9 e [email protected] C 5 C 1 C 9 15 1 1 9 9 1 C C 1 9 7 C k 1 o 9 7C C 1 9 e 1 C o 7 7 k 9 1 1 1 1,2 2 2 1 2 [email protected] G1 ! !Ras!ERK ERK FRET NRK ERK ERK 20 ERK ERK EGF ERK!EGF EGF ! FRET ERK Spatial propagation of radial ERK activity distribution (SPREAD) SPREAD SPREAD: ERK [email protected] X 1 Turing [email protected] Turing Turing Turing Turing Turing Turing Pattern Turing Turing Turing t JST [email protected] o r o r m i t r v t t n o DNA : [email protected] DNA DNA DNA DNA DNATranscription activator-like effector (TALE) DNA [1] DNA [1] H. Flechsig, PLOS ONE 9, e109919 (2014). TALE RVD Epigenetic code - [email protected] DNA H3K27me3 Nakamura et al., 2014 grand state epigenetic code DNA DNA epigenetic DNA H3K27me3, H3K4me2 Nakamura, R. et al. Large hypomethylated domains serve as strong repressive machinery for key developmental genes in vertebrates. Development 141, 2568-2580 (2014). l [email protected] 1 C 4 R M C M P 4 4 M 4 E F M M - M 4 4 G E e 4 1 l 4 4 MG4 M K 4 G 4 M M M F P G A E 1 4 K M C l l 4 M M M M F 4 M M M 4 [email protected] km , 2 1480 nm K/mm 33 ℃ DNA DNA ∇T =2.5 RNA 3 Polyethylene glycol PEG 3 1 5% , PEG DNA DNA DNA 2 3 3 1 DNA DNA 2 1 persistent random walk 1. YT Maeda, A Buguin, A Libchaber. Phys. Rev. Lett. 107: 038301 (2011) 2. YT Maeda, T Tlusty, A Libchaber. PNAS 109: 17972 (2012) 3 iBMath [email protected] DNA pre-mRNA RNA polymerase II (RNAPII) pre-mRNA RNAPII 1) Wada Y, Ohta Y, et al: Proc Natl Acad Sci USA, 106 (43): 18357–61, 2009. 2) Ohta Y, Kodama T, Ihara S: Physical Review E84, 041922, 2011. 3) Ohta Y, Nishiyama A, Wada Y, et al: Physical Review E86, 021918, 2012. CREST, JST [email protected] Mochizuki, A., Fiedler, B. et al. J. Theor. Biol. (2013) 335, 130-146 Mochizuki A. & Fiedler B. J. Theor. Biol. (2015) 367, 189-202. [email protected] CREST 2008-2014 [email protected] Matsuda et al., Nat. Commun., in press Delta-Notch Delta Delta Delta [email protected] default mode . PtdIns . PtdIns . . PtdIns iBMath ( ) [email protected] ,2 3 1. S. Arima, K. Nishiyama, T. Ko, Y. Arima, Y. Hakozaki, K. Sugihara, H. Koseki, Y. Uchijima, Y. Kurihara, and H. Kurihara, “Angeogenetic morphogenesis driven by dynamic and heterogeneous collective endothelial cell movement”, Development 138, 4763 (2011). 2. K. Nishiyama, private communication 3. Keisuke Matsuya, Hiroki Kurihara and Tetsuji Tokihiro, “Mathematical Modelings for Angiogenesis: A Cellular Automaton Model and its Continuous Model”, preprint, arXiv:1501.05406 [email protected] AKT kinetics (1,2) (3) 1.Kubota, H. et al, (2012) Temporal Coding of Insulin Actionthrough Multiplexing of the AKT Pathway, Molecular Cell , 46 (6): 820-832 2. Noguchi, R.et al, (2013) The Selective Control of Glycolysis, Gluconeogenesis and Glycogenesis by Temporal Insulin Patterns. Mol. Sys. Biol.,9; Article number 664; 3. Yugi., K. et al, (2014) Reconstruction of trans-omic signal flow of insulin action from phosphoproteome and metabolome data. Cell Reports, 8; 1171-1183 [email protected] 1000 1000 1000 [email protected] cAMP Ras 3 (PI3K) 2 6 cAMP H / [email protected] HM 2 l 1 H 7g A H 7 i eha s 1 2 OA 1 2 i 7 g H eha 7 A H 7 1 2 H A H H H 7 H H M 7 1 H A 1 7A M 7 A 1 A H s c 2 A 7 H 7 H H es H A 1 H 7 1 H 7 7 7 H 2 H s H 7 s H 7 7 c 1 s H H A 7 A g H H s H 7A eha H 7 c 7 7 i A 1 M / [email protected] Nature 418: 534-9 (2002),PNAS : 101:11227-32 (2004),Nature Genetics 37:187-92 (2005), Nature Genetics, 38:312-9 (2006),Nat Cell Biol. 9:1327-34 (2007), PNAS 05, 14946-51 (2008),Nat Cell Biol. 10, 1154-63(2008),PNAS 106, 9890-5 (2009), PNAS 106, 15744-9 (2009), Curr Biol.20(24):2199-206.(2010),Cell 144(2):268-81 (2011), Nature Rev. Genet. 12(6):407-16 (2011). Cell Reports 2(4):938-50 (2012). Genome Biol. 14(4):R31 (2013). Cell, 157(3): 726–39, (2014). Cell, 159(6):911-24(2014).
© Copyright 2024 ExpyDoc