GPa 級局所応力場を利用した燃料電池電解質評価技術の開発 GPa 級局所応力場を利用した燃料電池電解質 "" ! 評価技術の開発 * 147 * 大 幸 裕 介 jv ¿FÚ Development of the screening of fuel cell electrolytes utilizing a GPa-order local stress field Yusuke DaikoÚ Ionic conductivities measured under GPa-order high pressure include various information about ion hopping mechanisms such as the activation volume (ΔV). In this study, we demonstrate a new method for high-pressure impedance measurements, up to 4 GPa, utilizing an indentation-induced local stress field. Traditionally, diamond anvil cells have been used for high-pressure measurements. The current system does not require any pressure mediums or pressure calibrations. The ΔV for O2− ion conduction in 10 mol% Y2O3-doped zirconia at 500 °C was estimated to be 3.0 cm3 mol−1. ΔV increased with increasing temperatures from 500 to 600 °C. The technique also allows the concurrent determination of the effective elastic modulus by fitting the experimental data obtained from the indentation load–depth profile curve with the Hertzian elastic model. The experimental values were consistent with the theoretical values. Finite element method (FEM) was also applied to evaluate the ΔV. $# eleRÄØwxf¬x y¢ÓHW³ + >1h]Ç[ZCÍWm¡&ÃMÊu ½º ³yZÁY$ % $[1-3]©{ 1mm ®x£zel 10Ν ®x¼Òel© EW 0.1Ü GPa Î$ÙeGErÖ¢&²NA ÉËÃM$eleRª¨$(*@rÖ¢(σ) σ = σo·exp[-(ΔE+PΔV)/RT] (1) (σ0ÛV×alPÛeWRÛKo TÛ¶qx)¾%P C o σ xi[!#[)8?,BΔE T Co σ eWi[!#[K¯ ΔV %%"%$ΔV (* @;5:@-Ir$Ô̸`$[4,5]ÖlIrK C» ΔV ÅOJrÖ¢D$ÒÀ dKÖÁÆ ΔV ÃM GPa *B4BeW\i "%ÙeoU´(Ä/(2oÕbeWkK)" c 図1. GPa 級 1.圧子圧入法を利用した e l eR & T ¥ ΔE ÃM ΔV g_Ls GPa 高圧インピーダンス測定 µÙe(@:B4@1 eleRt§ GPa µÙe&¦¤$ o £zelT¥!Q±eW&Í·§i[$ \ ¹$[6]}4(=<@6'@9?3?&T¥ ΔV ÃMȲNÝÉËÕb U~(Ñ[/ÏP)p$jT|$ «°Ñ[¡(*@(O2-) IrK ÖÖÁÆ¥"%$ÐSno[0?.7'(YSZ)&Ä¥eleR !#Ùe(@:B4@1!§o^ÃM& 2015 年 2 月 25 日受理 * 豊田理研スカラー (名古屋工業大学大学院未来材料創成工学専攻) 148 GPa 級局所応力場を利用した燃料電池電解質評価技術の開発 -1 log(σ / S cm ) Z" / kΩ 10 mol%Y2O3 ±h ZrO2 - 1500 1 û´Ôáā-ùāÄdz½î½HK2·ø Ā¦-3?97w~(Inconel625 ä)HK2Ā¦û /KAM8K3- LCR EM7M-½³ JM<4IA06Ò~-½ß÷ 0⇔25 N ûNõ{l( 5N Nûß÷ -vNß÷P LCR EM7M-½/KAM8K3-³Hertz F:Iy êÎw~ éāÊ')w~_Ìg-Îc#ýæÒêÎ! COMSOL Multiphysics®5B ;(Ver. 4.4)-½ 500* loading '" unloading w`° vs ß÷× !÷)YSZ ak-È( Hertz è¡')w ~ éāÊ-«$(_Ìg-êÎu 2a Hertz F:I fitting Ô¢(ò×: Hertz F:I)-ÈFitting ') p¹! 101 GPa (+ ]! YSZ Inconel w~ ¹'"D.5K©')Îc](99 GPa)ÞNÝĀ èñ Óilͧ¤¶íY½oÜ*-Æï 5 N û(120 s)\/KAM8K3-³Ô¢-u 2b Èu PÃn!>I1Â*Ù(+* ß÷'">I1-w~ éāÊç£l++ 100 5N g'"Ā¹ÎCJ9;% -u ĄÈSÚ û!Þ|Á×ü[ (+(1)') ΔV ! 3.0 cm3/mol ê 50 Î+ ]!¸](2.1 cm3/mol)ôýæÒêÎ') w~ô^ gd-hrb fitting -à,' 0 2.1 cm3/mol Í ΔV (+w~ô^ gd-hr 100 200 300 400 500 *')ăÐ ΔV oÜ*Ù(+* Z' / kΩ 'wg}V%wgã¨%Qæ8/GFK<.K@I a) YSZ の 500℃における荷重と 4IăwâØ-½mOâØ ΔV -dÉóõLÏZ 図2. u 2a. YSZ 500*ß w圧入深さの関係 (赤線は ( ò ×Hertz íYoÜ*-ì#qâØ-½ 500 ÷ `° ü[ ! F:I) モデル)2b) 5 N * Hertz 100 û#' 25 û§¤¶(¹)'"/KAM8 b)5NCJ9; における cole-cole プロット K3-íY,YSZ Óil!ï$(+X½ö cole-cole (Nö SUS304 -X½) ü[ÓîĂ!Us 500 -3 3 ΔV [cm /mol] U!')µĀ¬kWô²'"ÿtªí o 500 C: 3.0 Y-ÕÖ* o 550 C: 3.2 -3.5 o 600 C: 3.9 5N w~w`')w~ÁP¿¼*Àăwgz-f½ 10 N -4 a GPa Ñăw/KAM8K3³®¥ë 15 N 20 N 25 N ¹&Å §¤À¶Ā¹'"¯lVÊ2 R = 0.9967 qăbºíYoÜ*-ìw~ô^ -4.5 gd!åþRÀ* ýæÒêÎ-f½gd 2 2.5 3 3.5 4 4.5 -hr Fitting 'xNg ³qÍ ΔV Pressure / GPa (+Îc+ð¾»lÄË'*ÄËj'e$ 500℃における YSZ の圧子直下 (+¢)U!çĀèñ 31HM=K2&ÛT 図3. u 3. 500* YSZ w の発生応力と導電率の関係 íYgz-f½d¡® ú ~ÁP ¿¼gĀ¹ ü[. REFERENCES [1] M. Sakai et al., J. Non-Cryst. Solids, 282, 236-247 (2001). [2] N. Hakiri et al., J. Mater. Res., 24, 1950-1959 (2009). [3] S. Yoshida et al., J. Mater. Res. 20, 3404-3412 (2005). [4] D. N. Yoon et al., J. Phys. Rev. B, 5, 4935-4945 (1972). [5] G. A. Samara, Solid State Phys. 38, 1-80 (1984). [6] Y. Daiko et al., Solid State Ionics, 254, 6-10 (2014).
© Copyright 2025 ExpyDoc