Dec. 23 情報系 Winter FESTA at 一橋講堂 Outline 1. Background and Purpose 2. Project Initiatives 3. Major Results 2 1. Background and Purpose 20th cent. 21st cent. Computer One of the Greatest Scientific Inventions Big Data Era Revolution Data Volume Revolution Computational Speed Computer Science The paradigm in 20th cent. Is obsolete! ex) polynomial time ≠ fast PARADIGM Polynomial Time Algorithms Computer Science Urgent Task! Sublinear Time Algorithms 3 2. Project Initiatives Foundations of Algorithm Theory for BIG DATA 1. Foundations of Sublinear Time Algorithm (Katoh group) 2. Foundations of Sublinear Data Structures (Shibuya group) 3. Foundations of Sublinear Modeling (Tanaka group) 4 Research Groups Katoh group (Sublinear Time Algorithms) Ito Katoh Takizawa Makino Okamoto Yoshida Kamiyama Saito Shibuya group (Sublinear Data Structures) Shibuya Nakano Yada Sakamoto Yamagiwa Sadakane Takeda Tanigawa Onodera Kida Tanaka group (Sublinear Modeling) Tanaka Yasuda Shioura Shinohara Ito Group 1. Sublinear Time Algorithms Base Theories Breakthrough [Yoshida, Ito and others] maximum matching, vertexconnectivity, sparsity matroid, knapsack problem, etc: constant-time randomized approx. algorithm Maximum Matching for Bipartite Graphs Practically efficient algorithm 6 Group 2. Sublinear Data Structures Base Theories Information Theory-based Approach Big Data of Size n Enumeration-based Approach Description for enumeration O(I) compression (I: information quantity) Enumerated outputs of "big-data size" New paradigm o(n) -size Indexing How to index? How to compress? o(I) indexing / computation? Applications How to enumerate? How to represent? Sublinear-size representation? New sublinear data structure paradigms for Big Data FPGA Compression Management Information Data Protein 3-D Structure DB Big Data with "Well-structured Data" ATTCAGCGTAAGGCCATTGCGATAG CCTTAAGCGCTAAAGTCGTGGCGCC TATCGATCTTGGACATTAACGCTCT GTAACTACAGGTAGCGGTATCGATC ATCGTATTCTGATTCTTCTATCTTC ATGGTGCTGCTGGTATACTCTACCC TCTGGTGCATCAATAATCTCCGTGC TATCCAATAGGCTTTGCGCACTGAT Group 3. Sublinear Modeling from statistical mechanics Statistical mechanics involves rich techniques for coarse graining of information. low-dimensional data BIG DATA New Paradigm of Sublinear modeling using Statistical Mechanics and Machine Learning Finding hierarchical structures of BIG DATA (Hierarchical) Markov Random Field for Big Data Structure inference of (hierarchical) MRFs generating Big Data using statistical mechanical and machine learning techniques Our recent theoretical developments: • mean-field theory for hierarchical probabilistic models (PRE, 2013; J. Phys., 2013; ICPR, 2014) • statistical machine learning theory for MRFs (Neur. Comput, 2009; ICPR, 2012) etc. 8 3. Major Results A1. Constant-Time Algorithms for Complex Networks A2. Modeling and Simulation of Umeda Underground Mall toward Algorithmic Evacuation Planning Poster D1. Sublinear-Space Compression and Its Application D2. Extraction of Characteristic Subgraphs from LargeScale Assembly Graphs 関連発表 Poster M1. Information Coarse Graining using Renormalization Group Theory with Application to Image Processing M2. Detection of Sparse Structure in Big Data with Application to Detection of Cheating Students 関連発表 Poster 加藤CREST関連ポスターは他にも2件、計5件あります。 Major results of Katoh group A1. Constant-Time Algorithms for Complex Networks A2. Modeling and Simulation of Umeda Underground Mall toward Algorithmic Evacuation Planning Poster A1. Constant-Time Algorithms for Complex Networks Past Important Results Target: Complex Networks Dense-Graph Model: • Every hereditary property is testable. [Alon et al. FOCS05] Degree-Bounded Model: • Every minor-closed property is testable. [Benjamini et al. STOC08] • For hyperfinite graphs, every property is testable. [Newman & Sohler • Typical & important big graph data • Includes web-graphs, social networks, etc. • Characteristics: • small world • high cluster • power-law degree distribution STOC11] • → “sparse” and “degree unbounded” These algorithms cannot be applied. We need new algorithms! How to Model Complex Networks CLUE Isolated cliques [Ito & Iwama 05,09]: <k k vertices Highly related with “high cluster.” [Uno & Oguri 11] [Shigezumi, Uno, Watanabe 11] observed the following facts: In typical realworld networks G, 1.G includes many isolated cliques, 2.G’ that is obtained by contracting all isolated cliques of G has a similar structure, and 3.The above operation can be applied recursively several times. We introduce a new graph class HSF (Hierarchically Scale-Free Multigraphs) If G is in HSF, then i.G obeys power-law degree distribution, ii.G includes at least one isolated clique, iii.G’ that is obtained by contracting all isolated cliques of G also has the above property (i) and (ii) if |G|≥c, which is a given constant. Our New Results Theorem [Ito 15] HSF is hyperfinite*. For this class, every property is testable in constant-time. *Hyperfinite: A graph can be decomposed into constant-sized components by removing at most εn edges (n is # of vertices). Importance of this theorem: a)The first result on universal testers on the general (=sparse & degree unbounded) graph model. b)By using this result (algorithm), whether a big complex network has any specified property can be tested in constant-time. Future work: • Practical usefulness: computer experiments by using actual data. practical side • Which property is easy to test in practice? • Extending the theorem, e.g., cliques → dense subgraphs. theoretical side • Theoretical characterization of properties that are easy to test. A2. Modeling and Simulation of Umeda Underground Mall toward Algorithmic Evacuation Planning • Background • Frequent occurrence in recent years of flood and tsunami. • Disasters become bigger and wider areas are affected. • Congestion and limited time for evacuation. • Need of the support for local governments. Prediction of flooding area from Yodogawa • Purpose • Development of algorithmic evacuation planning systems with big spatial data and efficient algorithms. • Agenda • Model big and precise spatial data. • Perform general multi-agent simulations. • Development of efficient evacuation planning algorithms. • Unify and validate the data and methods. 3D Model of Umeda Underground Mall by Taniguchi Lab. at OCU Data acquisition, modeling and multi-agent based evacuation simulation • Characteristics of Umeda Underground Mall • About 1.1km length of east and west side, north and south side, respectively. • Composed of multiple malls and five stations. • About 50 connected buildings and 150 entrances. • More than 1 million passengers per a day. • Difficulty on the data acquisition • Base 3D data has been developed by Prof. Yoshiya Taniguchi at OCU. • However, other spatial data are stored in a lot of private sectors and difficult to get them. • We could get them from flooding measure consociation. • Pedestrian data were partially available and we did a field study for getting the remaining data. • Performed as a benchmark with general method. • Simulator: Simtread DXF version (A&A) • About 20000 evacuees evacuate to the nearest connected buildings at 18:00 on a weekday. • We can roughly grasp the evacuation time and congested places. Evacuees • Multi-agent based evacuation simulation 25000 20000 15000 10000 5000 0 0 5 10 15 Minutes 20 25 Current achievements and future plans • Achievements (ongoing) • Modeled big and precise spatial data. • Performed general multi-agent simulations. • PR of the current simulation result. • Flooding measure consociation of Osaka City Umeda Underground Mall • Osaka Prefecture Police • NHK, News Terrace Kansai • NHK, Ohayo Nippon • MBS, Chichinpuipui • Yomiuri newspaper • Sankei newspaper • Mainichi newspaper • Nikkei newspaper MBS Chichinpuipui, Sep. 1, 2015 • Future plans • Development of efficient evacuation planning algorithms. • Unify and validate the data and methods. Map evacuation exercise on March 6, 2015 Major results of Shibuya group D1. Sublinear-Space Compression and Its Application D2. Extraction of Characteristic Subgraphs from Large-Scale Assembly Graphs 関連発表 Poster D1. Sublinear-Space Compression and Its Application Sakamoto & Yamagiwa • High performance compression with compressed space • Wide applications: index, pattern discovery, hardware implementation, etc. • First online self-index • online construction • supports search and partial extraction 100~1000 times scalability output/input(%) • Hardware implementation memory/input • FPGA (patent application) • Embedded Technology 2015 特別賞 • VLDB BPOE workshop best-paper award Background and Goal • Rapid increase of stream data • social media • demand for rapid printing of large digital data • rapid communication of sensing data • rapid processing of image data Platform of stream computing • Progress of online compression • not requiring whole data • output linear workspace (not input linear) • simple algorithm: scalable and fast Basic technology: algorithm • Grammar compression • Naïve method: parsing tree, pruning, and encoding • advantage:online friendly because of its principle • dis-:compression ratio • Online and optimal encoding of grammar compression (sakamoto@presto, et al.) Basic technology: hardware • High-performance stream computing environment (yamagiwa@presto) • Grammar comp. on FPGA (sakamoto&yamagiwa, before crest) • advantage over previous methods • small circuit size • 1CPU time compression • Prototype • fast communication by fixed symbol table • speeding up by compression>transmission->decompression After the beginning of CREST • First Online self-index first online self-index small workspace real-time detection of frequent pattern Google code release • dynamic data structure • several times speeding-up (depending on memory size) • JST innovation Japan 2015 • patent application • VLDB2015 BPOE workshop best paper award offline • Embedded Technology 2015 特別賞 memory • • • • • Hardware implementation online input-size D2. Extraction of Characteristic Subgraphs from Large-Scale Assembly Graphs [1] Wing-Kin Sung, Kunihiko Sadakane, Tetsuo Shibuya, Abha Belorkar and Iana Pyrogova, An O(m log m)-time algorithm for detecting superbubbles, IEEE/ACM Transactions on Computational Biology and Bioinformatcs, 12(4), July/August 2015. [2] Taku Onodera, Kunihiko Sadakane and Tetsuo Shibuya, Detecting Superbubbles in Assembly Graphs, The 13th Workshop on Bioinformatics (WABI 2013), LNCS 8126, pp. 338-348, 2013. [3] Alexander Bowe, Taku Onodera, Kunihiko Sadakane and Tetsuo Shibuya, Succinct de Bruijn Graphs, The 12th Workshop on Algorithms in Bioinformatics (WABI 2012), LNCS 7534, pp. 225-235, 2012. de Bruijn graph and the SDBG (Succinct de Bruijn Graph) [Bowe, Onodera, Sadakane, Shibuya 2012] • DNA Assembly: Reconstruction of genome from NGS reads 1E+16 • NP-hard problem / Input size: 300 Gbp 1E+15 • de Bruijn graph: Large graph needed for DNA Assembly #bases 1E+14 • SDBG: Our new data structure that stores de Bruijn graph in very small memory 1E+13 1E+12 Moore's Law (2x in 18 months) 1E+11 • O(kn) → O(n), 300 bits/edge → 5 bits/edge Single Reads Size of the SRA database (10x in 18 months) 2013 2012 2011 2010 2009 2008 2007 1E+10 TAG $$$ CGT $$$T $$T Paired Reads TAGT $TAG GTCG AGTC $$TA AGT TCGT CGTC GTC TCG $TA AGTT TCGA GAGT Assemble GTT GAG CGAG GTT$ Genome (contigs / scaffolds) TT$ De Bruijn graph for $$$TAGTCGTCGAGTT$ CGA Knowledge Extraction from de Bruijn graphs • Subgraphs related to: • Multiploids, repeats, somatic variations, sequencing errors • O(m2) needed to detect naively 34 • Intractable gcag t c cta tagatgcaagtgtagatacacag ta 3 tagatgcaagtgtagatacacag ta 28 2 6 cagtttgtattttttgttgagtgaatgt ct ccag t 28 cggcacaaaaa 18 tatgaggaaaaacaggg 17 aggatatg att 3 tagtttgtattttttgttgagtgaatgt tggcacaaaaa 28 28 ttt gagatgcaagtgtagatacacag c 1 1 ata 28 cc ata gagatgcaagtgtagatacacag 17 28 25 ctg gggaaaaaacaggg aggatatg ata t a tgttttttgtt gagtgaatgtctccag 11 c 23 aaa agtt tatgaggaaaaacaggg agttcagttt g ggttttttgtt gagtgaatgtctccagt 11 ggttttttgtt att ata 3 3 25 4 cggaaaaaacagggaggatatgatt 28 10 g 1 tgttttttgtt gagtgaatgtctccag 27 Superbubble gggaaaaaacagggaggatatgatt attg agttcagttt ata aga 25 5 ta aga Efficient Algorithms [WABI2013, GIW2014] • Average-case O(m) algorithm • Utilize the statistical property of the graph • Practically very fast • Around 12 min./1 CPU for human-size genome • Worst-case: O(m2) • Worst-case O(m log m) algorithm • Novel techniques that transform de Bruijn graphs to tractable graphs Keys to "Sublinear Big-Data Algorithms" • Utilization of statistical behaviors of the data • Transformation of data to tractable data Major results of Tanaka group 関連発表 Poster M1. Information Coarse Graining using Renormalization Group Theory with Application to Image Processing M2. Detection of Sparse Structure in Big Data with Application to Detection of Cheating Students M1. Sublinear Modeling: from statistical-mechanical point of view Statistical mechanics involves rich techniques for coarse graining of information. low-dimensional data BIG DATA New Paradigm of Sublinear modeling using Statistical Mechanics and Machine Learning Finding hierarchical structures of BIG DATA (Hierarchical) Markov Random Field for Big Data Structure inference of (hierarchical) MRFs generating Big Data using statistical mechanical and machine learning techniques Probability + Approximation + Algorithm Create a new scheme of sublinear-time algorithms for Big Data Information Coarse Graining using Renormalization Group Theory P ( r ) (a) ∝ 1 Step 1 1 K(r-1) 1 (r ) exp , K δ a a ( ) ∏( r ) 2 i j {i , j }∈E 2 K(r) K(r-1) 3 3 Step 2 1 K(r-1) 4 K(r-1) K(r) 5 5 K(r+1) K(r-1) K(r-1) 6 K(r) 7 7 2 K ( r −1) q −1+ e (r ) = 4 ln K ( r −1) / 2 q − 2 + 2e K y q −1+ ex y = 4 ln x / 2 q − 2 + 2e q=8 y=x K Inverse Renormalization Method K(1) K(2) x Application to Bayesian Image Segmentation • • K. Tanaka, S. Kataoka, M. Yasuda, Y. Waizumi and C.-T. Hsu: Bayesian image segmentations by Potts prior and loopy belief propagation, JPSJ, 2014. K. Tanaka, S. Kataoka, M. Yasuda and M. Ohzeki: Inverse renormalization group transformation in Bayesian image segmentations, JPSJ, 2015. 1728 Sec Conventional Method 481 x 321 Segmentation by Belief Propagation for Original Image 30 x 20 Coarse Graining Procedures 30 x 20 Labeled Image The new coarse graining method is at least 10 times faster than the conventional method 101 Sec Grand Truth M2. Detection of Sparse Structure in BIG DATA Finding sparse structures in BIG DATA is important topic for an analysis of BIG DATA e.g.) graph mining, data decomposition etc. Find Sparse structure using Extended Item Response Theory and Decimation Algorithm Extended Item Response Theory (EIRT) can detect characters of nodes and structure among nodes Decimation Algorithm (DA) can detect Sparse structure among nodes The method without DA (EIRT + L1 regularization) cannot detect a clear structure from data optimal point of DA detection error Decimated pairs The new algorithm can detect the character of each node and the sparse structure among nodes The new algorithm succeeded to detect sparse structure in data Application to detection of cheating students S. Yamanaka, M. Ohzeki, A. Decelle: Detection of Cheating by Decimation Algorithm, JPSJ, 2015. Newton 26th Feb. 2015 newspapers: 財経新聞, Jan. 2015 人民日報, Jan. 2015 朝日新聞, Jan. 2015 TV news coverage: NHK, おはよう日本, Mar. 2015 Application to detection of cheating students S. Yamanaka, M. Ohzeki, A. Decelle: Detection of Cheating by Decimation Algorithm, JPSJ, 2015. • 27th March Broad casting from NHK「おはよう日本」 4. Summary A1. Constant-Time Algorithms for Complex Networks A2. Modeling and Simulation of Umeda Underground Mall toward Algorithmic Evacuation Planning D1. Sublinear-Space Compression and Its Application D2. Extraction of Characteristic Subgraphs from LargeScale Assembly Graphs M1. Information Coarse Graining using Renormalization Group Theory with Application to Image Processing M2. Detection of Sparse Structure in Big Data with Application to Detection of Cheating Students Steady Progress Poster Presentations 複雑ネットワークに対する定数時間アルゴリズム 伊藤大雄 Online self-indexed grammar compression 高畠嘉将, 田部井靖生, 坂本比呂志 Direct Access to Variable-to-Fixed Length Codes with a Succinct Index 喜田拓也 On Demand Calibrationを用いた広域歩行者追跡 和泉勇治 超事前分布を用いた確率的領域分割モデ ルのパラメータ推定 古市智大,片岡駿,田中和之 Poster Presentations 複雑ネットワークに対する定数時間アルゴリズム 伊藤大雄 Online self-indexed grammar compression 高畠嘉将, 田部井靖生, 坂本比呂志 Direct Access to Variable-to-Fixed Length Codes with a Succinct Index 喜田拓也 On Demand Calibrationを用いた広域歩行者追跡 和泉勇治 超事前分布を用いた確率的領域分割モデ ルのパラメータ推定 古市智大,片岡駿,田中和之 複雑ネットワークに対する 定数時間アルゴリズム 「ビッグデータ時代に向けた 革新的アルゴリズム基盤」 ABD14 --- Team A 伊藤大雄 電気通信大学 大学院 情報理工学研究科 JST CREST 2016/3/7 ABD14全体会議 2 Back Ground and Our Target on Constant-Time Algorithms Past Important Results Target: Complex Networks Dense-Graph Model: • Every hereditary property is testable. • Typical & important big graph data • Includes web-graphs, social networks, etc. • Characteristics: • small world • high cluster • power-law degree distribution [Alon et al. FOCS05] Degree-Bounded Model: • Every minor-closed property is testable. [Benjamini et al. STOC08] • For hyperfinite graphs, every property is testable. [Newman & Sohler STOC11] • → “sparse” and “degree unbounded” These algorithms cannot be applied. We need new algorithms! How to Model Complex Networks CLUE Isolated cliques [Ito & Iwama 05,09]: <k k vertices Highly related with “high cluster.” [Uno & Oguri 11] [Shigezumi, Uno, Watanabe 11] observed that if a graph G is a complex network, then: 1.G includes many isolated cliques, 2.G’ that is obtained by contracting all isolated cliques of G has a similar structure, and 3.The above operation can be applied recursively several times. We introduce a new graph class HSF (Hierarchically Scale-Free Multigraphs) If G is in HSF, then i.G obeys power-law degree distribution, ii.G includes at least one isolated clique, iii.G’ that is obtained by contracting all isolated cliques of G also has the above property (i) and (ii) if |G|≥c, which is a given constant. Our New Results Theorem [Ito 15] HSF is hyperfinite*. For this class, every property is testable in constant-time. *Hyperfinite: A graph can be decomposed into constant-sized components by removing at most εn edges (n is # of vertices). Importance of this theorem: a) First results on universal testers on the general (=sparse & degree un-bounded) graph model. b) By using this result (algorithm), whether a big complex network have any specified property can be tested in constant-time. Future work: • Practical usefulness: computer examination by using actual data. practical side • Which property is easy to test in practice? • Extending the theorem, e.g., cliques → dense subgraphs. theoretical side • Theoretical characterization of properties that are easy to test. Online self-indexed grammar compression 高畠嘉将, 田部井靖生, 坂本比呂志 Online self-indexed grammar compression 高畠嘉将 (九工大), 田部井靖生 (JST PRESTO), 坂本比呂志 (九工大) SPIRE2015 で発表済み • 繰り返しの多いテキストのための部分文字列の出現位置・回数 を検索可能な索引 • 例) 個人のゲノム、バージョン管理された文書やソースコード • 文法圧縮索引 = 繰り返しの多いテキストに有効 • 通常の索引は入力テキストと索引が必要だが、文法圧縮索引は繰り返し の多いテキストを高圧縮率で圧縮したデータのみで省領域に検索可能 • 既存の文法圧縮索引の構築はオフライン • 入力テキストが全てないと構築不可 • 新たな文字を末尾追加する場合、一度データを解凍して、作り直すので 入力長に依存した計算時間及び領域が必要 • 圧縮データサイズに依存した領域かつ高速に新たな文字を末尾 追加可能なオンライン文法圧縮索引を提案 オフライン圧縮索引との 比較実験 (english text 446MB) • 圧縮領域で構築可能 • 構築時間および検索時間 は低下 構築領域(MB) 入力長 • オンライン化のために 遅いデータ構造を用いた ため 構築時間(sec) 検索時間(msec) Direct Access to Variable-to-Fixed Length Codes with a Succinct Index 喜田拓也 Direct Access to Variable-to-Fixed Length Codes with a Succinct Index 発表者: 喜田 拓也(北海道大学) 加藤CREST劣線形データ構造チームメンバー(チームリーダー:渋谷 哲朗) ・気象衛星データ ・航空写真データ リモートセンシングデータ Remote sensing data GPS Internet SNS ・GPSログ ・ライフログ ・市民からの情報提供 ・市民への道路情報の提供 ビッグデータ GPSログ・ライフログデータ GPS logs, Life logs UGCデータ User Generated Content data 20120101000000,3,5.0,1,120,644132,00008,168933376,555574333,09853,168933408, ・・・ 20120101000000,3,5.0,1,110,644132,00008,168933376,555574333,09853,168933408, ・・・ 20120101000000,3,5.0,1,120,644132,00009,168989212,555755788,00036,168990785, ・・・ ・・・ Repair-VF: データ検索やデータ解析時に再利用しやすいデータ圧縮方式 高速なデータ展開 Repair-VF 圧縮したまま検索可能 優れた圧縮性能 Fully Indexable Dictionary (FID;完備辞書) 高速な部分文字列抽出を実現! 実験結果: 部分文字列抽出の速度比較 抽出位置 𝑝𝑜𝑠 を変化させたときの抽出時間(CPU時間)をプロット FOLCA 既存手法(FOLCA)と比較して, 10倍以上高速に部分文字列 を取り出すことができる FIDを含めても圧縮率は同等 method RVF+RRR RVF+DA RVF+SDA dna proteins english RVF w/o index 28.43 46.27 30.53 RVF+DA 47.83 63.78 47.62 RVF+SDA 60.86 62.39 45.54 RVF+RRR 41.05 54.17 38.60 FOLCA 40.69 50.34 47.25 (% of the compressed size / the original size) On Demand Calibrationを用 いた広域歩行者追跡 和泉勇治 On Demand Calibrationを用いた広域歩行者追跡 加藤CREST 劣線形モデリンググループ 東北大学大学院情報科学研究科 和泉勇治 • 避難シミュレーションにおける歩行者の初期位置の取得 • 歩行者の初期位置と歩行の向きを取得 • 歩行者検知+追跡 • より広域に歩行者を追跡し, 高精度なシミュレーションの実現 • 複数のカメラ画像に跨る歩行者追跡 • カメラ画像間の共通領域が無い撮影状況での歩行者追跡 • Non-Overlapping Fields of View 参照:合田祥子 「大都市地下街の津波避難計画に関する研究」 On Demand Calibrationを用いた広域歩行者追跡 加藤CREST 劣線形モデリンググループ 東北大学大学院情報科学研究科 和泉勇治 • カメラ毎の撮影状況が異なる – 共通色物体を利用した色の補正 , • W : Calibration Matrix : RGB values of Sampling Point IoT/M2Mからのアプローチ – 自律的な情報交換 • • 追跡精度 53.03% → 71.12% • トラヒック量 – – 提案方式: 480kBps 中央方式: 14400kBps 超事前分布を用いた確率的領 域分割モデルのパラメータ推定 古市智大,片岡駿,田中和之 超事前分布を用いた確率的領域分割モデルの 東北大学大学院情報科学研究科 パラメータの推定 古市 智大,片岡 駿,田中 和之 • 確率的領域分割[1] Pr A|α PottsPrior Pr A|F Pr F|A 分割画像 A • くりこみによる高速化[2] 観測画像 F 2713[sec] 481×321 64×41 α =3.171 600[sec] α =3.213 • 問題点 • くりこみにより平滑化パラメータの画像ごとの差異がなく なってしまう ⇨平滑化パラメータの分布をモデルに導入 超事前分布 αf i x =3.229 64×41 α =2.489 α =3.213 α =3.461 超事前分布 α =18.931 [1]K. Tanaka, S. Kataoka, M. Yasuda, Y. Waizumi and C.‐T. Hsu: Bayesian image segmentations by Potts prior and loopy belief propagation, JPSJ, 2014. [2] K. Tanaka, S. Kataoka, M. Yasuda and M. Ohzeki: Inverse renormalization group transformation in Bayesian image segmentations, JPSJ, 2015.
© Copyright 2024 ExpyDoc