) = 2 × ( + 3 wpt・wpb 12 = 0.600 × 12 14.50 Σy = y12 + y22 + y32 + …………… ΔPIw1 = dh・wpt・2Σy = = 716 ) = 4460 cm4 板 幅 wpb = 14.50 cm 板 厚 wpt = 0.60 cm ボルト間隔 wp2 = 6.5 cm 2) ウェブ添接板 PIw1 = 1514 2.30 + m2 ・ × 0.60 × + 2 × = wpt・(dh) 3 152 11 cm4 cm2 3 y3 12 y2 2 0.60 × × 12 11 2.30 152 − 30 3 G ) = 244 y1 cm4 30 (ウェブ合計) PIw = 2・(PIw1−ΔPIw1)=2 × ( cm4 3) 断面二次モ−メント ΣPI = = PIf 4460 + PIw + ≧ I' 244 = 4 4704 cm4 > 3744 cm4 -OK- (4)曲げモ−メントの計算 1) H形鋼1本当たりの抵抗曲げモ−メント 許容曲げ応力度 Hσba= 断 面 係 数 Z' = Mr = Hσba ・ Z' 210 374 N/mm2 cm3 9.5 10.0 = 210 × 374 × 103 = 78540000 N・mm σ 【 概 念 図 】 fpt1 fpσu1 fpσl1 fpσu2 fpσl2 σu wp fpyu1 fpyu2 yu yl2 wp fp fpt2 H wpb fpyl1 wpσl 2) フランジ添接板およびボルトの検討 PMf = Mr ・ = ΣPI = PIf= PIf ΣPI 78540000 4460 4704 × = 74466071 4704 cm4 4460 cm4 N・mm (外側フランジ) PMf1= = PMf・ 2・PIf1 PIf 74466071 PIf1 × 3028 4460 = = 1/2 × 20.0 + fpyu1= 1/2・H+fpt1 fpσu1= PMf1 ・ yu1 ≦ Pσba 2・PIf1 fp = 50556785 2 × 1514 = 50556785 × 10.90 1000 = 182 1/2 × 20.0 = 10.00 10.00 1000 = 167 0.90 N/mm2 1514 cm4 N・mm = 10.90 < 210 N/mm2 210 N/mm2 cm -OKfpyl1= fpσl1= = 1/2・H PMf1 2・PIf1 = cm ・fpyl1 ≦ Pσba 50556785 3028 × N/mm2 < -OK- 5 (内側フランジ) PMf2 = PMf・ 2・PIf2 PIf PIf2 74466071 × 1432 4460 = fpyu2= 1/2・H−tf = 1/2 × 20.0 − fpσu2= PMf2 ・ yu2 ≦ Pσba 2・PIf2 fp = 147 = = 23909286 1432 8.80 1000 × = 23909286 716 cm4 N・mm 1.20 N/mm2 = 8.80 < 210 cm N/mm2 -OKfpyl2= 1/2・H −tf−fpt2 = 1/2 × 20.0 − fpσl2= = 1.20 − 0.90 7.90 1000 = 132 = 7.90 cm PMf2 ・ yl2 ≦ Pσba 2・PIf2 fp 23909286 1432 × < N/mm2 210 N/mm2 -OK- ボルトの許容せん断応力度 H形鋼の許容支圧応力度 ( ボ ル ト ) PTf1= = PTf2= = fpσu1+fpσl1 2 182 + 2 fpσu2+fpσl2 2 147 + 2 ∴ PTf = PTf1+PTf2 = 167 13.86 × 102 = 241857 N × 10.26 × 102 = 143127 N ・PAf2 132 241857 (二面せん断) S2 = d・tf・Hσa = 20 × (鋼板の支圧) PTf n1・n2 Hσa= N/mm2 N/mm2 × S1 = 2・BA・Bτa = 2 × Qf = 285 355 ・PAf1 ボルト1本の耐力 (F10T) 2 M 20 BA = 1/4 ・ π ・ d #REF! #REF! #REF! Bτa= 314.2 × 12 = = 143127 = 3.142 cm2 → 285 = = 384984 × 355 = 3 384984 × 2 < N 314.2 mm2 179094 = 64164 N 6 + 85200 85200 N 85200 N (最小)fbSa -OK- 3) ウェブ添接板およびボルトの検討 PMw = Mr ・ = wpyu= wpσu= = 78540000 1/2 ・ PMw PIw ΣPI = PIw= PIw ΣPI wpb × 244 4704 = 1/2 × = 4073929 14.50 = = 121 7.25 4704 244 cm4 cm4 N・mm cm ・wpyu ≦ Pσa 4073929 244 7.25 1000 × < N/mm2 210 N/mm2 -OK ボルト1本の耐力 (F10T) M 20 S1 = 2・BA・Bτa = 2 × ###### S2 = d・tw・Hσa = 20 × BA = 1/4 ・ π ・ d2 = 3.142 cm2 → 285 = 179094 355 = 56800 314.2 mm2 (二面せん断) 314.2 × = (鋼板の支圧) 8 × 【 概念図 】 56800 N (最小)wbSa m1 Rx M p2 m2 rm ym G p2 Ry Rm m1= 2 m2= 2 Rs p2 R= xm p1 Rx2+(Ry+Rs)2 p1 Ip = 1/12・m1・m2{wp12(m12−1)+wp22(m22−1)} = = × 2 1/12 85 × 2 + × { 6.50 6.50 × 2 2 × ( 2 Rx = Ry = Rm = 3.25 pMw ( 2 2 − 1 ) − 1 )} cm2 xm = ym = (ボルト群の回転中心Gから最外端ボルトまでの距離) rm = 2 2 + × ym Ip pMw × xm Ip pMw × rm Ip 3.25 2 = = = = 4.60 cm 4073929 85 4073929 85 4073929 85 = 22047 N 7 3.25 cm 3.25 cm × × × < 3.25 10 3.25 10 4.60 10 56800 N = 15577 N = 15577 N -OK- (5)せん断力の計算 1) H形鋼1本当たりの抵抗せん断力 許容せん断応力度 ウエブせん断有効面積 Sr = Hτa = = 120 Sr PAw × 1040 124800 = N 添接板断面積 PAw= 11.88 cm2 = 1188 mm2 ≦ Pτa 124800 1188 = = 120 N/mm2 2 HAw'= 10.40 cm = 1040 mm2 ・ HAw' 2) ウェブ添接板の応力度 Pτ Hτa = 105 < N/mm2 120 -OK- N/mm2 3) ボルトの応力 ボルトの許容せん断応力度 Bτa= H形鋼の許容支圧応力度 Hσa= ウェブ厚 tw = 285 355 0.8 N/mm2 N/mm2 cm ボルト1本の耐力 (F10T) BA M 20 = S1 = 2・BA・Bτa = 2 × 0.0 0.0 S2 = d・tw・Hσa 0.0 = 20 × Rs = Sr m1・m2 1/4・π・d2 = 3.142 cm2 → (二面せん断) 314.2 × 285 = 8 = 355 = 2 124800 × 2 < 31200 N 56800 Y方向成分(曲げ) Y方向成分(せん断) 56800 N Rx = 15577 Ry = 15577 Rs = 31200 Rx2+(Ry + Rs)2 = 49302 N (最小)wbSa -OK- (最外端ボルトの応力) X方向成分(曲げ) 15577 2 + ( 56800 N = × (6)ウエブボルトの合成応力 = 179094 (鋼板の支圧) = R = 314.2 mm2 15577 < + 31200 )2 56800 N 8 -OK- N/本 N/本 N/本 3.計算結果 母 材 H200×200×8×12 フランジ部 添接板仕様 2枚: PL 9 × 200 × 420 4枚: PL 9 × 80 × 420 F10T : M20 - 24本 L = L = ( トルシア型高力ボルトの場合 2枚: PL 6 × 145 × 290 ボルト仕様 ウ ェ ブ部 添接板仕様 ボルト仕様 F10T : M20 - 8本 ( トルシア型高力ボルトの場合 420 【 平 面 図 】 L = L = 65 60 mm mm ) 55 50 mm mm ) 40 5 120 200 200 φ= 23 40 80 80 (外側) 40 (内側) 130 130 2@65 【 側 面 図 】 40 2@65 290 1@65 φ= 23 40 145 200 40 5 80 40 65 1@65 【 断 面 図 】 200 8 65 40 1@65 12 H200×200×8×12 145 PL 6 × 145 × 290 PL 9 × 80 × 420 9 200 80 9 PL 9 × 200 × 420 6 200 9
© Copyright 2025 ExpyDoc