元素合成と恒星進化モデルで探る 極超金属欠乏星の起源

初代星初代銀河研究会2015 @ 東北大学 2015/01/19
15mm
元素合成と恒星進化モデルで探る
極超金属欠乏星の起源
須田 拓馬(東大RESCEU)
共同研究者
小宮 悠 (東大RESCEU), 山田 志真子 (北大), 藤本 正行 (北海学園大)
とができなくなります。
この最小使用サイズは
い。また、印刷方式、媒体の条件などによって
Chemical Evolution of the Universe
Molecular Clouds
Metal-Deficient Stars
(Metal-Poor Stars)
= Ancient Stars
Proto Stars
Main Sequence
Stars
恒星進化・元素合成
化学進化
星形成
銀河形成
Supernova Remnant
Supernovae
Red Giant
Stars
Planetary Nebulae
White Dwarfs
History of Search for Pop. III
[Fe/H]
1948:Gamov Big Bang
0
-1
-2
primordial nucleosynthesis
HD 140283:
[Ca/H]=-1.9
[Fe/H]=-1.2 (-2.5)
Bond survey
[Fe/H] -2.6
Bond70,80
Chamberlian+Aller51
HK survey
(1985:1992)
no stars below [Fe/H]<-3
HE survey
(1990:2001)
Bond81
-3
HE 0557-4840
[Fe/H]=-4.75
G 64-12
[Fe/H]=-3.5(-3.28)
-4
Norris+07
Carney+Peterson81
HE 0107-5240
[Fe/H]=-5.3
CD -38 245
[Fe/H]=-4.5(-4.01)
-5
Initial measurement
-7
1950
1960
G 77-61
[Fe/H]=-5.6 (-4.03)
Gass+87
corrected value
1970
1980
SDSS
J102915+172927
[Fe/H]=-4.99
Caffau+11
Christlieb+02
Bessel+Norris84
-6
SEGUE,
Skymapper
( 2010-)
HE 1327-2326
[Fe/H]=-5.6
SMSS J0313-6708
[Fe/H]<-7
Keller+14
Frebel+05
1990
2000
2010
2020
Carbon-Enhanced Metal-Poor (CEMP) Stars
and Hyper/Ultra Metal-Poor Stars
•
•
HMP stars as the candidates of the first stars
related to low-mass star ( 0.8M ) formation
•
What is the minimum metallicity to form low-mass stars?
CEMP stars are common among Extremely Metal-Poor (EMP)
stars (CEMP/EMP 0.2).
•
1
0
Li
C O
-1
[X/H]
-2
-3
HE0107-5240
CNO-rich:
HE1327-2326 (1D LTE)
HE1327-2326 (3D correction)
Origin of CEMP Iron group:
HE0557-4840
Supernova models
SDSS J102915+172927
SMSS J0313-6708
Pollution & accretion
Na Al
S
Ca Ti Cr Fe Ni Zn
Sr
-4
-5
-6
-7
-8
N
5
Mg Si
10
15
Sc
20
Mn Co
25
Neutron-capture elements:
Origin of CEMP-s/no
30
35
40
Atomic Number (Z)
Ba
45
50
55
60
Eu
65
SAGA viewer
•
•
Proposed Scenarios for the Origins of CEMP Stars
Origin of EMP stars
•
Binary Scenario
Star formation from the gas influenced by SNe in the very
early universe.
Origin of CEMP stars
•
•
•
Mass transfer from AGB stars in binary systems (TS+04)
• CEMP-s stars are thought to belong to binary systems
(Lucatello+05), but not for CEMP-no.
Star formation from gas affected by peculiar supernovae in the
earliest generation of massive stars (Umeda+03, Limongi+04)
• Abundance patterns are well reproduced by mixing and
fallback models.
Star formation affected by massive fast-rotating stars (Meynet
+06)
•
Abundance patterns are well reproduced by rotational
mixing.
TS+04
Spinstar Scenario
Faint-SN Scenario
Meynet+06
Umeda+Nomoto03
Binary Scenario for the Origin of CEMP Stars
TS+Fujimoto10, see also Fujimoto+00
-1
CHCase
stars
IV
(Population I, II)
-2
-3
[Fe/H]
He-FDDM
Case II
-4
0.1
-5
10-2
10
-5
10-8
0.1
0
10-2
CEMP-s
10-3
10-6
10-5
10-7
0
Case IV’
CEMP-no
C burning
Case II’
It is expected that the typical mass of stars
are more massive than that expected
Case IIIfrom the
Case I
present day IMF (Komiya+07, Lucatello+06).
Z=0
0.8
1.0
1.2
Population III
1.5
2.0
Ritossa+99
Gil-Pons+Doherty10
2.5 3.0
4.0
5.0 6.0 7.0 8.0 9.0
Mini
He-Flash Driven Deep Mixing: H-ingestion into the He-flash convective zone
Fujimoto+90, Hollowell+90, Cassisi+96, Fujimoto+00, Schlattl+02, Suda+04, Iwamoto
+04, Picardi+04, Herwig+05, Campbell+Lattanzio+08, Lau+09, Cristallo+09,
Iwamoto09, Campbell+09, Suda+Fujimoto10, Cruz+13
Stellar Evolution & Binary Evolution
C, N, s-elements
Roche Lobe overflow or Wind accretion?
-> depends on separation and mass ratio.
The fraction of CEMP (or NEMP) stars can be estimated by assuming
Initial mass function
distribution function of binary mass ratio
distribution function of binary period
Binary Population Models and Comparisons
with Observed CEMP Fractions
Fraction of C-rich stars
炭素過剰星の割合
1.0
[C/Fe]>0.7
Observations
0.6
High-mass IMF
0.2
Salpeter IMF
-4
Fraction of C-rich stars
IMF transition
0.4
1.0
炭素過剰星の割合
SAGA Database
SEGUE (Lee+2013, Outer halo)
High-Mass IMF
Salpeter IMF
0.8
0.0
Aoki+07
TS+11
Giants
Dwarfs
0.8
-3
-2
-1
[Fe/H]
SAGA Database
SEGUE (Lee+13)
High-Mass IMF
Salpeter IMF
statistical uncertainty?
sampling effect?
Observations
0.6
High-mass IMF
0.4
0.2
TS+13
Lee, TS+14
Salpeter IMF
0.0
-4
-3
-2
[Fe/H]
-1
CNO, 軽元素, 中性子捕獲元素の起源
Hydrogen Ingestion Into the He-Flash Convective Zone
0.640
2M , [Fe/H]=-4
4
0.635
0.625
M1
0.620
Mbhs
0.615
Proton
Ingestion
2
1
[N/Fe]
0.610
0
[C/Fe]
0.605
0.600
3
[X/Fe]
Mr(Msun)
0.630
MCO
20 40 60 80 100 110
TS+Fujimoto10
112
114
116
Time (year)
118
120 500
1000
-1
Campbell+Lattanzio08
Proton
Ingestion
He対流層への水素の混入。水素層との
entropy barrierが少ないために起こ
る。水素flashを伴い、その後の表面対
流層の侵入によってCNが増大。
1.5M
[Fe/H]=-3.3
Lau+09
CNO, 軽元素, 中性子捕獲元素の起源
Nucleosynthesis models
•
One zone approximation during the He shell flashes (Fujimoto+99,
•
p-, α-, β-, n-reactions up to
Aikawa+01)
log THe,conv
He flash対流層の底の温度
are included in nuclear network
(Aikawa+01, Nishimura+08, Yamada+, in prep.).
Proton
Ingestion
Initial Z=0
1.5-7 M
AGB phase
8.6
84Po
model 1
model 2
model 3
model 4
8.5
8.4
8.3
3
4
5
6
7
8
9 10 11 12
log t (sec) after the appearance of He-convection
CNO, 軽元素, 中性子捕獲元素の起源
Comparisons of Models with Observations
Case: HE 0107-5240
0
-1
-2
[X/H]
-3
-4
log(Tmax) = 8.52 (model 3)
8.45 (model 4)
HE0107-5240(Christlieb+02)
12
dtmix=1e+8, 13
C/
C=0.002 (Model 3)
13 12
dtmix=1e+8, C/ C=0.002 (Model 4)
C-abundanceで規格化
Na
Mg
Al
Sr
Ba
-5
-6
-7
-8
5 6 7 8 9 10 11 12 13 14 15 16 17 20 25 30 35 40 45 50 55 60 65 70 75 80
Atomic Number (Z)
see also
少量の水素混合
He-FDDMによるNa, Mg, Alの生成(TS+04)
low- or intermediate-mass AGB stars
TS+04
CNO, 軽元素, 中性子捕獲元素の起源
Comparisons of Models with Observations
Case: HE 1327-2326
0
HE1327-2326(1D,Aoki+06)
HE1327-2326(3D,Frebel+08)
12
dtmix=1e+7, 13
C/
C=0.03 (Model 3)
13 12
dtmix=5e+6, 13C/12C=0.03 (Model 3)
dtmix=5e+8, C/ C=0.02 (Model 2)
-1
-2
Na
[X/H]
-3
-4
Mg
Al
Sr
Ba
-5
-6
-7
-8
5 6 7 8 9 10 11 12 13 14 15 16 17 20 25 30 35 40 45 50 55 60 65 70 75 80
Atomic Number (Z)
大量の水素混合
He-FDDMによるNa, Mg, Alの生成、Sr/Ba大
low-mass AGB stars
CNO, 軽元素, 中性子捕獲元素の起源
Comparisons of Models with Observations
Case: SMSS J0313-6708
-2
-3
Na
SMSS J0313-6708 (Keller+14)
dtmix=1e+6 (Model 1)
dtmix=1e+6 (Model 2)
Mg
-4
[X/H]
-5
Al
-6
Sr
Ba
-7
-8
-9
-10
5 6 7 8 9 10 11 12 13 14 15 16 17 20 25 30 35 40 45 50 55 60 65 70 75 80
Atomic Number (Z)
22Ne(α,n)25Mg起源のs-process
high-mass AGB stars (core mass大 or log T > 8.5)
22Neを効率よく燃やさない限り23Naがoverproduction
鉄属元素の起源
Hierarchical clustering scenario
chemical
evolution
pre-enrichment
of IGM
First stars
Mini-halo
106M
First
supernova surface
pollution
in ISM
Proto-galaxy
Milky
Way
IGM: inter-galactic medium, SN ejecta can pollute other mini-halos
ISM: inter-stellar medium, SN ejecta can pollute other stars within
the mini-halo
鉄属元素の起源
Pollution and Accretion
SN ejecta pollute the IGM and potentially
pollute other mini-halos.
SN ejecta pollute the ISM and the stellar
envelopes with metals.
Ingredients for galaxy/star formation/evolution
Extended Press-Schechter theory
High-mass IMF w. const. SF rate
2
log (m1 /10M )
(log m1 ) exp
2 0.42
Binary evolution
mass ratio function
period distribution
mass transfer
Chemical evolution
semi-closed boxes in each mini-halo
Accretion of SN ejecta
Bondi-Hoyle accretion
Accretion onto binaries
IGM pollution/accretion
outflow from proto-galaxies
evolution of the Galactic wind
pre-enrichment of proto-galaxies
鉄属元素の起源
With accretion
Pollutionを考慮しないと
Pop.IIIが多くなりすぎる!
No accretion
Polluted EMP
Polluted Pop.III
第二世代は
[Fe/H]<-5がほと
んど存在しない。
stellar column density
number of stars covered by HES
Surface pollution by interstellar medium
Komiya+in prep.
鉄属元素の起源
Pre-enrichment of host halo due to pollution by
external SN ejecta
外部のFirst SNによって星表面へ
の降着を受けた第一世代星。
外部のFirst SNによって汚染され
たpre-enrichmentを受けたminihaloの第一世代星。
1st and
1st gen.
2nd gen.
ISM pollution
IGM pollution
Komiya+in prep.
Open Questions: CEMP-no/CEMP-s ratio
(1)[Fe/H] < -3.5でCEMP-noが支配的
• CEMP-s が [Fe/H] < -3.5で消滅!?
• CEMP-no は[Fe/H] = -3.5から増加
• CEMP-s + CEMP-noは連続
s-processが[Fe/H] 依存性を持ってい
ると考えるのが妥当
(2)[Fe/H]<-3.5でCの増大量が異なる
• [C/H] 0 at [Fe/H] > -3.
• [C/H] < -1 at [Fe/H] < -3.5.
• TDUの効率が減少
• [Fe/H] < -4でflashが弱くなる(TS+10)
[C/Fe] and [C/H]➡ with [Fe/H]➡
2.0
CEMP-s
862
の
率
効
p
u
ge
0.0
ed
r
d
-1.0
binarity unlikely
for CEMP-no
?
少
減
C-normal
CEMP
CEMP-s
CEMP-no
1.0
[C/H]
Fraction
28+-9% below [Fe/H]=-3.1
-2.0
-3.0
4/5 for UMP/HMP
CEMP-no
-4.0
-5.0
-5
-4
[Fe/H]
fit: [C/H]=0.876[Fe/H]-0.175
-3
-6.0
-6.0
Norris+13
-5.0
-4.0
-3.0
[Fe/H]
-2.0
-1.0
0.0
TS+11
s-process efficiency dependent on metallicity?
2.0
1.0
CEMP,RGB
CEMP,MS
CEMP-s,RGB
CEMP-s,MS
CEMP-no,RGB
CEMP-no,MS
[Ba/C]
0.0
171
CEMP: [C/Fe] > 0.7
CEMP-s/no: [Ba/Fe] = 0.5
s-processの
金属量依存性
-1.0
-2.0
r-processの寄与
Komiya,TS+14
-3.0
-4.0
-6.0
-5.5
-5.0
-4.5
-4.0
-3.5
[Fe/H]
-3.0
-2.5
-2.0
-1.5
-1.0
SAGA: ver. 2015-01-07
まとめと議論
超金属欠乏(EMP)星([Fe/H] < -2.5)の特徴
炭素過剰星(CEMP)星の割合が大きい。
CEMP星はCEMP-s (s-processの増大あり)とCEMP-no (s-process増大なし)に分類される。
EMPに対するCEMP-s / -no割合に[Fe/H]依存性が見られる。
連星として確認された割合が異なり、CEMP-sはAGBからの質量輸送で説明可能。
なぜ金属欠乏星には炭素過剰(CEMP)星が多いのか?
炭素過剰星の割合はAGB星からの質量輸送とhigh-mass IMFで説明可能。
炭素過剰星割合の変化から、初期質量関数は[Fe/H]~-2の時代に変遷があった可能性がある。
いわゆるHyper Metal-Poor Stars ([Fe/H] < -5)はAGB星からの質量輸送の影響を受け、かつ星間
空間で汚染を受けた星である可能性が高い。
特異な元素組成パターンの再現。
極端に少ない鉄属元素量の実現。
なぜCEMP-no/CEMP比は[Fe/H] < -3.5で大きくなるのか?
通常のモデルでは、intermediate-mass AGBでCEMP-noが作られると仮定すると(Suda et al. 2004,
2010)、CEMP-no/CEMP~0.2 (High-mass IMF) となり、観測値を説明するのは困難。
Low-mass IMFでは、CEMP-no/CEMP<0.02とさらに少ない。
EMP AGB星におけるs-processが金属量依存性を持つ可能性がある。
EMP星では短周期連星が作られやすい?(Aoki, TS+15)
metal-poor stars (not EMP)では1000日以下の連星が最も多い(Rastegaev10)