5/15-17/2015 Naoyuki Haba (Shimane U, Japan) TeV 2 Hierarchy problem Higgs 126GeV Hierarchy problem Higgs Higgs 126GeV M φ SM Hierarchy problem Higgs Higgs M ϕR φ 126GeV M × ϕR φ ×M ϕR y y ϕL φ * SM Hierarchy problem Higgs Higgs M ϕR φ 126GeV M × ϕR y ϕL φ ×M SM 4 ϕR d4 p ⎛ i ⎞ 2 ∫ 16π 2 ⎜⎝ p ⎟⎠ M R 2 y ~− φ * y 16π 2 M log Λ 2 Hierarchy problem Higgs Higgs M ϕR φ 126GeV M × ϕR y φ ×M SM 4 ϕR d4 p ⎛ i ⎞ 2 ∫ 16π 2 ⎜⎝ p ⎟⎠ M R 2 y ~− φ * y 16π 2 M log Λ 2 ϕL 2 ↓ Higgs mass M Hierarchy problem TeV (new physics) SUSY M ϕR φ × ϕR y M2 × ×M ϕ! R 4 ϕR d 4φp ⎛ i ⎞ 22 y M ∫ 16π 2 ⎜⎝ p ⎟⎠ R 2 y ~− φ * y 16π φ* 2 M log Λ 2 ϕL 2 ↓ Higgs mass M Hierarchy problem TeV (new physics) SUSY M ϕR φ × ϕR y M2 × ×M ϕ! R 4 ϕR d 4φp ⎛ i ⎞ 22 y M ∫ 16π 2 ⎜⎝ p ⎟⎠ R 2 y ~− φ * y 16π φ* 2 M log Λ 2 ϕL MR TeV TeV seesaw classical conformal (new physics) 2 ↓ Higgs mass M Hierarchy problem TeV (new physics) SUSY M ϕR φ × ϕR y M2 × ×M ϕ! R 4 ϕR d 4φp ⎛ i ⎞ 22 y M ∫ 16π 2 ⎜⎝ p ⎟⎠ R 2 y ~− φ * y 16π φ* 2 M log Λ 2 ϕL MR TeV TeV seesaw (new physics) classical conformal TeV new physics 2 ↓ Higgs mass M TeV 11 LHC results show… 126 GeV Higgs BSM? (beyond the standard model) An ongoing exciting matches (experiments) are facing a tough defense, and can’t get a goal (see physics beyond the Standard Model) yet. BSM An ongoing exciting matches (experiments) are facing a tough defense, and can’t get a goal (see physics beyond the Standard Model) yet. ν An ongoing exciting matches (experiments) are facing a tough defense, and can’t get a goal (see physics beyond the Standard Model) yet. ν tiny mass large flavor mixings An ongoing exciting matches (experiments) are facing a tough defense, and can’t get a goal (see physics beyond the Standard Model) yet. ν tiny mass large flavor mixings 126 GeV Higgs mass hierarchy problem DM Higgs mass 126 GeV 17 Higgs (but still no BSM) discovery at LHC mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM Higgs (but still no BSM) discovery at LHC mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM Higgs potential V • 〈H 〉 H V = λ (| H |2 −v)2 0.131@MZ Higgs (but still no BSM) discovery at LHC mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM Higgs potential H† H† V λ • 〈H 〉 H H H V = λ (| H |2 −v)2 0.131@MZ Higgs (but still no BSM) discovery at LHC mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM Quantum corrections H† H† t λ H W H H Higgs (but still no BSM) discovery at LHC mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM RGE of Higgs self coupling λ G.Degrassi, S.Di Vita, J.Elias-Miro, J.R.Espinosa, G.F.Giudice, G.Isidori and A.Strumia, JHEP1208 (2012) 098 Higgs (but still no BSM) discovery at LHC mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM RGE of Higgs self coupling (4π )2 dλ 3 = 24 λ 2 + 12 λ yt2 − 6yt4 − 3λ (g'2 + 3g 2 ) + [2g 4 + (g'2 + g 2 )2 ] dt 8 0.131@MZ λ Higgs mass top mass 1018 β E (GeV) Higgs (but still no BSM) discovery at LHC mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM RGE of Higgs self coupling (4π )2 dλ 3 = 24 λ 2 + 12 λ yt2 − 6yt4 − 3λ (g'2 + 3g 2 ) + [2g 4 + (g'2 + g 2 )2 ] dt 8 V • 〈H 〉 weak scale H Higgs (but still no BSM) discovery at LHC mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM RGE of Higgs self coupling (4π )2 dλ 3 = 24 λ 2 + 12 λ yt2 − 6yt4 − 3λ (g'2 + 3g 2 ) + [2g 4 + (g'2 + g 2 )2 ] dt 8 V V • 〈H 〉 weak scale H H MP Energy Higgs (but still no BSM) discovery at LHC mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM means SM -> Mp???? RGE of Higgs self coupling SM Mp2 2 dλ 3 = 12 λ + 12 λ yt2 − 12yt4 − 3λ (g'2 + 3g 2 ) + [2g 4 + (g'2 + g 2 )2 ] dt 8 (4π ) V V • 〈H 〉 weak scale H H MP Energy (Amaldi, PLB260(1991)447) Before this paper, SUSY is not so familiar than TC etc. Higgs (but still no BSM) discovery at LHC mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM RGE of Higgs self coupling (4π )2 dλ 3 = 24 λ 2 + 12 λ yt2 − 6yt4 − 3λ (g'2 + 3g 2 ) + [2g 4 + (g'2 + g 2 )2 ] dt 8 λ Higgs mass top mass 1018 β E (GeV) Higgs (but still no BSM) discovery at LHC mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM RGE of Higgs self coupling (4π )2 dλ 3 = 24 λ 2 + 12 λ yt2 − 6yt4 − 3λ (g'2 + 3g 2 ) + [2g 4 + (g'2 + g 2 )2 ] dt 8 λ Higgs mass top mass 1018 β E (GeV) Higgs (but still no BSM) discovery at LHC mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM RGE of Higgs self coupling (4π )2 dλ 3 = 24 λ 2 + 12 λ yt2 − 6yt4 − 3λ (g'2 + 3g 2 ) + [2g 4 + (g'2 + g 2 )2 ] dt 8 λ Higgs mass <0 >0 1017 1010 top mass 1018 E (GeV) Higgs (but still no BSM) discovery at LHC mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM RGE of Higgs self coupling (4π )2 dλ 3 = 24 λ 2 + 12 λ yt2 − 6yt4 − 3λ (g'2 + 3g 2 ) + [2g 4 + (g'2 + g 2 )2 ] dt 8 λ Higgs mass <0 >0 1017 1010 top mass 1018 E (GeV) Higgs (but still no BSM) discovery at LHC mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM 171.081 RGE of Higgs self coupling (4π )2 dλ 3 = 24 λ 2 + 12 λ yt2 − 6yt4 − 3λ (g'2 + 3g 2 ) + [2g 4 + (g'2 + g 2 )2 ] dt 8 λ Higgs mass <0 >0 1017 top mass 1018 E (GeV) Higgs (but still no BSM) discovery at LHC mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM 171.079 RGE of Higgs self coupling (4π )2 dλ 3 = 24 λ 2 + 12 λ yt2 − 6yt4 − 3λ (g'2 + 3g 2 ) + [2g 4 + (g'2 + g 2 )2 ] dt 8 λ Higgs mass <0 >0 1017 top mass 1018 E (GeV) λ(µ Mp) 0 λ(µ SM Mp) 0 Mp 1010 GeV ex Higgs flat land scenario Mp Iso et al ex Higgs flat land scenario Mp U(1)B-L Iso et al ex Higgs flat land scenario Mp U(1)B-L U(1)B-L νR Majorana Iso et al ex Higgs flat land scenario Iso et al Mp U(1)B-L U(1)B-L → U(1)B-L νR U(1)B-L Majorana Higgs Φ ex Higgs flat land scenario Iso et al Mp U(1)B-L U(1)B-L → U(1)B-L νR U(1)B-L Majorana Higgs Φ V = λ | H |4 +k | φ |2 | H |2 + λS | φ |4 mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM dλ 3 (4π )2 = 24 λ 2 + 12 λ yt2 − 6yt4 − 3λ (g'2 + 3g 2 ) + [2g 4 + (g'2 + g 2 )2 ] dt 8 1010 mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM dλ 3 (4π )2 = 24 λ 2 + 12 λ yt2 − 6yt4 − 3λ (g'2 + 3g 2 ) + [2g 4 + (g'2 + g 2 )2 ] dt 8 1010 (4π )2 dyt 17 2 9 2 ⎛9 ⎞ = yt ⎜ yt2 − g1 − g2 − 8g32 −!g!2 ⎟ ⎝2 ⎠ dt 20 4 new gauge Yt mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM dλ 3 (4π )2 = 24 λ 2 + 12 λ yt2 − 6yt4 − 3λ (g'2 + 3g 2 ) + [2g 4 + (g'2 + g 2 )2 ] dt 8 1010 (4π )2 dyt 17 2 9 2 ⎛9 ⎞ = yt ⎜ yt2 − g1 − g2 − 8g32 −!g!2 ⎟ ⎝2 ⎠ dt 20 4 new gauge Yt λ ex flat land scenario Iso et al V = λ | H |4 +k | φ |2 | H |2 + λS | φ |4 SM + U(1)B-L λ SM TeV 1010 Mp ex flat land scenario Iso et al V = λ | H |4 +k | φ |2 | H |2 + λS | φ |4 SM + U(1)B-L λ SM TeV 1010 Mp ex flat land scenario Iso et al V = λ | H |4 +k | φ |2 | H |2 + λS | φ |4 SM + U(1)B-L λ TeV 1010 Mp ex flat land scenario Iso et al V = λ | H |4 +k | φ |2 | H |2 + λS | φ |4 SM + U(1)B-L λ TeV Mp ex flat land scenario Iso et al V = λ | H |4 +k | φ |2 | H |2 + λS | φ |4 SM + U(1)B-L λ TeV λS Mp k ex flat land scenario Iso et al V = λ | H |4 +k | φ |2 | H |2 + λS | φ |4 SM + U(1)B-L λ TeV λS Mp k Φ TeV ex flat land scenario Iso et al V = λ | H |4 +k | φ |2 | H |2 + λS | φ |4 SM + U(1)B-L λ λS TeV Mp k<0 Φ TeV ex flat land scenario Iso et al V = λ | H |4 +k | φ |2 | H |2 + λS | φ |4 SM + U(1)B-L (origin of the wine-bottle (EWB) λ λS TeV Mp k<0 Φ TeV ex flat land scenario Iso et al V = λ | H |4 +k | φ |2 | H |2 + λS | φ |4 SM + U(1)B-L (origin of the wine-bottle (EWB) λ TeV λS Mp k<0 L gB-L Φ νR2 Φ TeV TeV Majorana mass of νR (Mayoron-> (~O(1)) νR Majorana mass TeV Φ TeV ex flat land scenario Iso et al V = λ | H |4 +k | φ |2 | H |2 + λS | φ |4 SM + U(1)B-L (origin of the wine-bottle (EWB) λ TeV λS Mp k<0 L gB-L Φ νR2 Φ TeV TeV Majorana mass of νR (Mayoron-> TeV scale seesaw, (resonant) leptogenesis (anyhow, all phenomenology must be at TeV) (~O(1)) νR Majorana mass TeV Φ TeV ex2 GUT @ Mp model GUT Mp NH, Ishida, Takahashi, Yamaguchi arXiv:1412.8230 ex2 GUT @ Mp model GUT Mp GUT Mp NH, Ishida, Takahashi, Yamaguchi arXiv:1412.8230 ex2 GUT @ Mp model GUT Mp GUT Mp vector-like mattes SM GUT Mp NH, Ishida, Takahashi, Yamaguchi arXiv:1412.8230 mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM dλ 3 (4π )2 = 24 λ 2 + 12 λ yt2 − 6yt4 − 3λ (g'2 + 3g 2 ) + [2g 4 + (g'2 + g 2 )2 ] dt 8 GUC gauge mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM dλ 3 (4π )2 = 24 λ 2 + 12 λ yt2 − 6yt4 − 3λ (g'2 + 3g 2 ) + [2g 4 + (g'2 + g 2 )2 ] dt 8 (4π )2 gauge GUC dyt 17 2 9 2 ⎛9 ⎞ = yt ⎜ yt2 − g1 − g2 − 8g32 ⎟ ⎝2 ⎠ dt 20 4 Gauge Yt mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM dλ 3 (4π )2 = 24 λ 2 + 12 λ yt2 − 6yt4 − 3λ (g'2 + 3g 2 ) + [2g 4 + (g'2 + g 2 )2 ] dt 8 (4π )2 gauge GUC dyt 17 2 9 2 ⎛9 ⎞ = yt ⎜ yt2 − g1 − g2 − 8g32 ⎟ ⎝2 ⎠ dt 20 4 Gauge Yt λ ex2 GUT @ Mp model GUT NH, Ishida, Takahashi, Yamaguchi arXiv:1412.8230 Mp GUT Mp vector-like mattes gauge-> SM GUT Mp λ vacuum becomes stable ex2 GUT @ Mp model GUT NH, Ishida, Takahashi, Yamaguchi arXiv:1412.8230 Mp GUT Mp vector-like mattes gauge-> SM Yukawa-> GUT Mp λ vacuum becomes stable LHC results show… 126 GeV Higgs BSM? SM Mp (no intermediate scale?) TeV scale seesaw (inverse seesaw? generation structure? same sign di-lepton event? 0νββ? other observations?) leptogenesis/bariyogenesis? (resonant leptogenesis? quantum effects? New mechanism ) λ(µ µ Mp) 0 1010GeV BSM 1010 GeV Higgs Higgs= gauge (Gauge-Higgs Unification) AM = Aµ + A5 (scalar @ 4D) massless mass loop factor (1/16π2 λ tree ← finite SM with top mass (173 GeV) For this meta-stability, GHU says 1/R~1010 GeV! N. Okada, Q. Shafi, et al G.Degrassi, S.Di Vita, J.Elias-Miro, J.R.Espinosa, G.F.Giudice, G.Isidori and A.Strumia, JHEP1208 (2012) 098 TeV 65 origin of tiny Dirac mass Standard Model (y H 1,=(0, mass hierarchy = Yukawa hierarchy y 250GeV) 10-12) t Quark charged Lepton H y (g) H y H y origin of tiny Dirac another possibility: Quark charged Lepton mass How about tiny H only for ν? H y (g) H y H y origin of tiny Dirac mass neutrinophilic Higgs another possibility: Quark charged Lepton How about tiny H only for ν? H H y y (g) y H ν Hν yν Hν yν Hν yν origin of tiny Dirac mass neutrinophilic Higgs another possibility: Quark charged Lepton How about tiny H only for ν? H H y y (g) y H ν Hν yν Hν yν Hν yν origin of tiny Dirac mass neutrinophilic Higgs LYukawa = yuQHU + ydQHD + ye LHE + yν LH νν R L = (ν L ,eL ) origin of tiny Dirac mass neutrinophilic Higgs LYukawa = yuQHU + ydQHD + ye LHE + yν LH νν R fields SM fields (SM Higgs: H) R Higgs doublet: H Z2-charge L = (ν L ,eL ) origin of tiny Dirac mass neutrinophilic Higgs LYukawa = yuQHU + ydQHD + ye LHE + yν LH νν R fields SM fields (SM Higgs: H) R Higgs doublet: H Hν H0 ⎛ •• ⎞ ⎜⎝ • • ⎟⎠ A0 〈H ν 〉 〈H 〉 H ⎛ •• ⎞ ⎜⎝ • • ⎟⎠ H± h0 Z2-charge L = (ν L ,eL ) origin of tiny Dirac mass neutrinophilic Higgs LYukawa = yuQHU + ydQHD + ye LHE + yν LH νν R fields SM fields (SM Higgs: H) R Higgs doublet: H Hν H0 ⎛ •• ⎞ ⎜⎝ • • ⎟⎠ A0 〈H ν 〉 〈H 〉 H ⎛ •• ⎞ ⎜⎝ • • ⎟⎠ H± h0 Z2-charge L = (ν L ,eL ) origin of tiny Dirac mass neutrinophilic Higgs LYukawa = yuQHU + ydQHD + ye LHE + yν LH νν R fields SM fields (SM Higgs: H) R Higgs doublet: H Hν H0 ⎛ •• ⎞ ⎜⎝ • • ⎟⎠ A0 〈H ν 〉 〈H 〉 H ⎛ •• ⎞ ⎜⎝ • • ⎟⎠ H± h0 Z2-charge L = (ν L ,eL ) origin of tiny Dirac mass neutrinophilic Higgs LYukawa = yuQHU + ydQHD + ye LHE + yν LH νν R fields SM fields (SM Higgs: H) R Higgs doublet: H Hν H0 ⎛ •• ⎞ ⎜⎝ • • ⎟⎠ A0 〈H ν 〉 〈H 〉 H ⎛ •• ⎞ ⎜⎝ • • ⎟⎠ H± h0 Z2-charge L = (ν L ,eL ) 〈Φ〉 2 Γ(H → l ν L ) GF mH ± m 〈Φν 〉 2 ± ± 2 ν yq × 〈Φν 〉 〈Φ〉 〈Φν 〉 2 Γ(H → qq) mH ± y 〈Φ〉 2 ± 2 q ε≡ Γ(ν R1 → Φ + l j ) − Γ(ν R1 → Φ* + l j ) Γ(ν R1 → Φ + l j ) + Γ(ν R1 → Φ* + l j ) !− 3 1 † 2 M1 Im (y y ∑ ν ν )1i M , (M i ≫ M 1 ) 8π (yν yν† )11 i = 2, 3 i 3 M 1mν 3 M 1 ⎞ ⎛ mν 3 ⎞ −6 ⎛ sin δ ! 10 ⎜⎝ 10 ⎟⎜ ⎟ sin δ 8π 〈Φ〉 2 10 GeV ⎠ ⎝ 0.05eV ⎠ nb ε ! Cκ s g* ! ε− 3 1 3 M 1mν 3 † 2 M1 Im (y y ) − sin δ ∑ ν ν 1i M 2 8π (yν yν† )11 i = 2, 3 8 π 〈Φ 〉 i ν 2 ⎛ 0.1GeV ⎞ ⎛ M 1 ⎞ ⎛ mν ⎞ 3 − 10 −6 ⎜ ⎜ ⎟⎜ ⎟ sin δ 16π ⎝ 〈Φν 〉 ⎟⎠ ⎝ 100GeV ⎠ ⎝ 0.05eV ⎠ nb ε Cκ s g* ε− 3 1 3 M 1mν 3 † 2 M1 Im (y y ) − sin δ ∑ ν ν 1i M 2 8π (yν yν† )11 i = 2, 3 8 π 〈Φ 〉 i ν 2 ⎛ 0.1GeV ⎞ ⎛ M 1 ⎞ ⎛ mν ⎞ 3 − 10 −6 ⎜ ⎜ ⎟⎜ ⎟ sin δ 16π ⎝ 〈Φν 〉 ⎟⎠ ⎝ 100GeV ⎠ ⎝ 0.05eV ⎠ nb ε Cκ s g* ε− 3 1 3 M 1mν 3 † 2 M1 Im (y y ) − sin δ ∑ ν ν 1i M 2 8π (yν yν† )11 i = 2, 3 8 π 〈Φ 〉 i ν 2 ⎛ 0.1GeV ⎞ ⎛ M 1 ⎞ ⎛ mν ⎞ 3 − 10 −6 ⎜ ⎜ ⎟⎜ ⎟ sin δ 16π ⎝ 〈Φν 〉 ⎟⎠ ⎝ 100GeV ⎠ ⎝ 0.05eV ⎠ nb ε Cκ s g* ) + ε (ν → l H ) + ε (ν → l H ) ε ≡ ε (ν R → lH ) + ε (ν R → l H R R 2 ⎛ 0.1GeV ⎞ ⎛ M 1 ⎞ ⎛ mν ⎞ 3 − 10 −5 ⎜ ⎜ ⎟⎜ ⎟ sin δ 16π ⎝ 〈Φν 〉 ⎟⎠ ⎝ 10 3 GeV ⎠ ⎝ 0.05eV ⎠ nb ε Cκ s g* flavor symmetry: ! ! tri-bi-maximal mixing [sin2 12=1/3, sin2 seems good! -> find flavor symmetry (S3, S4, A4, ) -> phenomenology ! ex) 23=1/2] + deviation, ! ! mass sum rule ! S. F. King, A. Merle, S. Morisi, Y. Shimizu and M. Tanimoto, New J. Phys.16 (2014) 045018 summary of research plan! TeV scale seesaw (inverse seesaw? generation structure? same sign di-lepton event? 0νββ? other observations?) leptogenesis/bariyogenesis? (resonant leptogenesis? quantum effects? New mechanism ) For a goal ! (discover BSM), strong cooperation between ! experiment & theory is needed. experiment theory ! λ(µ EW Mp) 0 Mp 1010 GeV mH=125.9±0.4 GeV, mtop=172.58~174.10 GeV in the SM dλ 3 (4π )2 = 24 λ 2 + 12 λ yt2 − 6yt4 − 3λ (g'2 + 3g 2 ) + [2g 4 + (g'2 + g 2 )2 ] dt 8 stable ! stable top scalar vector gravity gauge running Higgs mass & top mass dependence for λ β 1017 GeV < Mp (126,!171.2) (128.6,!172.6) SM center Mp Higgs mass & top mass are uniquely determined by MPCP @ Mp
© Copyright 2024 ExpyDoc