3次元マーカを用いたビジュアルサーボ型水中ロボットの

‫ܭ‬ଌࣗಈ੍ ‫ֶޚ‬ձ࿦จू
Vol.xx, No.xx, 1/7ʢ20xxʣ
3 ࣍‫ݩ‬ϚʔΧΛ༻͍ͨϏδϡΞϧαʔϘ‫ܕ‬ਫதϩϘοτͷ‫ؾ‬๐֎ཚʹର͢Δ
੍‫ޚ‬ಛੑ
໼ ೲ
ཅ∗ ɾถ ৿
‫ݟ‬
࿘
݈
ଠ∗ ɾੴ ࢁ ৽ଠ࿠∗
‫ ∗ޢ‬ɾদ ໺ ོ
޾∗
Control characteristics of visual-servo type underwater vehicle system using three-dimensional marker
for air bubble disturbance
Akira YANOU∗ , Kenta YONEMORI∗ , Shintaro ISHIYAMA∗ ,
Mamoru MINAMI∗ and Takayuki MATSUNO∗
This paper studies a control characteristics of visual-servo type underwater vehicle system using threedimensional (3D) marker under air bubble disturbance on real-time pose tracking for visual servoing. The
recognition of vehicle’s pose through three-dimensional marker is executed by Genetic Algorithms (GA).
The proposed system does not merely calculate the position and orientation information, but can recognize
the target position and orientation information through GA while visual servoing, because the system utilizes a
three-dimensional marker shape and color to recognize the marker.
In our previous research, a regulator performance of the system about the vehicle’s pose to 3D marker is
explored under the condition that there is no disturbance on images. Therefore this paper explores the control
results the robustness of the proposed system for air bubble disturbance on the image, aiming at confirming
the control characteristics of the proposed visual servoing system. The following results were derived; (1) The
proposed system is robust to time-variant target position in z-axis (front-back direction of the vehicle). (2)
Although the fitness value of GA is influenced by disturbance, the system can keep recognizing the position and
orientation of 3D marker, and tracking by visual servoing could be maintained under the air bubble disturbances.
Key Words: AUV, ROV, Visual servoing, Genetic algorithm
͍ͯ͸ɼແࡧԽɾࣗ཯Խ͞ΕͨਫதϩϘοτͰ͋Δ AUV ͷ
1. ͸ ͡ Ί ʹ
։ൃ͕ॏཁͰ͋Δɽ͔͠͠ɼ࡞‫ۀ‬ର৅෺Λ͍͔ʹը૾ೝࣝ͞
‫ؾ‬த΍Ӊ஦Ͱ‫͢༻׆‬ΔͨΊͷϩϘοτͷ‫ڀݚ‬։ൃͷ‫ݱ‬ঢ়ͱ
ͤΔ͔ͱ͍͏໰୊͕࢒͞Ε͍ͯΔɽ
ൺֱͯ͠ɼਫதϩϘοτ͸ͦͷ‫༻׆‬ͷՄೳੑͷେ͖͞ʹ΋ؔΘ
ਫதϩϘοτʹؔ͢Δ୅දతͳը૾ೝࣝख๏ͱͯ͠ɼจ
Βͣɼ͍·ͩൃల్্ͷஈ֊Ͱ͋Δɽಛʹ࡞‫ۀ‬ର৅෺Λ͍͔
‫ ݙ‬1), 2) Ͱ͸ਫதϩϘοτʹର৅෺Λೝࣝͤ͞ΔͨΊɼ‫཭ڑ‬৘
ʹը૾ೝࣝͤ͞Δ͔͕ɼ‫༻׆‬ͷՄೳੑΛ֦͛ΔͨΊͷΩʔϙΠ
ใΛ୯‫؟‬ΧϝϥͰऔಘ͢Δํ๏͕঺հ͞Ε͍ͯΔɽϚϦϯε
ϯτͰ͋Δͱߟ͑ΒΕΔɽਫதϩϘοτ͸ ROV(Remotely
ϊʔͳͲ͕औಘը૾ʹөΓࠐΉͱɼର৅෺‫ܗ‬ঢ়ͷಛ௃ͷҰͭ
Operated Vehicle) ΍ AUV(Autonomous Utility Vehicle)
Ͱ͋ΔΤοδͷ‫ݕ‬ग़͕ࠔ೉ʹͳΔ͕ɼΧϥʔநग़ॲཧʹΑͬ
ʹେผͰ͖ΔɽROV Ͱͷ࡞‫ۀ‬͸ɼέʔϒϧΛհͯ͠ૹΒΕ
ͯ֎ཚͷআ‫ͱڈ‬ର৅෺ͷநग़Λಉ͔࣌ͭϦΞϧλΠϜʹߦ͏
ͯ͘ΔΧϝϥը૾౳ͷ৘ใʹ‫ ͕ऀ࡞ૢ͖ͮج‬ROV ͷԕִૢ
ख๏͕ఏҊ͞Ε͍ͯΔɽ͞ΒʹɼਫதϥϯυϚʔΫͱͯ͠Ґ
࡞Λߦ͍ͬͯΔ͕ɼ࡞‫ۀ‬ͷਫਂ͕ਂ͘ͳΔʹͭΕɼ࡞‫ྖۀ‬Ҭ
ஔඪఆ෺ඪ͕ઃ‫͞ܭ‬Ε͓ͯΓɼͦͷ‫ط‬஌఺ʹΧϥʔϘʔϧΛ
ʹ౸ୡ͢Δ·Ͱͷ࣌ؒ΍ճऩʹ͕͔͔࣌ؒͬͯ͠·͏ɽ͞Β
࢖༻͢Δͱͱ΋ʹલड़ͷख๏ͱ૊Έ߹Θͤͯը૾্Ͱൃ‫͠ݟ‬
ʹɼਫਂʹԠͯ͡έʔϒϧ௕΋௕͘ͳΔͨΊɼέʔϒϧΛ‫ؚ‬
΍͍͢޻෉Λߦ͍ͬͯΔɽͳ͓ɼ͜ͷख๏Ͱ͸‫ط‬஌఺͕ӅΕ
ΊͨγεςϜશମ΋େ͖͘ͳͬͯ͠·͏ɽͦͷͨΊɼ޿ൣғ
ͯൃ‫͍࣌ͳ͖Ͱݟ‬ͷਫதϩϘοτͷ࢟੎ͷ‫ํࢉܭ‬๏ʹ͍ͭͯ
͔ͭւఈ‫ܗ‬ঢ়΋ະ஌ͳ‫͚͓ʹڥ؀‬Δւఈࢿ‫ݯ‬ͷ୳ࡧͳͲʹ͓
΋ड़΂ΒΕ͍ͯΔ͕ɼ୯‫ ؟‬2 ࣍‫ݩ‬ը૾Λ΋ͱʹਫதϩϘοτ
ͷҐஔɾ࢟੎ͷ‫ࢉܭ‬Λߦ͍ͬͯΔɽ
ԬࢁେֶେֶӃࣗવՊֶ‫ڀݚ‬Պ
∗ Graduate School of Natural Science and Technology,
Okayama University
ʢReceived September 8, 2015ʣ
∗
͜Εʹର͠ஶऀΒ͕ఏҊ͍ͯ͠Δ࣮࣌ؒҨ఻తೝࣝख๏ 3), 4)
͸ɼࡾͭͷΧϥʔ‫͔ٿ‬ΒͳΔର৅෺ͷ 3 ࣍‫ݩ‬Ϟσϧͱͯ͠ 3
࣍‫ݩ‬ϚʔΧΛਫதϩϘοτ಺ʹఆٛ͠ɼ3 ࣍‫ݩ‬ϚʔΧͷҐஔɾ
c 2015 SICE
TR 00xx/xx/xxxx–0001 °
T. SICE Vol.xx No.xx Xxx 20xx
2
Fig. 1 Overview of ROV (a)Front view (b)Side view (c)Top
view (d)Back view
Fig. 2 Layout of under water experimental devices
NTSCɼ࠷௿ඃࣸମর౓ 0.8[lx]ɼζʔϜͳ͠ʣΛ౥ࡌ͓ͯ͠
࢟੎Λ GA ʹΑͬͯΦϯϥΠϯͰ‫ͤ͞ࢉܭ‬ɼద߹౓ͷ࠷΋ߴ
Γɼର৅෺ͷ 3 ࣍‫ݩ‬ೝࣝΛߦ͏ͨΊɼલํ 2 ୆ͷΧϝϥΛಉ
͍Ҩ఻ࢠ͕࣋ͭ৘ใΛਫதϩϘοτ͕ೝࣝͨ͠ 3 ࣍‫ݩ‬ϚʔΧ
࣌࢖༻ͨ͠ɽਫதಈྗ‫Ͱܥ‬͸ɼਫฏεϥελ 2 ‫ج‬ʢ࠷େਪྗ
ͷҐஔɾ࢟੎ͱͯ͠ࢉग़͍ͯ͠Δɽ͜ͷద߹౓ͷ෼෍͸࣌ม
9.8[N]ɽҎԼಉ༷ʣɼਨ௚εϥελ 1 ‫ج‬ʢ4.9[N]ʣɼԣεϥελ
ͰଟๆੑͱͳΔ͕ɼ࣮࣌ؒͷ੍‫ޚ‬ϧʔϓ͝ͱʹΦϯϥΠϯͰ
1 ‫ج‬ʢ4.9[N]ʣΛ౥ࡌ͍ͯ͠Δɽ·ͨɼর౓֬อͷͨΊ LED
ద߹౓ͷ࠷΋ߴ͍Ҩ఻ࢠΛೝࣝ݁Ռͱͯ͠બͿΑ͏ʹ͍ͯ͠
ϥΠτʢ5.8WʣΛ 2 ‫ج‬౥ࡌ͍ͯ͠Δɽ
ΔͨΊɼͨͱ͑Ұ࣌తʹద߹౓͕Լ͕ͬͨͱͯ͠΋ɼ੍‫ޚ‬ϧʔ
ͭ͗ʹɼਫಓਫΛຬͨͨ͠؆қϓʔϧʢॎʷԣʷߴ͞ɼ2[m]
ϓ͕‫܁‬Γฦ͞ΕΔ͜ͱͰద߹౓Λৗʹߴ͘ҡ࣋͠Α͏ͱ͢Δ
ʷ 3[m] ʷ 0.75[m]ʣΛ࣮‫ݧ‬૧ͱͯ͠࢖༻ͨ͠ɽ্‫ ه‬ROV Λ
ੑ࣭Λ͍࣋ͬͯΔɽଞͷख๏ͱҟͳΔ఺͸ 3 ࣍‫ݩ‬ϚʔΧΛෳ
࣮‫ݧ‬૧ʹೖਫͤ͞ɼਤ 2 ʹࣔ͢Α͏ʹ ROV ͷΧϝϥը૾ͷ
‫Ͱ؟‬ೝ͍ࣝͯ͠Δ఺Ͱ͋Γɼࠨӈը૾໘ʹࣸӨ͠ɼ࣮ը૾ͱ
ड৴ɼPC ͔Βͷ੍‫ޚ‬৴߸ͷૹ৴ͳΒͼʹిྗ‫څڙ‬͸ςβʔ
ͷ૬ؔΛ GA ਐԽͷద߹౓ͱͯ͠༻͍Δ͜ͱͰ 3 ࣍‫ݩ‬ର৅෺
έʔϒϧʢ200[m]ʣΛհͯ͠ߦͬͨɽPC ଆͰ͸ ROV ౥ࡌ
ͷҐஔɾ࢟੎Λ࣮࣌ؒͰ‫ܭ‬ଌ͍ͯ͠Δ 4) ɽ
ຊ‫Ͱڀݚ‬͸͜Ε·ͰਫதϩϘοτͷਫதࣗಈॆిΛ໨ࢦ͠
ͨࣗಈቕ߹੍‫ݧ࣮ޚ‬Λߦ͍ͬͯΔ͕ 5) ɼೝࣝը૾ʹ‫·ؚ‬ΕΔ
ͷ 2 ୆ͷΧϝϥ͔ΒૹΒΕΔର৅෺ͷը૾৘ใΛ‫ ʹج‬GA ʹ
ΑΔϞσϧϕʔετϚονϯάΛߦͬͨɽ
2. 2 ਫத࣮‫ݧ‬৚݅
֎ཚʹؔͯ͠ର৅෺ͷҐஔɾ࢟੎ͷೝࣝਫ਼౓ͷ੍‫ޚ‬ಛੑͷ‫ݕ‬
2. 2. 1 ਫதʹ͓͚ΔҐஔɾ࢟੎੍‫ݧ࣮ޚ‬
౼͸ߦ͍ͬͯͳ͔ͬͨɽ࣮ւҬʹ͓͍ͯ͸ਫதϩϘοτͱೝ
ਫதʹઃஔͨ͠ 3 ࣍‫ݩ‬ϚʔΧʢϘοΫεʢ100[mm] ×
ࣝର৅෺ؒʹϚϦϯεϊʔ΍νϜχʔ͔Β෾ग़͢Δ೤ਫ͕ଘ
100[mm] × 100[mm]ʣपΓʹ੺ɾ੨ɾ྘ͷΧϥʔ‫ٿ‬ʢ௚‫ܘ‬
ࡏ͢Δ৔߹΋͋Δͱߟ͑ΒΕΔ͕ɼ͜ΕΒ͕ਫதϩϘοτͷ
40[mm]ʣΛ഑ஔͨ͠ର৅෺ʣΛ GA ʹΑΓೝࣝͤ͞ɼਫதϩ
औಘը૾ͷதͰର৅෺ΛःΔΑ͏ʹөΓࠐΉͱɼਖ਼֬ͳೝࣝ
Ϙοτʹ౥ࡌͨ͠ 4 ‫ج‬ͷεϥελ΁ࢦྩిѹ஋ΛૹΔ͜ͱͰɼ
݁Ռ͕ಘΒΕͣҐஔɾ࢟੎੍‫͕ޚ‬ཚ͞ΕΔՄೳੑ͕͋Δɽ͢
ਫதϩϘοτͱ 3 ࣍‫ݩ‬ϚʔΧͷؒͰҎԼͷ૬ରత໨ඪҐஔɾ
ͳΘ࣮ͪւҬͰͷ࢖༻Λߟ͑ͨ৔߹ɼର৅෺ΛःΔΑ͏ʹө
࢟੎ (xd [mm]ɼyd [mm]ɼzd [mm]ɼǫ2d [deg]) ΛอͭΑ͏ʹϨ
ΓࠐΉ֎ཚʹର͠ɼ։ൃதͷਫதϩϘοτ͕Ͳͷఔ౓ϨΪϡ
ΪϡϨʔτ੍ͤͨ͞‫݁ޚ‬Ռͷ‫ূݕ‬Λߦͬͨɽͳ͓ɼGA ʹΑ
ϨʔτੑೳΛൃ‫͖Ͱش‬Δ͔֬ೝ͢Δ͜ͱ͕ॏཁͳ໰୊Ͱ͋Δɽ
ΔϞσϧϕʔετϚονϯά͔Βࢉग़͞Εͨର৅෺ͷҐஔɾ
ͦ͜Ͱຊ‫Ͱڀݚ‬͸ւதͰͷը૾ೝࣝʹର͢Δ༷ʑͳ֎ཚΛ‫ؾ‬
๐ʹΑͬͯγϛϡϨʔτ͠ɼ࣮࣌ؒҨ఻తೝࣝख๏ 3) ͷϩό
࢟੎ͷೝࣝ৘ใ͸ɼਫதϩϘοτͱର৅෺ؒͰઃఆͨ͠ GA
୳ࡧྖҬ಺ʢΣH Λத৺ͱͯ͠ xH ࣠ํ޲ʹ ±400[mm]ɼyH
ετੑΛ֬ೝ͢Δͱͱ΋ʹɼ‫ؾ‬๐֎ཚதͰ΋ϏδϡΞϧαʔ
࣠ํ޲ʹ ±200[mm]ɼzH ࣠ํ޲ʹ +800[mm] ͷྖҬʣͰ֫
Ϙ͕ՄೳͰ͋Δ͜ͱΛࣔ͢ɽ
ಘ͞ΕΔͱԾఆ͍ͯ͠Δɽਤ 3 ʹຊ‫ڀݚ‬ͷ࣮‫͚͓ʹݧ‬Δ࠲ඪ
2. ࣮ ‫ ํ ݧ‬๏
2. 1 ਫத࣮‫ڥ؀ݧ‬
จ‫ ݙ‬5) ͱಉ͡ਫத࣮‫ڥ؀ݧ‬Λ༻ҙͨ͠ɽҎԼʹུ֓Λड़΂
‫ܥ‬Λࣔ͢ɽ͜͜Ͱ
xd = H xM = 0,
yd = H yM = −67,
zd = H zM = 600,
ǫ2d = 0
Δɽ·ͣԕִૢ࡞‫ܕ‬ਫதϩϘοτʢ޿࿨ (‫ )ג‬੡ ROVɼ࠷େਫ
Ͱ͋Δɽ·ͨɼx[mm]ɼy[mm]ɼz[mm]ɼǫ2 [deg] Λ GA Ͱೝ
ਂ 50mʣΛਤ 1 ʹࣔ͢ɽຊϩϘοτ͸ෳ‫֮ࢹ؟‬ηϯαʔͱ͠
ࣝͨ͠ਫதϚʔΧʔͷҐஔɾ࢟੎ͱ͓͖ɼ૬ରత໨ඪҐஔɾ
ͯɼԕִૢॎ༻νϧτ‫͖෇ߏػ‬Χϝϥ 1 ୆ʢࡱ૾ૉࢠ CCDɼ
࢟੎ʹਫதϩϘοτΛϨΪϡϨʔτͤ͞ΔͨΊɼҎԼͷ P ੍
ըૉ਺ 38 ສըૉɼ৴߸ํࣜ NTSCɼ࠷௿ඃࣸମর౓ 1.5[lx]ɼ
‫͔ޚ‬Β‫͞ࢉܭ‬ΕΔࢦྩిѹ஋ v1 ∼ v4 Λ֤εϥελ΁༩͑ͨɽ
ޫֶζʔϜ 10 ഒʣͱ੍‫ͯ͠ͱ༻ޚ‬લํ͓ΑͼԼํʹͦΕͧ
ͳ͓ ǫ2 ͸ਤ 3 ʹࣔ͢ ΣH ͷ y ࣠ճΓͷ֯౓Ͱ͋Δɽx ͓࣠
ΕΧϝϥ 2 ୆ʢࡱ૾ૉࢠ CCDɼըૉ਺ 38 ສըૉɼ৴߸ํࣜ
Αͼ z ࣠ճΓͷ֯౓͸ਫதϩϘοτͷߏ଄ʹ‫ى‬Ҽʢු৺͕ॏ
‫ܭ‬ଌࣗಈ੍‫ֶޚ‬ձ࿦จू ୈ xx ‫ ר‬ୈ xx ߸ 20xx ೥ xx ݄
3
yd = −67[mm]ɼzd = 341[mm]ɼǫ2d = 0[deg] ͱͳΔΑ͏ʹ
ઃஔͨ͠ɽ·ͨɼਫதϩϘοτͷΧϝϥը૾ʹө͠ग़͞Εͨ
3 ࣍‫ݩ‬ϚʔΧલํʹɼ࣮‫ݧ‬։࢝ 30[s] ‫͔ޙ‬Β‫ؾ‬๐֎ཚ͕өΓࠐ
ΉΑ͏ͳঢ়‫گ‬Λൃੜͤͨ͞ɽͦͷ্Ͱɼ3 ࣍‫ݩ‬ϚʔΧͷഎ‫ܠ‬
ͱ࣮ͯ͠‫ݧ‬ਫ૧͕ͦͷ··өΓࠐΉɼ͢ͳΘͪഎ‫͠ͳܠ‬ͷ৔
߹ͱ࣮‫ڥ؀‬Λ໛ٖͨ͠ւதͷࣸਅΛషΓ෇͚ͨʢഎ‫͋ܠ‬Γͷʣ
৔߹ʹ͍ͭͯɼద߹౓ͷߴ͍ॱʹ্Ґ 36 ‫ݸ‬ͷҨ఻ࢠ͕࣋ͭ
Fig. 3 Coordinate system provided in under water experiment
ೝࣝ݁Ռʢೝࣝͨ͠ 3 ࣍‫ݩ‬ϚʔΧͷҐஔɾ࢟੎ʣΛௐ΂ͨɽ
3 ࣍‫ݩ‬ϚʔΧʹରͯ͠എ‫͠ͳܠ‬ͷ৔߹ͷ݁ՌΛਤ 4ɼਤ 5 ʹ
ࣔ͠ɼഎ‫͋ܠ‬Γͷ৔߹ͷ݁ՌΛਤ 6ɼਤ 7 ʹࣔ͢ɽਤ 4ɼ6 ͸
৺ͷ্ʹҐஔ͍ͯ͠Δ͜ͱʣ͢Δ෮‫ݩ‬τϧΫʹΑΓɼ࣌ఆ਺
ͦΕͧΕ (a) ೝࣝͨ͠ x ࣠ํ޲ͷ 3 ࣍‫ݩ‬ϚʔΧͷҐஔ (b)y
1 ඵఔ౓Ͱࣗ཯తʹ҆ఆঢ়ଶʹ෮‫͢ݩ‬ΔɽͦͷͨΊຊ‫Ͱڀݚ‬
࣠ํ޲ͷҐஔ (c)z ࣠ํ޲ͷҐஔ (d)y ࣠पΓͷ֯౓ (e) ࣮‫ݧ‬
͸ x ͓࣠Αͼ z ࣠ճΓͷ֯౓ͷ੍‫ޚ‬͸ߦΘͳ͍ɽ
։࢝ 10 ඵ‫ޙ‬ʢ‫ؾ‬๐֎ཚͳ͠ʣͷ 3 ࣍‫ݩ‬ϚʔΧͷೝࣝ݁Ռ (f)
Ԟߦ͖ํ޲ : v1 = kp1 (zd − z) + 2.5
ʢv1 = 0[V] ͷͱ͖ ΣH ͷ zH ࣠ํ޲ʹ
ਪྗ 9.8[N]ɼv1 = 5[V] ͷͱ͖ −9.8[N]ʣ
Ԗ௚࣠ճస : v2 = kp2 (ǫ2d − ǫ2 ) + 2.5
ʢv2 = 0[V] ͷͱ͖ ΣH ͷ yH ࣠ճΓʹ
ટճτϧΫ 0.88[Nm]ɼv2 = 5[V] ͷͱ͖
−0.88[Nm]ʣ
࣮‫ݧ‬։࢝ 40 ඵ‫ޙ‬ʢ‫ؾ‬๐֎ཚ͋Γʣͷ 3 ࣍‫ݩ‬ϚʔΧͷೝࣝ݁Ռ
Λද͍ͯ͠Δɽ͜͜Ͱ 3 ࣍‫ݩ‬ϚʔΧͷೝࣝ݁Ռͱ͸ɼਤ 4ɼ6
ͷ (e) ΍ (f) ʹ͓͍ͯ 3 ࣍‫ݩ‬ϚʔΧʹઃஔ͞Εͨ੺ɼ੨ɼ྘ͷ
‫ۙ෇ٿ‬ͷ֤৭ͷ఺ઢͷԁͰද͞Ε͓ͯΓɼຊγεςϜͰ͸͜
ͷೝࣝΛ࣮࣌ؒʢ33[ms]ʣͰ‫܁‬Γฦ͠ߦ͍ͬͯΔɽΧϝϥը
૾্ʹ͓͍ͯɼ֤৭ͷ఺ઢͷԁ͕ϚʔΧʹઃஔ͞Ε֤ͨ‫ٿ‬ͷ
֎पͱ‫׬‬શʹҰக͍ͯ͠Δ৔߹ɼҨ఻ࢠͷద߹౓͕࠷΋ߴ͘ɼ
ϚʔΧͱͷ૬ରతҐஔɾ࢟੎͕ਖ਼͘͠ೝࣝ͞Ε͍ͯΔ͜ͱΛ
ҙຯ͍ͯ͠Δɽਤ 4(a)∼(d) ΑΓɼҐஔɾ࢟੎ͷೝࣝ݁Ռ͕࣮
Ԗ௚ํ޲ɹ : v3 = kp3 (yd − y) + 2.5
‫ݧ‬։࢝‫ʹޙ‬ऩଋ͍͕ͯ͘͠ɼ‫ؾ‬๐֎ཚൃੜ‫ޙ‬͸ൃੜલʹൺ΂
ʢv3 = 0[V] ͷͱ͖ ΣH ͷ yH ࣠ํ޲ʹ
ͯҨ఻ࢠͷೝࣝ݁Ռ͕͹Βͭ͘͜ͱΛ֬ೝͰ͖Δɽ͜Ε͸Χ
ਪྗ −4.9[N]ɼv3 = 5[V] ͷͱ͖ਪྗ
ϝϥը૾ʹөΓࠐΜͩ‫ؾ‬๐֎ཚʹΑͬͯɼ3 ࣍‫ݩ‬ϚʔΧͷҐ
ஔͱ࢟੎ͷೝ͕ࣝ೉͘͠ͳͬͨ͜ͱΛҙຯ͍ͯ͠Δɽ͞Βʹ
4.9[N]ʣ
ਫฏํ޲ɹ : v4 =


5.0 ʢxd − x < −5[mm] ͷͱ͖




ΣH ͷ xH ࣠ํ޲ʹਪྗ




−4.9[N]ʣ

0.0 ʢxd − x > 5[mm] ͷͱ͖





ΣH ͷ xH ࣠ํ޲ʹਪྗ



4.9[N]ʣ
͞ΒʹຊใͰ͸ɼೝࣝը૾ʹөΓࠐΉ֎ཚʹର͢Δϩόετ
ੑΛ‫͢ূݕ‬ΔͨΊɼϨΪϡϨʔτதͷਫதϩϘοτʹରͯ͠ɼ
νϜχʔ͔Β෾ग़͢Δ‫ؾ‬๐Λ໛ٖͨ͠‫ڥ؀‬Λਤ 3 ʹࣔ͢ 3 ࣍
࣮‫ڥ؀‬Λ໛ٖͨ͠എ‫͋ܠ‬Γͷ৔߹ͷ݁Ռʢਤ 6(a)∼(d)ʣ͸ɼ
എ‫͠ͳܠ‬ͷ৔߹ͱൺֱͯ͠ೝࣝ݁Ռ͕͹Βͭ͘΋ͷͷɼഎ‫ܠ‬
ͳ͠ͷ৔߹ͱಉ༷ʹϚʔΧͱͷ૬ରతҐஔɾ࢟੎Λೝࣝ͠ଓ
͚ΒΕΔ͜ͱ͕֬ೝͰ͖Δɽͳ͓ɼ‫ؾ‬๐֎ཚͳ͠ͷঢ়ଶʢ࣮
‫ݧ‬։࢝௚‫∼ ޙ‬30[s] ·ͰʣͰ΋ਤ 4(c) ͸ (a) ͓Αͼ (b) ͱൺ
΂ͯೝࣝ݁Ռ͕͹Β͍͍ͭͯΔɽ͜Ε͸Χϝϥը૾ͷ্Լࠨ
ӈʢx ͓Αͼ y ࣠ʣํ޲ͱൺ΂ͯɼԞߦ͖ʢz ࣠ʣํ޲ͷҐ
ஔͷೝ͕ࣝ೉͍͜͠ͱΛද͍ͯ͠Δɽ
ͭ͗ʹਤ 5ɼ7 ͸ͦΕͧΕద߹౓ͷ෼෍Λද͍ͯ͠Δɽਤ
தͷࠇ৭ͷ఺͕֤Ҩ఻ࢠͷೝࣝ݁Ռʢద߹౓ͱͦͷ࣌ͷೝࣝ
‫ݩ‬ϚʔΧͷલํʹ഑ஔ͠ɼ෾ग़͢Δ‫ؾ‬๐ͷ༗ແʹΑͬͯ໨ඪҐ
ҐஔʣͰ͋Δɽ۩ମతʹ͸֤ਤʹ͓͍ͯ (a) ࣮‫ݧ‬։࢝‫ ޙ‬10[s]
ஔɾ࢟੎΁ͷ෮‫ݩ‬ೳྗ͕ͲͷΑ͏ʹมԽ͢Δ͔ͷ֬ೝΛߦ͏ɽ
ʢ‫ؾ‬๐֎ཚͳ͠ʣʹ͓͚Δద߹౓ͱͦΕʹରԠ͢Δ x ͓Αͼ y
3. ݁Ռͱߟ࡯
࠲ඪͷೝࣝҐஔɼ(b) ࣮‫ݧ‬։࢝‫ ޙ‬40[s]ʢ‫ؾ‬๐֎ཚ͋Γʣʹ͓
͚Δ x ͓Αͼ y ࠲ඪͷೝࣝҐஔɼ(c) ࣮‫ݧ‬։࢝‫ ޙ‬10[s] ʹ͓
3. 1 GA ʹΑΔ 3 ࣍‫ݩ‬ϚʔΧͷೝࣝੑೳ
͚Δ x ͓Αͼ z ࠲ඪͷೝࣝҐஔɼ(d) ࣮‫ݧ‬։࢝‫ ޙ‬40[s] ʹ͓
ຊઅͰ͸ɼఏҊγεςϜͰ༻͍ͨ GA ʹΑΔ 3 ࣍‫ݩ‬Ϛʔ
͚Δ x ͓Αͼ z ࠲ඪͷೝࣝҐஔͰ͋Γɼ(e)∼(h) ͸ (a)∼(d)
ΧͷҐஔɾ࢟੎ͷೝ࣮ࣝ‫݁ݧ‬Ռʹ͍ͭͯࣔ͠ɼఏҊख๏ͷϩ
ͷਤʹ͓͍ͯద߹౓ͷ෼෍ͷࢁͷ௖఺෇ۙͷྖҬΛ֦େͨ͠
όετੑʹ͍ͭͯߟ࡯͢Δɽຊ࣮‫Ͱݧ‬͸ GA ͷ৚݅ͱͯ͠Ҩ
ਤͰ͋ΔɽͦΕͧΕͷਤΑΓɼഎ‫ܠ‬ͷ༗ແʹ͔͔ΘΒͣɼ‫ؾ‬
఻ࢠ਺Λ 60ɼද‫ܕݱ‬Λ 3 ࣍‫ݩ‬ϚʔΧͷҐஔͱ࢟੎ʢx[mm]ɼ
๐֎ཚͳ͠ͷ৔߹ͱൺֱͯ͠‫ؾ‬๐֎ཚ͕ଘࡏ͢Δ৔߹͸ద߹
y[mm]ɼz[mm]ɼǫ2 [deg]ʣɼ੍‫ޚ‬प‫ظ‬ʢ1 ճͷೖྗը૾ʹର͠
౓͕௿͘ͳΔɽ͔͠͠ɼద߹౓͕࠷΋ߴ͍Ҩ఻ࢠͷೝࣝҐஔ
ͯҨ఻ࢠΛਐԽͤ͞Δ࣌ؒʣΛ 33[ms]ɼ੍‫ޚ‬प‫ظ‬ຖͷੈ୅ͷ
͸‫ؾ‬๐֎ཚ΍࣮‫ڥ؀‬Λ໛ٖͨ͠എ‫ܠ‬ͷ༗ແʹ͔͔ΘΒͣ΄ͱ
ߋ৽ճ਺Λ 9 ճͱ͍ͯ͠Δɽ·ͨɼ3 ࣍‫ݩ‬ϚʔΧ͸ਫதͰ‫ݻ‬ఆ
ΜͲมԽ͕ແ͍͜ͱ͕෼͔ͬͨɽҎ্ΑΓɼఏҊγεςϜͷ
͠ɼਫதϩϘοτͱͷ૬ରతҐஔɾ࢟੎ͷਅ஋͕ xd = 0[mm]ɼ
GA ͸ 3 ࣍‫ݩ‬ϚʔΧͷҐஔɾ࢟੎Λ࣮࣌ؒͰೝࣝͰ͖Δϩό
4
T. SICE Vol.xx No.xx Xxx 20xx
ετੑΛ༗͍ͯ͠Δ͜ͱ͕֬ೝͰ͖Δɽ
Fig. 4 Distribution of top 36 genes in case of plain background: (a)Position in x-axis direction, (b)Position
in y-axis direction, (c)Position in z-axis direction,
(d)Angle around y-axis, (e)Left and right camera images at 10[s] and (f)Left and right camera images at
40[s].
3. 2 ਫதʹ͓͚Δ GA ೝࣝਫ਼౓ͱϨΪϡϨʔτੑೳ
ਤ 8(a) ͸ 3 ࣍‫ݩ‬ϚʔΧલʹ‫ؾ‬๐Λग़‫ݱ‬ʢਤ 3 ʹࣔ͢ʣ͞
ͤɼೝࣝը૾ʹ֎ཚΛөΓࠐ·ͤͨঢ়ଶͰ૬ରత໨ඪҐஔɾ
࢟੎ xd = 0ɼyd = −67ɼzd = 600ɼǫ2d = 0 ʹϨΪϡϨʔ
τͤͨ͞ਫதϩϘοτͷ GA ೝࣝ࣌ͷద߹౓ͷ࣌ؒมԽΛࣔ
͢ɽ͜ͷਤͷ (a) ʹΑΔͱɼೝࣝ։͔࢝Β਺ඵҎ಺Ͱద߹౓
͕ 0.4 ∼ 1 ͷؒΛਪҠ͠ɼฏ‫ݧ࣮ͯ͠ۉ‬த͸ 0.7 લ‫ޙ‬ͷద߹
౓Λҡ͍࣋ͯ͠Δ͜ͱ͕Θ͔Δɽਤ 8(b)ʙ(e)ɼ(g)ʙ(j) ͸૬
ରత໨ඪҐஔɾ࢟੎ͱ GA Ͱೝࣝͨ͠ਫதϚʔΧͷҐஔɾ࢟
Fig. 5 Fitness distribution generated by each gene in case of
plain background: (a)Fitness distribution between x
and y positions at 10[s], (b)Fitness distribution between x and y positions at 40[s], (c)Fitness distribution
between x and z positions at 10[s], (d)Fitness distribution between x and z positions at 40[s], (e)Enlarged
view of (a), (f)Enlarged view of (b), (g)Enlarged view
of (c) and (h)Enlarged view of (d).
੎ͱͷ‫ࠩޡ‬ɼ͓ΑͼͦΕΒΛ෮‫͢ݩ‬ΔྗɾτϧΫΛද͍ͯ͠
Δɽ·ͨɼ(f) ͸ϨΪϡϨʔτதͷਫதϩϘοτͷҐஔΛਤ 3
ͷਫதϩϘοτͱ 3 ࣍‫ݩ‬ϚʔΧͷҐஔؔ܎ʢࠨྻʣɼਫதϩ
தͷ ΣH Λ‫ج‬४ʹද͍ͯ͠ΔɽGA ͷೝࣝ‫ࠩޡ‬ɼϩϘοτҠ
Ϙοτ͔Β‫ ͨݟ‬3 ࣍‫ݩ‬ϚʔΧͷҐஔʢӈྻʣΛ 10[s] ຖʹऔ
ಈ࣌ʹੜ͡Δςβʔέʔϒϧ͔Βͷ൓ྗɼ͞ΒʹҠಈ࣌ʹൃ
ಘͨ͠ը૾Λ͍ࣔͯ͠Δɽਤ 9(a)ʙ(e) ͷӈྻͷ֤ը૾ʹ͓
ੜ͢ΔਫѹมԽʹΑΔ࣮‫ݧ‬૧ଆ໘͔Βͷ൓ࣹ೾Λड͚ɼ૬ର
͍ͯɼ3 ࣍‫ݩ‬ϚʔΧͷ֤‫΅΄ͱٿ‬ಉ͡Ґஔʹඳը͞Ε͍ͯΔ
త໨ඪҐஔɾ࢟੎͔Βͷ‫͕ࠩޡ‬ఆৗతʹ‫ݱ‬ΕΔ΋ͷͷɼ4 ‫ج‬ͷ
੺ɼ྘ɼ੨ͷԁ͸ GA ͕࣮࣌ؒͰೝࣝͨ͠ 3 ࣍‫ݩ‬ϚʔΧͷҐ
εϥελΛ੍‫͢ޚ‬Δ͜ͱͰ֎ཚཁૉΛΩϟϯηϧ͠ɼ૬ରత
ஔɾ࢟੎Λද͍ͯ͠Δɽ͜ΕΒͷඳը͞Εͨԁͱ 3 ࣍‫ݩ‬Ϛʔ
໨ඪҐஔɾ࢟੎ۙ๣ʹϨΪϡϨʔτͰ͖Δ͜ͱ͕֬ೝͰ͖Δɽ
Χͷ֤‫ٿ‬ͷେ͖͕͢͞΂ͯҰக͍ͯ͠Δ৔߹ɼຊγεςϜ͸
3 ࣍‫ݩ‬ϚʔΧͷҐஔɾ࢟੎Λ‫͘ͳࠩޡ‬ೝ͍ࣝͯ͠Δʢద߹౓
3. 3 3 ࣍‫ݩ‬ϚʔΧ͕प‫ظ‬ӡಈ͢Δ৔߹
͕࠷΋ߴ͍ʣ͜ͱΛද͍ͯ͠Δɽ͜ΕΒͷਤ (a)ʙ(e) ͷӈྻ
૬ରత໨ඪҐஔɾ࢟੎Λ 3.1 ͱಉ͡஋ͱͯ͠ 3 ࣍‫ݩ‬ϚʔΧ
ͷ֤ը૾ʹඳը͞Εͨ੺ɼ྘ɼ੨ͷԁͷҐஔ͔Β෼͔ΔΑ͏
લํʹ‫ؾ‬๐Λग़‫ ͭͭͤ͞ݱ‬3 ࣍‫ݩ‬ϚʔΧΛप‫ظ‬ӡಈͤͨ͞৔
ʹɼೝࣝը૾ʹ֎ཚʢ‫ؾ‬๐ʣ͕өΓࠐΜͰ͍Δʹ΋͔͔ΘΒ
߹ͷਫதϩϘοτͷϨΪϡϨʔτੑೳʹ͍ͭͯ֬ೝΛߦ͏ɽ
ͣɼϚʔΧͱਫதϩϘοτͷ૬ରతҐஔ͸ҰఆʹอͨΕ͍ͯ
3 ࣍‫ݩ‬ϚʔΧલํʹ‫ؾ‬๐Λग़‫ͨͤ͞ݱ‬৔߹ʹ͍ͭͯͷ࣮‫݁ݧ‬
Δ͜ͱ͕෼͔Δɽ͞Βʹ (a)ʙ(e) ͷӈଆࣸਅதʹ͸ɼGA ͕
ՌΛਤ 9 ͱਤ 10 ʹࣔ͢ɽਤ 9 ͸ 3 ࣍‫ݩ‬ϚʔΧΛਤ 3 ʹࣔ͢
࣮࣌ؒͰೝࣝͨ͠ 3 ࣍‫ݩ‬ϚʔΧͷҐஔɾ࢟੎͕ɼೝࣝը૾த
ΣH ͷ z ࣠ํ޲ʹप‫ ظ‬20[s]ɼৼ෯ 280[mm] Ͱӡಈͤͨ࣌͞
ͷ࣮ࡍͷ 3 ࣍‫ݩ‬ϚʔΧͷҐஔɾ࢟੎ͱ͓͓ΑͦҰகͯࣔ͠͞
‫ܭ‬ଌࣗಈ੍‫ֶޚ‬ձ࿦จू ୈ xx ‫ ר‬ୈ xx ߸ 20xx ೥ xx ݄
5
Fig. 6 Distribution of top 36 genes in case of simulated
ocean background: (a)Position in x-axis direction,
(b)Position in y-axis direction, (c)Position in z-axis
direction, (d)Angle around y-axis, (e)Left and right
camera images at 10[s] and (f)Left and right camera
images at 40[s].
Ε͓ͯΓɼ࣮࣌ؒ 3 ࣍‫ݩ‬ೝ͕ࣝҡ࣋͞Ε͍ͯΔ͜ͱ͕෼͔Δɽ
‫͑׵͍ݴ‬Ε͹ɼຊγεςϜ͸ೝࣝը૾தʹ‫ؾ‬๐ʹΑΔ֎ཚ͕
өΓࠐΜͩͱͯ͠΋ɼ࣮࣌ؒͰ࿈ଓతʹ 3 ࣍‫ݩ‬ϚʔΧͷҐஔɾ
࢟੎Λ GA ͕ೝࣝ͠ଓ͚Δ͜ͱ͕ՄೳͰ͋ΔͨΊɼͦͷ݁Ռ
ͱͯ͠૬ରత໨ඪҐஔɾ࢟੎΁ͷϨΪϡϨʔτੑೳ΋ߴ͍͜
ͱΛ͍ࣔࠦͯ͠Δɽ·ͨɼ͜ͷ࣮‫݁ݧ‬ՌΛਤ 10 ʹࣔ͢ɽਤ
10(a)ʙ(d) ͸ɼͦΕͧΕద߹౓ɼz ࣠ํ޲ͷਫதϩϘοτͷ
Ґஔɼ૬ରత໨ඪҐஔͱͷ‫ࠩޡ‬ɼ‫ࠩޡ‬Λ෮‫͢ݩ‬Δྗͷάϥϑ
Λ͍ࣔͯ͠Δɽ·ͨɼ(a)(b) தʹ‫( ͨ͠ࡌه‬A) ͓Αͼ (B) ͱ
ͦΕͧΕͷӈͷ໼ҹ͸ɼ࣮‫ݧ‬։࢝ 20[s] ‫͔ޙ‬Βલड़ͷप‫ৼͱظ‬
Fig. 7 Fitness distribution generated by each gene in case
of simulated ocean background: (a)Fitness distribution between x and y positions at 10[s], (b)Fitness
distribution between x and y positions at 40[s],
(c)Fitness distribution between x and z positions at
10[s], (d)Fitness distribution between x and z positions
at 40[s], (e)Enlarged view of (a), (f)Enlarged view of
(b), (g)Enlarged view of (c) and (h)Enlarged view of
(d).
෯Ͱ 3 ࣍‫ݩ‬ϚʔΧΛӡಈͤͨ͞‫ؒظ‬ɼ࣮‫ݧ‬։࢝ 10[s] ‫͔ޙ‬Β
ೝࣝը૾தʹ‫ؾ‬๐Λग़‫ؒظͨͤ͞ݱ‬Λද͍ͯ͠Δʢͳ͓ɼ(b)
4. · ͱ Ί
ͷਤͷҰ఺࠯ઢ͸ਫதϩϘοτͷ໨ඪ‫ي‬ಓΛද͍ͯ͠Δʣ
ɽਤ
10(a) ͕ࣔ͢Α͏ʹ‫ؾ‬๐ͷग़‫ʹݱ‬Αͬͯద߹౓͕௿Լ͢Δ͕ɼ
ROV Λ AUV Խ͢ΔͨΊͷ‫ڀݚ‬։ൃΛਐΊΔͨΊɼຊ‫ڀݚ‬
ਤ 10(b)(c) ΑΓɼ૬ରత໨ඪҐஔʹϨΪϡϨʔτ͍ͯ͠Δ༷
Ͱ͸ 3 ࣍‫ݩ‬ϚʔΧΛ༻͍ͨϏδϡΞϧαʔϘ‫ܕ‬ਫதϩϘοτ
ࢠ͕֬ೝͰ͖Δɽ͢ͳΘͪɼఏҊ͢ΔγεςϜ͸ೝࣝը૾த
ͷ‫ؾ‬๐֎ཚʹର͢ΔҐஔɾ࢟੎੍‫ޚ‬ͷ‫ݧ࣮ূݕ‬Λߦ͍ɼԼ‫݁ه‬
ʹ֎ཚ͕өΓࠐΜͩͱͯ͠΋ɼ૬ରత໨ඪҐஔʹϨΪϡϨʔ
࿦Λಘͨɽ(1) ఏҊγεςϜ͸ z ࣠ํ޲ͷ࣌ม໨ඪ஋ʹର͠
τͰ͖ΔೳྗΛ༗͢Δ͜ͱ͕ࣔ͞Εͨɽ
ͯϩόετʹ௥ैͰ͖Δɽ(2) ‫ؾ‬๐֎ཚ͕өΓࠐΉ‫ڥ؀‬ԼͰ
͞Βʹɼ‫ؾ‬๐Λग़‫ͨͤ͞ݱ‬ঢ়ଶͰ 3 ࣍‫ݩ‬ϚʔΧͷӡಈप‫ظ‬
͸ GA ͷద߹౓͕௿Լ͢Δ͕ɼఏҊγεςϜ͸ 3 ࣍‫ݩ‬ϚʔΧ
Λप‫ ظ‬15[s]ɼৼ෯ 280[mm] ʹͨ࣌͠ͷ݁ՌΛਤ 11 ʹࣔ͠ɼ
ͱͷ૬ରతҐஔɾ࢟੎Λϩόετʹೝࣝ͠ଓ͚Δ͜ͱ͕Ͱ͖
3 ࣍‫ݩ‬ϚʔΧͷӡಈप‫ظ‬Λप‫ ظ‬10[s]ɼৼ෯ 280[mm] ʹͨ͠
Δɽ͞Βʹɼ‫ؾ‬๐֎ཚԼʹ͓͍ͯ΋ϏδϡΞϧαʔϘʹΑΔ
࣌ͷ݁ՌΛਤ 12 ʹࣔ͢ɽ͍ͣΕͷ৚݅Ͱ΋ɼೝࣝը૾தʹ‫ؾ‬
࣌ม໨ඪ஋΁ͷ௥ै੍‫ޚ‬Λϩόετʹߦ͏͜ͱ͕Ͱ͖Δɽࠓ
๐͕өΓࠐΉͱద߹౓ͷ஋͕௿͘ͳΔ͕ɼ૬ରత໨ඪҐஔʹ
‫ޙ‬͸ਫதࣗಈॆిʹ޲͚ͨϏδϡΞϧαʔϘ‫ܕ‬ਫதϩϘοτ
ϨΪϡϨʔτͰ͖Δ͜ͱΛ֬ೝͰ͖Δɽ͢ͳΘͪɼ‫ؾ‬๐֎ཚ
ͷ‫ي‬ಓ௥ै੍‫ޚ‬๏ͷ‫ݕ‬౼Λߦ͏ɽ
ʹରͯ͠ఏҊ͢ΔγεςϜ͸૬ରత໨ඪҐஔ΁ͷϨΪϡϨʔ
τੑೳ͕ϩόετͰ͋Δ͜ͱ͕෼͔ͬͨɽ
ँࣙ
ຊ‫Ͱڀݚ‬͸޿࿨‫ࣜג‬ձࣾϚϦϯγεςϜ෦ͷ‫ྗڠ‬Λ
ಘ·ͨ͠ɽ͜͜ʹँҙΛද͠·͢ɽ
T. SICE Vol.xx No.xx Xxx 20xx
6
Fig. 8 Regulator performance with additional disturbance
made by air bubbles against dual-eye image recognition: (a)fitness value, (b)error in x-axis direction,
(c)error in y-axis direction, (d)error in z-axis direction,
(e)error around y-axis, (f)3D trajectory of underwater
vehicle (g)thrust in x-axis direction, (h)thrust in y-axis
direction, (i)thrust in z-axis direction and (j)torque
around y-axis
ࢀ
ߟ
จ
Fig. 9 Actual snapshot of underwater vehicle (left column)
and its camera images (right column) with disturbance
on images after starting experiment: (a)10 seconds
have passed, (b)20 seconds have passed, (c)30 seconds
have passed, (d)40 seconds have passed and (e)50 seconds have passed
‫ݙ‬
1ʣ༄ળమ, Ӝ‫؀‬, ౻Ҫً෉, ਫதϥϯυϚʔΫΛར༻ͨ͠ਫதϩ
Ϙοτͷߤ๏੍‫ޚ‬, ੜ࢈‫ڀݚ‬, 52 ‫ר‬, 5 ߸ (2000), pp.247-250.
2ʣ༄ળమ, Ӝ‫؀‬, ౻Ҫً෉, ۙ౻ҳਓ, ਓ޻ਫதϥϯυϚʔΫͱਪ
ଌߤ๏Λར༻ͨࣗ͠཯‫ܕ‬ਫதϩϘοτͷߤ๏, ೔ຊϩϘοτֶ
ձࢽ, Vol.20, No.3 (2002), pp.290-298.
3ʣSuzuki, H. and Minami, M., Visual Servoing to catch fish
Using Global/local GA Search, IEEE/ASME Transactions
on Mechatronics, Vol.10, No.3 (2005), pp.352-357.
4ʣNishimura, K., Hou, S., Maeda, K., Minami, M. and
Yanou, A., Analyses on on-line evolutionary optimization
performance for pose tracking while eye-vergence visual
servoing, Proceedings of 2013 IEEE International Conference on Mechatronics and Automation (ICMA) (2013),
pp.698-703.
5ʣ໼ೲཅ, େ੢঵ଠ, ੴࢁ৽ଠ࿠, ‫ݟ‬࿘‫ޢ‬, ਫதࣗಈॆిΛ໨ࢦ͠
ͨϏδϡΞϧαʔϘ‫ܕ‬ਫதϩϘοτͷࣗಈቕ߹੍‫ޚ‬, ೔ຊ‫ػ‬ց
ֶձ࿦จू C ฤ (2015, ౤ߘத)
ʦஶ ऀ ঺ հʧ
໼ ೲ
ཅʢਖ਼ձһʣ
1996 ೥Ԭࢁେֶ޻ֶ෦৘ใ޻ֶՊଔ‫ۀ‬ɽ1998
೥ԬࢁେֶେֶӃ޻ֶ‫ڀݚ‬Պम࢜՝ఔमྃɽ2001
೥ಉେֶେֶӃࣗવՊֶ‫ڀݚ‬Պത࢜՝ఔमྃɽಉ
େֶେֶӃ‫ڀݚ‬ੜΛ‫ͯܦ‬ɼ2002 ೥ۙ‫ـ‬େֶ޻ֶ෦
ॿखɽ2004 ೥ಉߨࢣΛ‫ͯ ܦ‬ɼ2009 ೥Ԭࢁେֶେ
ֶӃࣗવՊֶ‫ڀݚ‬Պॿ‫ڭ‬ɽ‫ࢸʹࡏݱ‬Δɽ༧ଌ੍‫ޚ‬
ʹؔ͢Δ‫ࣄैʹڀݚ‬ɽത࢜ʢ޻ֶʣ
ɽ‫ܭ‬ଌࣗಈ੍‫ޚ‬
ֶձɼγεςϜ੍‫ޚ‬৘ใֶձɼ೔ຊ‫ػ‬ցֶձ౳ͷ
ձһɽ
‫ܭ‬ଌࣗಈ੍‫ֶޚ‬ձ࿦จू ୈ xx ‫ ר‬ୈ xx ߸ 20xx ೥ xx ݄
Fig. 10 Tracking performance with additional disturbance
made by air bubbles against dual-eye image recognition in the case that (A) 3D marker is moving on
z-axis with amplitude 280 [mm] and period 20 [s] after 20 [s] and (B) disturbance is added after 10 [s]:
(a)fitness value, (b)position of underwater vehicle in
z-axis direction, (c)tracking error in z-axis direction,
and (d)thrust in z-axis direction
7
Fig. 12 Tracking performance with additional disturbance
made by air bubbles against dual-eye image recognition in the case that (A) 3D marker is moving on
z-axis with amplitude 280 [mm] and period 10 [s] after 20 [s] and (B) disturbance is added after 10 [s]:
(a)fitness value, (b)position of underwater vehicle in
z-axis direction, (c)tracking error in z-axis direction,
and (d)thrust in z-axis direction
ੴ ࢁ ৽ଠ࿠ʢਖ਼ձһʣ
1981 ೥ 3 ݄౦‫ۀ޻ژ‬େֶେֶӃ૯߹ཧ޻ֶ‫ڀݚ‬
ՊΤωϧΪʔՊֶઐ߈म࢜՝ఔमྃ, 1990 ೥ 6 ݄
ʹ౦‫ۀ޻ژ‬େֶΑΓֶҐΛऔಘ, (޻ֶത࢜). 1981
೥ 4 ݄೔ຊ‫ॴڀݚྗࢠݪ‬౦ւ‫ߴॴڀݚ‬Թ޻ֶ෦ೖ
ॴ, 1993 ೥ʙ1995 ೥ϢʔϦοώ‫ॴڀݚ‬ʢυΠπʣ
ʹͯ‫ࢠݪ‬࿍༻৽ૉࡐ։ൃʹैࣄ, ΦʔΫδοϦࠃཱ
‫ॴڀݚ‬ʢถʣʹͯ, ߴԹΨε࿍༻ࠇԖࡐྉͷॏরࣹ
‫ࣄैʹڀݚ‬. ೔ຊ‫ֶྗࢠݪ‬ձϑΣʔϩʔ, 2010 ೥
4 ݄ʙ౦޻େ‫ࢠݪ‬࿍޻ֶ‫ॴڀݚ‬ඇৗ‫ࢣߨۈ‬, 2012
೥ 4 ݄ʙ‫ࡏݱ‬෱Ҫେֶԕ੺֎ྖҬ‫ڀݚ‬ηϯλʔ٬
һ‫ڭ‬त, 2013 ೥ 2 ݄ʙ2015 ೥ 3 ݄Ԭࢁେֶࣗવ
Պֶ‫ڀݚ‬Պ࢈‫ۀ‬૑੒޻ֶઐ߈஌ೳ‫ػ‬ցγεςϜֶ
٬һ‫ڭ‬त.
‫ ݟ‬࿘
Fig. 11 Tracking performance with additional disturbance
made by air bubbles against dual-eye image recognition in the case that (A) 3D marker is moving on
z-axis with amplitude 280 [mm] and period 15 [s] after 20 [s] and (B) disturbance is added after 10 [s]:
(a)fitness value, (b)position of underwater vehicle in
z-axis direction, (c)tracking error in z-axis direction,
and (d)thrust in z-axis direction
‫ޢ‬ʢਖ਼ձһʣ
1979 ೥େࡕ෎ཱେֶ޻ֶ෦ߤۭ޻ֶՊଔ‫ۀ‬ɼ1981
೥େࡕ෎ཱେֶ޻ֶ‫ڀݚ‬Պߤۭ޻ֶઐ߈म࢜՝ఔ
मྃɽ1993 ೥ ۚ୔େֶେֶӃࣗવՊֶ‫ڀݚ‬Պത
࢜՝ఔमྃɽത࢜ʢ޻ֶʣɽ1994 ೥෱Ҫେֶ޻ֶ
෦‫ػ‬ց޻ֶՊॿ‫ڭ‬तɼ2002 ೥ ಉֶ෦஌ೳγεςϜ
޻ֶՊ‫ڭ‬तɼ2010 ೥ԬࢁେֶେֶӃࣗવՊֶ‫ڀݚ‬
Պ‫ڭ‬तɼ‫ࢸʹࡏݱ‬ΔɽϩϘοτͷྗֶɼ߆ଋӡಈɼ
ྗ੍‫ޚ‬ɼҠಈϚχϐϡϨʔλͷ੍‫ޚ‬ɼը૾ೝࣝɼϏ
δϡΞϧαʔϘΠϯά౳ͷ‫ࣄैʹڀݚ‬ɽ೔ຊ‫ػ‬ց
ֶ ձɼ‫ܭ‬ଌࣗಈ੍‫ֶޚ‬ձɼIEEE ͳͲͷձһɽ
দ ໺ ོ ޾ʢਖ਼ձһʣ
ถ ৿
݈
ଠ
2014 ೥Ԭࢁେֶ޻ֶ෦γεςϜ޻ֶՊଔ‫ۀ‬ɽಉ
೥ɼԬࢁେֶେֶӃࣗવՊֶ‫ڀݚ‬Պ‫ػ‬ցγεςϜ
޻ֶઐ߈ೖֶɼ‫ࢸʹࡏݱ‬Δɽ
2004 ೥ 9 ໊݄‫ݹ‬԰େֶେֶӃ޻ֶ‫ڀݚ‬ՊϚΠ
ΫϩγεςϜ޻ֶઐ߈ത࢜՝ఔ‫ظޙ‬՝ఔຬ‫ظ‬ୀֶɼ
2004 ೥ 10 ໊݄‫ݹ‬԰େֶେֶӃ޻ֶ‫ڀݚ‬Պॿखɽ
2005 ೥ 3 ݄ʹֶҐΛऔಘɼത࢜ (޻ֶ)ɽҎ߱ 2006
೥ 4 ݄ΑΓ෋ࢁ‫ཱݝ‬େֶ޻ֶ෦ॿखɼॿ‫ڭ‬ɼߨࢣɽ
2011 ೥ 10 ݄ΑΓԬࢁେֶେֶӃࣗવՊֶ‫ڀݚ‬Պ
ߨࢣʹண೚ɽϩϘοτʹΑΔॊೈ෺ମͷϚχϐϡ
Ϩʔγϣϯɼ૊ཱ࡞‫ۀ‬ͷࣗಈԽʹؔ͢Δ‫ࣄैʹڀݚ‬ɽ