ニュートリノで探る標準模型を超える新しい物理

5/15-17/2015
Naoyuki Haba
(Shimane U, Japan)
TeV
2
Hierarchy problem
Higgs
126GeV
Hierarchy problem
Higgs
Higgs
126GeV
M
φ
SM
Hierarchy problem
Higgs
Higgs
M
ϕR
φ
126GeV
M
×
ϕR
φ
×M
ϕR
y
y
ϕL
φ
*
SM
Hierarchy problem
Higgs
Higgs
M
ϕR
φ
126GeV
M
×
ϕR
y
ϕL
φ
×M
SM
4
ϕR
d4 p ⎛ i ⎞
2
∫ 16π 2 ⎜⎝ p ⎟⎠ M R
2
y
~−
φ
*
y
16π
2
M
log Λ
2
Hierarchy problem
Higgs
Higgs
M
ϕR
φ
126GeV
M
×
ϕR
y
φ
×M
SM
4
ϕR
d4 p ⎛ i ⎞
2
∫ 16π 2 ⎜⎝ p ⎟⎠ M R
2
y
~−
φ
*
y
16π
2
M
log Λ
2
ϕL
2
↓
Higgs mass
M
Hierarchy problem
TeV
(new physics)
SUSY
M
ϕR
φ
×
ϕR
y
M2 ×
×M
ϕ! R
4
ϕR
d 4φp ⎛ i ⎞
22
y
M
∫ 16π 2 ⎜⎝ p ⎟⎠ R
2
y
~−
φ
*
y
16π
φ*
2
M
log Λ
2
ϕL
2
↓
Higgs mass
M
Hierarchy problem
TeV
(new physics)
SUSY
M
ϕR
φ
×
ϕR
y
M2 ×
×M
ϕ! R
4
ϕR
d 4φp ⎛ i ⎞
22
y
M
∫ 16π 2 ⎜⎝ p ⎟⎠ R
2
y
~−
φ
*
y
16π
φ*
2
M
log Λ
2
ϕL
MR
TeV TeV seesaw
classical conformal
(new physics)
2
↓
Higgs mass
M
Hierarchy problem
TeV
(new physics)
SUSY
M
ϕR
φ
×
ϕR
y
M2 ×
×M
ϕ! R
4
ϕR
d 4φp ⎛ i ⎞
22
y
M
∫ 16π 2 ⎜⎝ p ⎟⎠ R
2
y
~−
φ
*
y
16π
φ*
2
M
log Λ
2
ϕL
MR
TeV TeV seesaw
(new physics)
classical conformal
TeV new physics
2
↓
Higgs mass
M
TeV
11
LHC results show…
126 GeV Higgs
BSM?
(beyond the standard model)
An ongoing exciting matches (experiments) are facing a tough defense,
and can’t get a goal (see physics beyond the Standard Model) yet.
BSM
An ongoing exciting matches (experiments) are facing a tough defense,
and can’t get a goal (see physics beyond the Standard Model) yet.
ν
An ongoing exciting matches (experiments) are facing a tough defense,
and can’t get a goal (see physics beyond the Standard Model) yet.
ν
tiny mass
large
flavor
mixings
An ongoing exciting matches (experiments) are facing a tough defense,
and can’t get a goal (see physics beyond the Standard Model) yet.
ν
tiny mass
large
flavor
mixings
126 GeV
Higgs
mass
hierarchy
problem
DM
Higgs mass
126 GeV
17
Higgs (but still no BSM) discovery at LHC
mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM
Higgs (but still no BSM) discovery at LHC
mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM
Higgs potential
V
•
〈H 〉
H
V = λ (| H |2 −v)2
0.131@MZ
Higgs (but still no BSM) discovery at LHC
mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM
Higgs potential
H†
H†
V
λ
•
〈H 〉
H
H
H
V = λ (| H |2 −v)2
0.131@MZ
Higgs (but still no BSM) discovery at LHC
mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM
Quantum corrections
H†
H†
t
λ
H
W
H
H
Higgs (but still no BSM) discovery at LHC
mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM
RGE of Higgs self coupling
λ
G.Degrassi, S.Di Vita, J.Elias-Miro,
J.R.Espinosa, G.F.Giudice, G.Isidori
and A.Strumia, JHEP1208 (2012) 098
Higgs (but still no BSM) discovery at LHC
mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM
RGE of Higgs self coupling
(4π )2
dλ
3
= 24 λ 2 + 12 λ yt2 − 6yt4 − 3λ (g'2 + 3g 2 ) + [2g 4 + (g'2 + g 2 )2 ]
dt
8
0.131@MZ
λ
Higgs mass
top mass
1018
β
E (GeV)
Higgs (but still no BSM) discovery at LHC
mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM
RGE of Higgs self coupling
(4π )2
dλ
3
= 24 λ 2 + 12 λ yt2 − 6yt4 − 3λ (g'2 + 3g 2 ) + [2g 4 + (g'2 + g 2 )2 ]
dt
8
V
•
〈H 〉
weak scale
H
Higgs (but still no BSM) discovery at LHC
mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM
RGE of Higgs self coupling
(4π )2
dλ
3
= 24 λ 2 + 12 λ yt2 − 6yt4 − 3λ (g'2 + 3g 2 ) + [2g 4 + (g'2 + g 2 )2 ]
dt
8
V
V
•
〈H 〉
weak scale
H
H
MP
Energy
Higgs (but still no BSM) discovery at LHC
mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM
means SM -> Mp????
RGE of Higgs self coupling
SM
Mp2
2 dλ
3
= 12 λ + 12 λ yt2 − 12yt4 − 3λ (g'2 + 3g 2 ) + [2g 4 + (g'2 + g 2 )2 ]
dt
8
(4π )
V
V
•
〈H 〉
weak scale
H
H
MP
Energy
(Amaldi, PLB260(1991)447)
Before this paper, SUSY is not so familiar than TC etc.
Higgs (but still no BSM) discovery at LHC
mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM
RGE of Higgs self coupling
(4π )2
dλ
3
= 24 λ 2 + 12 λ yt2 − 6yt4 − 3λ (g'2 + 3g 2 ) + [2g 4 + (g'2 + g 2 )2 ]
dt
8
λ
Higgs mass
top mass
1018
β
E (GeV)
Higgs (but still no BSM) discovery at LHC
mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM
RGE of Higgs self coupling
(4π )2
dλ
3
= 24 λ 2 + 12 λ yt2 − 6yt4 − 3λ (g'2 + 3g 2 ) + [2g 4 + (g'2 + g 2 )2 ]
dt
8
λ
Higgs mass
top mass
1018
β
E (GeV)
Higgs (but still no BSM) discovery at LHC
mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM
RGE of Higgs self coupling
(4π )2
dλ
3
= 24 λ 2 + 12 λ yt2 − 6yt4 − 3λ (g'2 + 3g 2 ) + [2g 4 + (g'2 + g 2 )2 ]
dt
8
λ
Higgs mass
<0
>0
1017
1010
top mass
1018
E (GeV)
Higgs (but still no BSM) discovery at LHC
mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM
RGE of Higgs self coupling
(4π )2
dλ
3
= 24 λ 2 + 12 λ yt2 − 6yt4 − 3λ (g'2 + 3g 2 ) + [2g 4 + (g'2 + g 2 )2 ]
dt
8
λ
Higgs mass
<0
>0
1017
1010
top mass
1018
E (GeV)
Higgs (but still no BSM) discovery at LHC
mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM
171.081
RGE of Higgs self coupling
(4π )2
dλ
3
= 24 λ 2 + 12 λ yt2 − 6yt4 − 3λ (g'2 + 3g 2 ) + [2g 4 + (g'2 + g 2 )2 ]
dt
8
λ
Higgs mass
<0
>0
1017
top mass
1018
E (GeV)
Higgs (but still no BSM) discovery at LHC
mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM
171.079
RGE of Higgs self coupling
(4π )2
dλ
3
= 24 λ 2 + 12 λ yt2 − 6yt4 − 3λ (g'2 + 3g 2 ) + [2g 4 + (g'2 + g 2 )2 ]
dt
8
λ
Higgs mass
<0
>0
1017
top mass
1018
E (GeV)
λ(µ
Mp)
0
λ(µ
SM
Mp)
0
Mp
1010 GeV
ex
Higgs
flat land scenario
Mp
Iso et al
ex
Higgs
flat land scenario
Mp
U(1)B-L
Iso et al
ex
Higgs
flat land scenario
Mp
U(1)B-L
U(1)B-L
νR
Majorana
Iso et al
ex
Higgs
flat land scenario
Iso et al
Mp
U(1)B-L
U(1)B-L
→ U(1)B-L
νR
U(1)B-L
Majorana
Higgs Φ
ex
Higgs
flat land scenario
Iso et al
Mp
U(1)B-L
U(1)B-L
→ U(1)B-L
νR
U(1)B-L
Majorana
Higgs Φ
V = λ | H |4 +k | φ |2 | H |2 + λS | φ |4
mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM
dλ
3
(4π )2
= 24 λ 2 + 12 λ yt2 − 6yt4 − 3λ (g'2 + 3g 2 ) + [2g 4 + (g'2 + g 2 )2 ]
dt
8
1010
mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM
dλ
3
(4π )2
= 24 λ 2 + 12 λ yt2 − 6yt4 − 3λ (g'2 + 3g 2 ) + [2g 4 + (g'2 + g 2 )2 ]
dt
8
1010
(4π )2
dyt
17 2 9 2
⎛9
⎞
= yt ⎜ yt2 −
g1 − g2 − 8g32 −!g!2 ⎟
⎝2
⎠
dt
20
4
new gauge
Yt
mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM
dλ
3
(4π )2
= 24 λ 2 + 12 λ yt2 − 6yt4 − 3λ (g'2 + 3g 2 ) + [2g 4 + (g'2 + g 2 )2 ]
dt
8
1010
(4π )2
dyt
17 2 9 2
⎛9
⎞
= yt ⎜ yt2 −
g1 − g2 − 8g32 −!g!2 ⎟
⎝2
⎠
dt
20
4
new gauge
Yt
λ
ex
flat land scenario
Iso et al
V = λ | H |4 +k | φ |2 | H |2 + λS | φ |4
SM + U(1)B-L
λ
SM
TeV
1010
Mp
ex
flat land scenario
Iso et al
V = λ | H |4 +k | φ |2 | H |2 + λS | φ |4
SM + U(1)B-L
λ
SM
TeV
1010
Mp
ex
flat land scenario
Iso et al
V = λ | H |4 +k | φ |2 | H |2 + λS | φ |4
SM + U(1)B-L
λ
TeV
1010
Mp
ex
flat land scenario
Iso et al
V = λ | H |4 +k | φ |2 | H |2 + λS | φ |4
SM + U(1)B-L
λ
TeV
Mp
ex
flat land scenario
Iso et al
V = λ | H |4 +k | φ |2 | H |2 + λS | φ |4
SM + U(1)B-L
λ
TeV
λS
Mp
k
ex
flat land scenario
Iso et al
V = λ | H |4 +k | φ |2 | H |2 + λS | φ |4
SM + U(1)B-L
λ
TeV
λS
Mp
k
Φ
TeV
ex
flat land scenario
Iso et al
V = λ | H |4 +k | φ |2 | H |2 + λS | φ |4
SM + U(1)B-L
λ
λS
TeV
Mp
k<0
Φ
TeV
ex
flat land scenario
Iso et al
V = λ | H |4 +k | φ |2 | H |2 + λS | φ |4
SM + U(1)B-L
(origin of the wine-bottle (EWB)
λ
λS
TeV
Mp
k<0
Φ
TeV
ex
flat land scenario
Iso et al
V = λ | H |4 +k | φ |2 | H |2 + λS | φ |4
SM + U(1)B-L
(origin of the wine-bottle (EWB)
λ
TeV
λS
Mp
k<0
L
gB-L
Φ νR2
Φ
TeV
TeV Majorana mass of νR (Mayoron->
(~O(1))
νR
Majorana mass TeV
Φ
TeV
ex
flat land scenario
Iso et al
V = λ | H |4 +k | φ |2 | H |2 + λS | φ |4
SM + U(1)B-L
(origin of the wine-bottle (EWB)
λ
TeV
λS
Mp
k<0
L
gB-L
Φ νR2
Φ
TeV
TeV Majorana mass of νR (Mayoron->
TeV scale seesaw, (resonant) leptogenesis
(anyhow, all phenomenology must be at TeV)
(~O(1))
νR
Majorana mass TeV
Φ
TeV
ex2 GUT @ Mp model
GUT
Mp
NH, Ishida, Takahashi, Yamaguchi
arXiv:1412.8230
ex2 GUT @ Mp model
GUT
Mp
GUT Mp
NH, Ishida, Takahashi, Yamaguchi
arXiv:1412.8230
ex2 GUT @ Mp model
GUT
Mp
GUT Mp
vector-like mattes
SM
GUT Mp
NH, Ishida, Takahashi, Yamaguchi
arXiv:1412.8230
mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM
dλ
3
(4π )2
= 24 λ 2 + 12 λ yt2 − 6yt4 − 3λ (g'2 + 3g 2 ) + [2g 4 + (g'2 + g 2 )2 ]
dt
8
GUC
gauge
mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM
dλ
3
(4π )2
= 24 λ 2 + 12 λ yt2 − 6yt4 − 3λ (g'2 + 3g 2 ) + [2g 4 + (g'2 + g 2 )2 ]
dt
8
(4π )2
gauge
GUC
dyt
17 2 9 2
⎛9
⎞
= yt ⎜ yt2 −
g1 − g2 − 8g32 ⎟
⎝2
⎠
dt
20
4
Gauge
Yt
mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM
dλ
3
(4π )2
= 24 λ 2 + 12 λ yt2 − 6yt4 − 3λ (g'2 + 3g 2 ) + [2g 4 + (g'2 + g 2 )2 ]
dt
8
(4π )2
gauge
GUC
dyt
17 2 9 2
⎛9
⎞
= yt ⎜ yt2 −
g1 − g2 − 8g32 ⎟
⎝2
⎠
dt
20
4
Gauge
Yt
λ
ex2 GUT @ Mp model
GUT
NH, Ishida, Takahashi, Yamaguchi
arXiv:1412.8230
Mp
GUT Mp
vector-like mattes
gauge->
SM
GUT Mp
λ
vacuum becomes stable
ex2 GUT @ Mp model
GUT
NH, Ishida, Takahashi, Yamaguchi
arXiv:1412.8230
Mp
GUT Mp
vector-like mattes
gauge->
SM
Yukawa->
GUT Mp
λ
vacuum becomes stable
LHC results show…
126 GeV Higgs
BSM?
SM Mp
(no intermediate scale?)
TeV scale seesaw
(inverse seesaw? generation structure?
same sign di-lepton event? 0νββ? other observations?)
leptogenesis/bariyogenesis?
(resonant leptogenesis? quantum effects? New
mechanism )
λ(µ
µ
Mp)
0
1010GeV BSM
1010 GeV Higgs
Higgs=
gauge
(Gauge-Higgs Unification)
AM = Aµ + A5 (scalar @ 4D)
massless
mass
loop factor (1/16π2
λ
tree
←
finite
SM with top mass (173 GeV)
For this meta-stability, GHU says
1/R~1010 GeV!
N. Okada, Q. Shafi, et al
G.Degrassi, S.Di Vita, J.Elias-Miro,
J.R.Espinosa, G.F.Giudice, G.Isidori
and A.Strumia, JHEP1208 (2012) 098
TeV
65
origin of tiny Dirac
mass
Standard
Model (y H 1,=(0,
mass hierarchy = Yukawa
hierarchy
y 250GeV)
10-12)
t
Quark
charged
Lepton
H
y (g)
H
y
H
y
origin of tiny Dirac
another possibility:
Quark
charged
Lepton
mass
How about tiny H only for ν?
H
y (g)
H
y
H
y
origin of tiny Dirac
mass
neutrinophilic Higgs
another possibility:
Quark
charged
Lepton
How about tiny H only for ν?
H
H
y
y (g)
y
H
ν
Hν
yν
Hν
yν
Hν
yν
origin of tiny Dirac
mass
neutrinophilic Higgs
another possibility:
Quark
charged
Lepton
How about tiny H only for ν?
H
H
y
y (g)
y
H
ν
Hν
yν
Hν
yν
Hν
yν
origin of tiny Dirac
mass
neutrinophilic Higgs
LYukawa = yuQHU + ydQHD + ye LHE + yν LH νν R
L = (ν L ,eL )
origin of tiny Dirac
mass
neutrinophilic Higgs
LYukawa = yuQHU + ydQHD + ye LHE + yν LH νν R
fields
SM fields (SM Higgs: H)
R
Higgs doublet: H
Z2-charge
L = (ν L ,eL )
origin of tiny Dirac
mass
neutrinophilic Higgs
LYukawa = yuQHU + ydQHD + ye LHE + yν LH νν R
fields
SM fields (SM Higgs: H)
R
Higgs doublet: H
Hν
H0
⎛ •• ⎞
⎜⎝ • • ⎟⎠
A0
〈H ν 〉
〈H 〉
H
⎛ •• ⎞
⎜⎝ • • ⎟⎠
H±
h0
Z2-charge
L = (ν L ,eL )
origin of tiny Dirac
mass
neutrinophilic Higgs
LYukawa = yuQHU + ydQHD + ye LHE + yν LH νν R
fields
SM fields (SM Higgs: H)
R
Higgs doublet: H
Hν
H0
⎛ •• ⎞
⎜⎝ • • ⎟⎠
A0
〈H ν 〉
〈H 〉
H
⎛ •• ⎞
⎜⎝ • • ⎟⎠
H±
h0
Z2-charge
L = (ν L ,eL )
origin of tiny Dirac
mass
neutrinophilic Higgs
LYukawa = yuQHU + ydQHD + ye LHE + yν LH νν R
fields
SM fields (SM Higgs: H)
R
Higgs doublet: H
Hν
H0
⎛ •• ⎞
⎜⎝ • • ⎟⎠
A0
〈H ν 〉
〈H 〉
H
⎛ •• ⎞
⎜⎝ • • ⎟⎠
H±
h0
Z2-charge
L = (ν L ,eL )
origin of tiny Dirac
mass
neutrinophilic Higgs
LYukawa = yuQHU + ydQHD + ye LHE + yν LH νν R
fields
SM fields (SM Higgs: H)
R
Higgs doublet: H
Hν
H0
⎛ •• ⎞
⎜⎝ • • ⎟⎠
A0
〈H ν 〉
〈H 〉
H
⎛ •• ⎞
⎜⎝ • • ⎟⎠
H±
h0
Z2-charge
L = (ν L ,eL )
〈Φ〉 2
Γ(H → l ν L )  GF mH ± m
〈Φν 〉 2
±
±
2
ν
yq ×
〈Φν 〉
〈Φ〉
〈Φν 〉 2
Γ(H → qq)  mH ± y
〈Φ〉 2
±
2
q
ε≡
Γ(ν R1 → Φ + l j ) − Γ(ν R1 → Φ* + l j )
Γ(ν R1 → Φ + l j ) + Γ(ν R1 → Φ* + l j )
!−
3
1
† 2 M1
Im
(y
y
∑ ν ν )1i M , (M i ≫ M 1 )
8π (yν yν† )11 i = 2, 3
i
3 M 1mν 3
M 1 ⎞ ⎛ mν 3 ⎞
−6 ⎛
sin
δ
!
10
⎜⎝ 10
⎟⎜
⎟ sin δ
8π 〈Φ〉 2
10 GeV ⎠ ⎝ 0.05eV ⎠
nb
ε
! Cκ
s
g*
!
ε−
3
1
3 M 1mν 3
† 2 M1
Im
(y
y
)

−
sin δ
∑ ν ν 1i M
2
8π (yν yν† )11 i = 2, 3
8
π
〈Φ
〉
i
ν
2
⎛ 0.1GeV ⎞ ⎛ M 1 ⎞ ⎛ mν ⎞
3
−
10 −6 ⎜
⎜
⎟⎜
⎟ sin δ
16π
⎝ 〈Φν 〉 ⎟⎠ ⎝ 100GeV ⎠ ⎝ 0.05eV ⎠
nb
ε
 Cκ
s
g*
ε−
3
1
3 M 1mν 3
† 2 M1
Im
(y
y
)

−
sin δ
∑ ν ν 1i M
2
8π (yν yν† )11 i = 2, 3
8
π
〈Φ
〉
i
ν
2
⎛ 0.1GeV ⎞ ⎛ M 1 ⎞ ⎛ mν ⎞
3
−
10 −6 ⎜
⎜
⎟⎜
⎟ sin δ
16π
⎝ 〈Φν 〉 ⎟⎠ ⎝ 100GeV ⎠ ⎝ 0.05eV ⎠
nb
ε
 Cκ
s
g*
ε−
3
1
3 M 1mν 3
† 2 M1
Im
(y
y
)

−
sin δ
∑ ν ν 1i M
2
8π (yν yν† )11 i = 2, 3
8
π
〈Φ
〉
i
ν
2
⎛ 0.1GeV ⎞ ⎛ M 1 ⎞ ⎛ mν ⎞
3
−
10 −6 ⎜
⎜
⎟⎜
⎟ sin δ
16π
⎝ 〈Φν 〉 ⎟⎠ ⎝ 100GeV ⎠ ⎝ 0.05eV ⎠
nb
ε
 Cκ
s
g*
 ) + ε (ν → l H
 ) + ε (ν → l H )
ε ≡ ε (ν R → lH ) + ε (ν R → l H
R
R
2
⎛ 0.1GeV ⎞ ⎛ M 1 ⎞ ⎛ mν ⎞
3
−
10 −5 ⎜
⎜
⎟⎜
⎟ sin δ
16π
⎝ 〈Φν 〉 ⎟⎠ ⎝ 10 3 GeV ⎠ ⎝ 0.05eV ⎠
nb
ε
 Cκ
s
g*
flavor symmetry: !
!
tri-bi-maximal mixing [sin2 12=1/3, sin2
seems good!
-> find flavor symmetry (S3, S4, A4,
)
-> phenomenology !
ex)
23=1/2]
+ deviation, !
!
mass sum rule !
S. F. King, A. Merle, S. Morisi, Y. Shimizu and M. Tanimoto, New J. Phys.16 (2014) 045018
summary of research plan!
TeV scale seesaw
(inverse seesaw? generation structure?
same sign di-lepton event? 0νββ? other observations?)
leptogenesis/bariyogenesis?
(resonant leptogenesis? quantum effects? New mechanism
)
For a goal
!
(discover BSM),
strong cooperation between !
experiment & theory is needed.
experiment
theory
!
λ(µ
EW
Mp)
0
Mp
1010 GeV
mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM
dλ
3
(4π )2
= 24 λ 2 + 12 λ yt2 − 6yt4 − 3λ (g'2 + 3g 2 ) + [2g 4 + (g'2 + g 2 )2 ]
dt
8
stable
!
stable
top
scalar
vector
gravity
gauge running
Higgs mass & top mass dependence for λ β
1017 GeV < Mp
(126,!171.2)
(128.6,!172.6)
SM center
Mp
Higgs mass & top mass are uniquely determined by MPCP @ Mp