ERATO 河原林プロジェクト ハイライト_Group2 • 水野 貴之 (JSTさきがけ) • 山口 勇太郎 (岩田CREST) • 長尾 篤樹 (渡辺 科研費新学術領域) 河原林ERATO ネットワークアルゴリズムグループ • Andre van Renssen • Jean-Francois Baffier • Man-Kwun Chiu • 田村 祐馬 • 畑中 達彦 ビッグデータ統合利活用のための次世代基盤技術の創出・体系化 さきがけ 金融ビッグデータによるバブルの早期警戒技術の創出 水野貴之 国立情報学研究所・JSTさきがけ 概要 【目的・手法】バブルのナウキャストは可能か? ・バブルとは単なる急激な成長ではなく,実体 経済から乖離した過剰投機による上昇である 集中投機による不平等の拡大を観測 【株式・不動産バブル検出】 ・人気の銘柄に投機マネーが集中するために 企業業績の差以上に株価の差が生まれる ・人気の物件に投機マネーが集中するために 物件の質の違い以上に価格に差が生まれる 【暴落・暴騰のキッカケの検出】 ・ネガティブな情報ほど短期間に報じられる ・ニュースの「新規性」「話題性」を抽出 【金融ショックの波及】 ・4取引先まで金融ショックが波及 金融 ビッグデータ 30万社の株価 1億社の財務諸表 100万件の不動産 3億記事のニュース 集中投機の 可視化 バブル 非バブル 日本の不動産バブル 上海株式市場での株価格差 [Ohnishi, Mizuno, et al, IJMP2012] 上海ショック(2008) 米国の所得格差 ITバブル崩壊(2000) ウォール街大暴落(1929) ブラックマンデー(1987) 不動産バブル崩壊(2008) Packing Non-zero 𝐴-paths via Linear Matroid Parity Yutaro Yamaguchi (Univeristy of Tokyo) Non-zero 𝐴-paths O 𝑉 5 -time [Chudnovsky, Cunningham, Geelen 2008] [Y. 2014] Mader’s S-paths 𝑠 𝑡 Menger’s 𝑠–𝑡 Paths O 𝑉 -time via L.M.P. [Schrijver 2003] [Cheung, Lau, Leung 2014] Non-bipartite Matching Bipartite Matching 2.373 On Weighted Problems Partly Extendable Non-zero 𝐴-paths [Y. 2015] Mader’s S-paths Polytime via Weighted L.M.P. [Iwata 2013][Pap 2013] 𝑠 𝑡 Menger’s 𝑠–𝑡 Paths Non-bipartite Matching (cf. Min-Cost Flow) (cf. Hungarian Method) Bipartite Matching [Edmonds 1965] 𝑘-IBDD SAT に対する効率的なアルゴリズム 脊戸和寿(成蹊大学) 照山順一(NII) 長尾篤樹(電気通信大学) • 分岐プログラムと呼ばれる計算モデルに対するSAT問題(これをBP-SATと 呼ぶ)は一般にNP完全である. • 分岐プログラムの部分クラス(𝑘-IBDD)に対し2𝑛 より真に速いアルゴリズム を提案. 2-IBDD 2-OBDD SAT問題が NP完全 こちらは 多項式時間 解決可 𝑘-IBDD SAT に対する効率的なアルゴリズム 脊戸和寿(成蹊大学) 照山順一(NII) 長尾篤樹(電気通信大学) BP class BP size Chen, et al. Any BP (CCC 2014) 𝑛2−𝜖 Running time for BP SAT 𝛿 𝑛−𝑛 2 ,𝛿 Space = 𝛿(𝜖) Exp. 𝛼 Our result 𝑘-IBDD 1 𝑛−𝑛 poly(𝑛) poly 𝑛 ⋅ 2 , 𝛼 = 𝑘−1 2 1 (𝑘 ≥ 2) Poly. poly 𝑛 ⋅ poly 𝑛 ∙ 2 Our result 𝑘-IBDD 𝑐𝑛 2 (𝑘 ≥ 2) 𝑐:const 𝜇 𝑐 = Ω 1−𝜇 𝑐 𝑛 1 𝑘−1 −1 2 (log 𝑐) Exp. Constrained Routing Routing in a Network with Obstacles André van Renssen André van Renssen Constrained Routing: Routing in a Network with Obstacles Constrained Routing t s André van Renssen Constrained Routing: Routing in a Network with Obstacles Constrained Routing t s André van Renssen Constrained Routing: Routing in a Network with Obstacles Results First routing algorithm on constrained θ-graphs Improved routing algorithm for Delaunay triangulation André van Renssen Constrained Routing: Routing in a Network with Obstacles Extended Multiroute Flow For Multilink Attack Networks Vorapong Suppakitpaisarn, Hidefumi Hiraishi, Hiroshi Imai Jean-François Baffier Post-Doc in NARC group (since May 2015), [email protected] December 22-23, 2015 Baffier, Suppakitpaisarn, Hiraishi, Imai Extended Multiroute Flow For MLA Networks December 22-23, 2015 1/3 Multilink Attack network flow problems (MLA) Classical max-flow 2 2 s 2 2/2 4 t s MLA-reliable flow 2/2 s Baffier, Suppakitpaisarn, Hiraishi, Imai t 2/4 MLA-robust flow 3/4 2/2 2/2 2/2 2/2 4 4/4 2/2 t s 3/4 2/2 0/2 Extended Multiroute Flow For MLA Networks 4/4 t 0/4 December 22-23, 2015 2/3 Multilink Attack network flow problems (MLA) Classical max-flow 2 2 s 2/2 (4) 2 s t MLA-reliable flow 2/2 s Baffier, Suppakitpaisarn, Hiraishi, Imai t 2/4 MLA-robust flow 3/4 2/2 2/2 2/2 2/2 4 4/4 2/2 t s 3/4 2/2 0/2 Extended Multiroute Flow For MLA Networks 4/4 t 0/4 December 22-23, 2015 2/3 Multilink Attack network flow problems (MLA) Classical max-flow 2 2 s 2/2 (4) 2 s t MLA-reliable flow 2/2 s Baffier, Suppakitpaisarn, Hiraishi, Imai t 2/4 MLA-robust flow 3/4 2/2 2/2 2/2 2/2 4 4/4 2/2 t s 3/4 2/2 0/2 Extended Multiroute Flow For MLA Networks 4/4 t 0/4 December 22-23, 2015 2/3 Multilink Attack network flow problems (MLA) Classical max-flow 2 2 s 2/2 (4) 2 s t MLA-reliable flow 2/2 s Baffier, Suppakitpaisarn, Hiraishi, Imai t 2/4 MLA-robust flow 3/4 2/2 2/2 2/2 2/2 4 4/4 2/2 t s 3/4 2/2 0/2 Extended Multiroute Flow For MLA Networks 4/4 t 0/4 December 22-23, 2015 2/3 Our Contributions/Results Multiroute flow is an approximation to MLA-robust and MLA-reliable We Extend Multiroute Flow (EMRF) to parametric non-integer number of route h using restricted max-flow. Solves MLA-flow problems for a category of networks. Experiments on random-shape networks, grids, and complete networks shows that EMRF solves about 97% of instances. Deterministic lower bound and heuristic upper bound. The gap between both bounds is about 3% on those networks. Complex networks are hard (come to see the poster!) Baffier, Suppakitpaisarn, Hiraishi, Imai Extended Multiroute Flow For MLA Networks December 22-23, 2015 3/3 Navigating Weighted Regions with Scattered Skinny Tetrahedra Man-Kwun Chiu [email protected] National Institute of Informatics Joint work with Siu-Wing Cheng, Jiongxin Jin and Antoine Vigneron S.W. Cheng, M.K. Chiu, J. Jin, A. Vigneron Navigating Weighted Regions Problem Definition Weight ωτ ∈ [1, W ]. Vertex v = (x, y ) ∈ [−N, N]2 . P cost(P[vs , vd ]) = simplex τ ωτ kP ∩ τ k. S.W. Cheng, M.K. Chiu, J. Jin, A. Vigneron Navigating Weighted Regions Previous Result Find a (1 + ε)-approximate shortest path. Previous result : O Knε−2.5 log nε log3 1ε . S.W. Cheng, M.K. Chiu, J. Jin, A. Vigneron Navigating Weighted Regions Previous Result Find a (1 + ε)-approximate shortest path. Previous result : O Knε−2.5 log nε log3 1ε . Aspect Ratio = R/r A tetrahedron is skinny if its aspect ratio is > ρ. S.W. Cheng, M.K. Chiu, J. Jin, A. Vigneron Navigating Weighted Regions Previous Result Find a (1 + ε)-approximate shortest path. Previous result : O Knε−2.5 log nε log3 1ε . Aspect Ratio = R/r A tetrahedron is skinny if its aspect ratio is > ρ. S.W. Cheng, M.K. Chiu, J. Jin, A. Vigneron Navigating Weighted Regions Our result If skinny tetrahedra are distributed sparsely, the running time is linear in n. T S.W. Cheng, M.K. Chiu, J. Jin, A. Vigneron Navigating Weighted Regions 1 Approximablity of the Independent Feedback Vertex Set Yuma Tamura, Takehiro Ito, Xiao Zhou (Tohoku University) Independent Feedback Vertex Set problem (IFVS) In this problem, we wish to find a minimum-size independent set 𝐹𝐹 such that 𝐺𝐺 − 𝐹𝐹 is a forest. Input: simple undirected graph 𝐺𝐺 2 Independent Feedback Vertex Set problem (IFVS) In this problem, we wish to find a minimum-size independent set 𝐹𝐹 such that 𝐺𝐺 − 𝐹𝐹 is a forest. Input: simple undirected graph 𝐺𝐺 minimum-size Deleting independent set of three vertices results in a forest 3 FVS and its known result Feedback Vertex Set problem(FVS) we wish to find a minimum-size vertex subset such that 𝐺𝐺 − 𝐹𝐹 is a forest. • It is known that the feedback vertex set problem admits a 2-approximation algorithm on general graphs How about IFVS? 4 5 Our results Theorem 1 Unless P = NP, there is no poly-time 𝒏𝒏𝟏𝟏−𝜺𝜺 -approximation algorithm for IFVS for any fixed 𝜀𝜀 > 0 even for planar bipartite graphs. 𝑛𝑛 : # of vertices of a graph Theorem 2 For bipartite graphs, there is a poly-time 𝚫𝚫 − 𝟏𝟏 -approximation algorithm for IFVS, where Δ is maximum degree of an input graph. The Fixed Parameter Algorithms for List Coloring Reconfiguration Problem Tatsuhiko Hatanaka Takehiro Ito Xiao Zhou (Tohoku University) 2015/12/22 情報系 WINTER FESTA 1 (Vertex) 𝑘-coloring To color all vertices of a graph using at most 𝑘 colors such that every two adjacent vertices have different colors. 𝑘=4 color set 2015/12/22 4-coloring 情報系 WINTER FESTA 2 List coloring: Generalization of 𝑘-coloring Each vertex 𝑣 has a set 𝐿(𝑣) (a list) of allowed colors. 𝐿-coloring 2015/12/22 情報系 WINTER FESTA 3 Transformation of 𝐿-coloring We wish to transform initial into target as follows: (1) One can recolor only a single vertex at a time. (2) At each step, an obtained coloring must be an 𝑳-coloring. ? initial 2015/12/22 target 情報系 WINTER FESTA 4 Transformation of 𝐿-coloring We wish to transform initial into target as follows: (1) One can recolor only a single vertex at a time. (2) At each step, an obtained coloring must be an 𝑳-coloring. “reconfigurable” initial 2015/12/22 target 情報系 WINTER FESTA 5 LIST COLORING RECONFIGURATION problem Input Graph 𝐺 𝐺, 𝐿 Output List 𝐿(𝑣) for each 𝑣 𝐿-colorings 𝑓0 , 𝑓𝑟 𝑓0 𝑓𝑟 YES / NO (Are 𝑓0 and 𝑓𝑟 reconfigurable?) ⇒ YES 2015/12/22 情報系 WINTER FESTA 6 Known results and our results Known result PSPACE-complete even for the case 𝑘 = 4, where 𝑘 is the number of colors in the lists [BC07]. Our result FPT algorithms for several graph classes with respect to the parameter 𝑘. split graph cograph their generalizations 1, 𝑞 -colorable bounded modular-width 2015/12/22 情報系 WINTER FESTA 7
© Copyright 2024 ExpyDoc