501 258 ALPHA (CERN) CPT , CERN [email protected] TRIUMF – Canada’s National Laboratory for Particle and Nuclear Physics [email protected] 2015 2 26 [5,6] CPT (p ) (H) CPT + (e ) 1S-2S CPT ( 4.5×10 ) 7.0×10 13 15 [7,8], [9] CPT CERN (AD; Antiproton Decelerator) CPT CERN Colladay CPT ALPHA (Antihydrogen Laser PHysics Apparatus) ALPHA-1 2012 (SME; Standard-Model Extension) [10] Run ALPHA-2 SME 2014 CPT Run CPT ALPHA [1] ALPHA [2] [11] SME 2 2.1 CPT K CPT CPT CPT CPT CPT [3] SME CPT 2.2 (AD) AD [4] CPT AD CPT 1995 AD 502 259 2 1 (AD) ELENA AD [15] s-cooling e-cooling [14] keV , GBAR 2 ALPHA CERN LEAR [12] 1997 ATRAP degrader Fermilab 99.9% [13] ∼ 104 0.1% LHC keV LEAR protons) AD AD 1 (p ) 50 mm PS (Proton Synchrotron) 13 10 −120 keV 26GeV/c Ir ( 25% [2] ) ELENA (Extra-Low ENergy (1) Antiproton ring) 13.7 MeV/c ( 6GeV p ) 1GeV [2] 26GeV/c 2.5×10 −4 Δp / p ∼ 10 Δp / p ∼ 6% (Stochastic cooling) p 3 ATHENA 2002 ∼ 3×10 100 MeV/c 5.3MeV ) ATRAP ALPHA-1 3.1 2 (Electron cooling) 7 ALPHA 100 2 2 300 ns×4 3πmm mrad [15] 3.57 GeV/c ∼ 200πmm mrad 100 keV ) 7 p ∼ 5×107 p 2017 p ) p(26GeV / c) + p(Ir) → p + p + p + p. ALPHA ALPHA ( ATHENA ( ) [16] ∼ 0.8πmm mrad Δp / p < 7×10 1 RFQD (RadioFrequency Quadrupole Decelerator) ∼ 1.5×10 1 ( ASACUSA (Antiproton Spectroscopy And Collisions Using Slow Anti- 1999 ( p 5 p 1 CPT 100 − 200 ns 100 6 ALPHA [1] ALPHA 16 ALPHA 50 1/3 2013 ALPHA 8 503 260 3 ALPHA-1 [17] (a) ( : (Octupole) ) ( Mirror coils ( : : π ( 5 ALPHA-1 [20] : ) ( ) 3 nihilation detector, [18] ( 4) ) ALPHA-1 ) mixing trap (Electrodes, 4 ) (An- 5) catching trap positron trap : ( DAQ (Microwave injection horn) ( ) ) / B − ⋅B ( ) 1T (low-field (b) 0.35 mT 0 seeking) ( 10 MHz ) ΔB 0.7(Kelvin/Tesla)×ΔB ASACUSA 3 ALPHA ALPHA-1 1 ) ALPHA-1 ( 4 ALPHA-2 ( 4) 1100 A 750 A ΔB = 0.8 T 4.2 K 3.2 ALPHA-1 ALPHA-1 3 ALPHA-1 8K ( ) 3(b) 150 l/s −10 10 mbar ( 10−8 Pa ) 8 K 504 6 261 ALPHA-1 7 ALPHA-1 ( : [21] (22Na) [22] ) ( ) ( : ( : : ) “autoresonance” ) ( “after injection” ( : ) ) Phosphor screen 30% CCD 3—4 ( : ) 1200 l s 2 (25 −8 10 mbar ) (1 T) 10−13 −10−14 mbar [19] ( 1 5) 512 60 7 30720 200 − 400 K 65 m ALPHA-1 253 m 30195 (evaporative cooling) (98.3%) ( 40 K ( [23]) 512 1 ) ( ) 3.3 ALPHA-1 AD autoresonance ( [24]) p +e + +e + → H +e + [25] 100 ns [26] ( ) 6 ALPHA 3.4 Surko ALPHA-1 ALPHA-1 (2) 505 262 3.4.1 8 (2010 ) ALPHA-1 (a) (b) [22] ( : ) 9 ( ( : : ALPHA-1 [22] ) ) ( (a) ( (b) ( ( ) ) ( ) ) MC ( ) ALPHA-1 2010 [22] 1 500 V m 4 172 ms ∼ 10 ms ( ( 2006 ALPHA-1 8) ATRAP 2010 9 ) 9 172 ms 9 ( (z ) ) 335 ) 172 ms 1 0.11 ( ( ( ( 246 38 ) ) 1 ( 0.46 ± 0.01 ALPHA ) 2009 ) 212 6 5.6 σ 500 V m (z ( (z ) ) ) ( ) ( ( ) ) 506 263 11 (CPT ) [17] ALPHA-1 10 ALPHA-1 [30] (a) 1 Nature Physics (b) ( ) (a) 3.4.3 0.4 (2012 20 σ ) ALPHA-1 [31] 1000 2 ATRAP ( ALPHA ) [17] 11 ALPHA low-field seeking’ 3.4.2 1000 (2011 c → b ) fbc ) ( d → a f ) high-field seeking’ 172 ms 2010 ( ALPHA-1 10—30 ( 1420.4 MHz ) [27—29] 12 [30] 10 15 ( fbc 0.57 ± 0.06 f ) 15 30 1 6 180 ALPHA-1 1000 8.0 σ ( −15 10 p-value ) 2000 2.6 σ (p-value 4 ×10 3 ) in situ 507 264 [32] 12 [17] axis Bmin = B B = 1.0358(3)T (28.2755, 29.6959)GHz axis Bmin = B A = 1.0322(3)T 2 (fbcA, fadA ) = 2 (fbcB, fadB ) =(28.3755, 29.7959)GHz off-resonance −100 MHz , 700 mW 2 disappearance mode’ 13 [17] (a) appearance mode’ (b) (a) 0.026 ± 0.005 1 Disappearance mode On-resonance 1 (b) off-resonance ( 5 1.0×10 on-resonance ) disappearance CERN appearance mode ∼ 30 ms multivariate analysis S/N disappearance mode appearance 1 180 S/N S/N Disappearance mode 10 appearance mode 13 [17] 30 ( on-resonance On-resonance 103 2 0.02 0.01 Off-resonance 110 23 0.21 0.04 100 40 0.40 0.06 ) off-resonance (p-value 2.8×10 5 ) disappearance mode off-resonance (p-value 6×10 3 ) 508 265 ( 1 c → b off-resonance appearance mode p-value 5.6×10 2 off-resonance 0—15 c → b 15—30 c → b 14 ( 700 mW ) 180 [34] (a) ALPHA-1 8 K 11 K (b) on-resonance off-resonance ( : (c) ) 13(b) ( : ) (d) (c) 14 700 mW 14(c) 3.4.1 1/16 ΔνHFS = 1420 ± 85MHz(6%) 14(d) (3) 1300 386 [33] CPT Nature Qe 1 68% CL 1 Q = ( 1.3 ± 1.1(stat.) ± 0.4(syst.))×10 8 (4) [34] ASACUSA 3.4.4 (2014 ) 4 ALPHA-1 [2] ALPHA-2 [34] CPT ( SF6 4.1 ALPHA-2 ALPHA-1 10−21e ( e ) [35]) ATHENA 10 ALPHA-2 ALPHA-2 16 15 ALPHA-1 509 266 Catching Trap 2012 6 2014 Run ALPHA-2 17 ( 22 Na , 1.73GBq @ 06 / 2012 ) 16 ALPHA-2 ( ( ( ) ) ) ALPHA-2 Catching Trap Atom Trap 1000 L Catching Trap Atom Trap Si DAQ ALPHA-2 ALPHA-1 ALPHA-2 Trap (Catching 15 16 ) AD AD 17 Catching Trap 15 ALPHA-2 ALPHA-2 Catching Trap Mixing Trap (Atom Trap) ( ) 510 18 4.4 267 ALPHA-2 Atom Trap Atom Trap 18 Catching Trap 19 20 243 nm ALPHA-2 12 72 4.6 4.2 K 243 nm Toptica (1S-2S ) ( 20) Atom Trap ∼ 50 mW ∼ 600 4.5 ALPHA-2 ALPHA-1 3 5 2014 5.1 2014 AD 1 9 8 (1 12 8 ALPHA-2 2014 6 ALPHA-1 5 19 ALPHA-2 Atom Trap ) +α ALPHA-1 511 268 3 4 5.3 (Stochastic Heating) ALPHA-1 2014 [34] ALPHA-2 Stochastic Heating [36] 2014 Run 5.4 21 2014 2015 Run 7 12 Si +α 11 ALPHA-2 2015 1S-2S 21 1 5 2014 Lyman-α ALPHA-1 (121.5 nm) 1S-2P [37] ( τ ≈ 10 ms ) ( 30 ms ) Preliminary 0.06 Hz 60% 2014 ID Run ∼ 140 ∼ 230 1 2.4 1 ALPHA-1 0.7 1 ( ) 1 3 4 1S-2S [4] 5.2 2014 2015 Run CPT ALPHA-2 20 243 nm 1 (On-resonance (proof-of-principle) 500 Run ) 5 512 269 6 Beam Cooling and Related Topics (COOL2013), Mürren, Switzerland, pp. 36—39 (2013). CERN [15] L. Bojtár, ALPHA Antiproton Decelerator Status Report , in Proceedings of the International Workshop on Beam Cooling and Related Topics (COOL2009), Lanzhou, ALPHA-2 China, pp. 6—10 (2009). [16] M. Amoretti et al., Nature 419, 456 (2002). CPT [17] C. Amole et al., Nature 483, 439 (2012). [18] W. Bertsche et al., Nucl. Inst. Meth. Phys. Res. A 566, 746 (2006). [19] X. Fei, Trapping low energy antiprotons in an ion trap (Ph. D. thesis), Harvard University (1990). ALPHA [20] G. B. Andersen et al., Nucl. Inst. Meth. Phys. Res. A 684, 73 (2012). 25 NSERC TRIUMF [21] C. Amole et al., Nucl. Inst. Meth. Phys. Res. A 735, 319 (2014). [22] G. B. Andresen et al., Nature 468, 673 (2010). [23] G. B. Andresen et al., Phys. Rev. Lett. 105, 013003 27, 37 (2008). [1] [2] M. Hori and J. Walz, Prog. Part. Nucl. Phys. 72, 206 (2013). [4] M. C. Fujiwara, Antihydrogen, CPT, and Naturalness, ariXiv:1309.7468 [hep-ph] (2013). [5] N. E. Mavromatos, Found. Phys. 40, 917 (2010). [6] F. R. Klinkhamer, C. Rupp., Phys. Rev. D 70, 045020 (2004). [7] C. G. Parthey et al., Phys. Rev. Lett. 107, 203001 (2011). [8] A. Matveev et al., Phys. Rev. Lett. 110, 230801 (2013). [9] S. G. Karshenboim, Phys. Rep. 442, 1 (2005). [10] D. Colladay and V. A. Kosteleck , Phys. Rev. D 55, 6760 (1997); Phys. Rev. D 58, 116002 (1998). [hep-ph]] and references therein. (2008). [26] G. B. Andresen et al., Phys. Rev. Lett. 100, 203401 (2008). [27] K. Helmerson, A. Martin, D. E. Pritchard, J. Opt. Soc. Am. B 9, 483 (1992). [28] P. A. Willems and K. G. Libbrecht, Phys. Rev. A 51, 1403 (1995). [29] H. Hess et al., Phys. Rev. Lett. 59, 672 (1987). [30] G. B. Andresen et al., Nat. Phys. 7, 558 (2011). [31] M. C. Fujiwara et al., Hyperfine Interact. 172, 81 (2006). [33] M. D. Ashkezari, Microwave Spectroscopy of Magnetically Trapped Atomic Antihydrogen (Ph. D. Thesis), Simon Fraser University (2014). [12] Bauer et al., Phys. Lett. B 368, 251 (1996). [13] G. Blanford et al., Phys. Rev. Lett. 80, 3037 (1998). [14] T. Eriksson et al., (2011). [32] C. Amole et al., New J. Phys. 16, 013037 (2014). [11] V. A. Kosteleck and N. Russell, Rev. Mod. Phys. 83, 11 [arXiv:0801.0287 [24] G. B. Andresen et al., Phys. Rev. Lett. 106, 025002 [25] M. C. Fujiwara et al., Phys. Rev. Lett. 101, 053401 [3] G. Lüders, Ann. Phys. 2, 1 (1957). (2011) (2010). AD Status and Consolidation Plans , in Proceedings of the International Workshop on [34] C. Amole et al., Nat. Commun. 5, 4955 (2014). [35] G. Bressi et al., Phys. Rev. A 83, 052101 (2011). [36] M. Baquero-Ruiz et al., New J. Phys. 16, 083013 (2014). [37] J. M. Michan, M. C. Fujiwara, T. Momose, Hyperfine Interact. 228, 77 (2014).
© Copyright 2024 ExpyDoc