いよいよ始まる反水素分光実験 ALPHA 実験

501
258
ALPHA
(CERN)
CPT
, CERN
[email protected]
TRIUMF – Canada’s National Laboratory for Particle and Nuclear Physics
[email protected]
2015
2
26
[5,6]
CPT
(p )
(H)
CPT
+
(e )
1S-2S
CPT (
4.5×10
)
7.0×10
13
15
[7,8],
[9]
CPT
CERN
(AD; Antiproton Decelerator)
CPT
CERN
Colladay
CPT
ALPHA (Antihydrogen Laser PHysics Apparatus)
ALPHA-1
2012
(SME; Standard-Model Extension) [10]
Run
ALPHA-2
SME
2014
CPT
Run
CPT
ALPHA
[1]
ALPHA
[2]
[11] SME
2
2.1
CPT
K
CPT
CPT
CPT
CPT
CPT
[3]
SME
CPT
2.2
(AD)
AD
[4]
CPT
AD
CPT
1995
AD
502
259
2
1
(AD)
ELENA
AD
[15]
s-cooling
e-cooling
[14]
keV
, GBAR
2
ALPHA
CERN
LEAR
[12] 1997
ATRAP
degrader
Fermilab
99.9%
[13]
∼ 104
0.1%
LHC
keV
LEAR
protons)
AD
AD
1
(p )
50 mm
PS (Proton Synchrotron)
13
10 −120 keV
26GeV/c
Ir (
25%
[2]
)
ELENA (Extra-Low ENergy
(1)
Antiproton ring)
13.7 MeV/c (
6GeV
p
)
1GeV
[2]
26GeV/c
2.5×10
−4
Δp / p ∼ 10
Δp / p ∼ 6%
(Stochastic cooling)
p
3
ATHENA
2002
∼ 3×10
100 MeV/c
5.3MeV )
ATRAP
ALPHA-1
3.1
2
(Electron cooling)
7
ALPHA
100
2
2
300 ns×4
3πmm mrad
[15]
3.57 GeV/c
∼ 200πmm mrad
100 keV )
7
p
∼ 5×107
p
2017
p
)
p(26GeV / c) + p(Ir) → p + p + p + p.
ALPHA
ALPHA
(
ATHENA
(
)
[16]
∼ 0.8πmm mrad
Δp / p < 7×10
1
RFQD (RadioFrequency
Quadrupole Decelerator)
∼ 1.5×10
1
(
ASACUSA
(Antiproton Spectroscopy And Collisions Using Slow Anti-
1999
(
p
5
p
1
CPT
100 − 200 ns
100
6
ALPHA
[1] ALPHA
16
ALPHA
50
1/3
2013
ALPHA
8
503
260
3
ALPHA-1
[17]
(a)
(
:
(Octupole)
)
(
Mirror coils (
:
:
π
(
5
ALPHA-1
[20]
:
)
(
)
3
nihilation detector,
[18]
(
4)
)
ALPHA-1
)
mixing trap
(Electrodes,
4
)
(An-
5)
catching
trap
positron trap
:
(
DAQ
(Microwave injection horn)
(
)
)
/
B
− ⋅B (
)
1T
(low-field
(b)
0.35 mT
0
seeking)
(
10 MHz )
ΔB
0.7(Kelvin/Tesla)×ΔB
ASACUSA
3
ALPHA
ALPHA-1
1
)
ALPHA-1
(
4
ALPHA-2
(
4)
1100 A 750 A
ΔB = 0.8 T
4.2 K
3.2
ALPHA-1
ALPHA-1
3
ALPHA-1
8K
(
)
3(b)
150 l/s
−10
10
mbar ( 10−8 Pa )
8 K
504
6
261
ALPHA-1
7
ALPHA-1
(
:
[21]
(22Na)
[22]
)
(
)
(
:
(
:
:
)
“autoresonance”
)
(
“after injection” (
:
)
)
Phosphor screen
30%
CCD
3—4
(
:
)
1200 l s
2
(25
−8
10
mbar
)
(1 T)
10−13 −10−14 mbar
[19]
(
1
5)
512
60
7
30720
200 − 400 K
65 m
ALPHA-1
253 m
30195
(evaporative cooling)
(98.3%)
(
40 K
(
[23])
512
1
)
(
)
3.3
ALPHA-1
AD
autoresonance
(
[24])
p +e + +e + → H +e +
[25]
100 ns
[26]
(
)
6
ALPHA
3.4
Surko
ALPHA-1
ALPHA-1
(2)
505
262
3.4.1
8
(2010
)
ALPHA-1
(a)
(b) [22]
(
:
)
9
(
(
:
:
ALPHA-1
[22]
)
)
(
(a)
(
(b)
(
(
)
)
(
)
)
MC
(
)
ALPHA-1
2010
[22]
1
500 V m
4
172 ms
∼ 10 ms
(
(
2006
ALPHA-1
8)
ATRAP
2010
9
)
9
172 ms
9
(
(z )
)
335
)
172 ms
1
0.11
(
(
(
(
246
38
)
)
1
( 0.46 ± 0.01
ALPHA
)
2009
)
212
6
5.6 σ
500 V m
(z
(
(z
)
)
)
(
)
(
(
)
)
506
263
11
(CPT
) [17]
ALPHA-1
10
ALPHA-1
[30]
(a) 1
Nature Physics
(b)
(
)
(a)
3.4.3
0.4
(2012
20 σ
)
ALPHA-1
[31] 1000
2
ATRAP
(
ALPHA
)
[17]
11
ALPHA
low-field
seeking’
3.4.2
1000
(2011
c → b
)
fbc )
(
d → a
f )
high-field seeking’
172 ms
2010
(
ALPHA-1
10—30
( 1420.4 MHz )
[27—29]
12
[30]
10
15
(
fbc
0.57 ± 0.06
f
)
15
30
1
6
180
ALPHA-1
1000
8.0 σ
(
−15
10
p-value
)
2000
2.6 σ (p-value 4 ×10
3
)
in situ
507
264
[32]
12
[17]
axis
Bmin
= B B = 1.0358(3)T
(28.2755, 29.6959)GHz
axis
Bmin
= B A = 1.0322(3)T
2
(fbcA, fadA ) =
2
(fbcB, fadB ) =(28.3755, 29.7959)GHz
off-resonance
−100 MHz
,
700 mW
2
disappearance mode’
13
[17]
(a)
appearance mode’
(b)
(a)
0.026 ± 0.005
1
Disappearance mode
On-resonance
1
(b)
off-resonance
(
5
1.0×10
on-resonance
)
disappearance
CERN
appearance mode
∼ 30 ms
multivariate analysis
S/N
disappearance mode
appearance
1
180
S/N
S/N
Disappearance mode
10
appearance mode
13
[17]
30
(
on-resonance
On-resonance
103
2
0.02
0.01
Off-resonance
110
23
0.21
0.04
100
40
0.40
0.06
)
off-resonance
(p-value 2.8×10 5 )
disappearance mode
off-resonance
(p-value 6×10 3 )
508
265
(
1
c → b
off-resonance
appearance mode
p-value 5.6×10 2
off-resonance
0—15
c → b
15—30
c → b
14
( 700 mW )
180
[34]
(a) ALPHA-1
8 K
11 K
(b)
on-resonance
off-resonance
(
:
(c)
)
13(b)
(
:
)
(d)
(c)
14
700 mW
14(c)
3.4.1
1/16
ΔνHFS = 1420 ± 85MHz(6%)
14(d)
(3)
1300
386
[33] CPT
Nature
Qe
1
68% CL
1
Q = ( 1.3 ± 1.1(stat.) ± 0.4(syst.))×10
8
(4)
[34]
ASACUSA
3.4.4
(2014
)
4
ALPHA-1
[2]
ALPHA-2
[34] CPT
(
SF6
4.1
ALPHA-2
ALPHA-1
10−21e ( e
)
[35])
ATHENA
10
ALPHA-2
ALPHA-2
16
15
ALPHA-1
509
266
Catching Trap
2012
6
2014
Run
ALPHA-2
17
( 22 Na ,
1.73GBq @ 06 / 2012 )
16
ALPHA-2
(
(
(
)
)
)
ALPHA-2
Catching Trap
Atom Trap
1000 L
Catching Trap
Atom
Trap
Si
DAQ
ALPHA-2
ALPHA-1
ALPHA-2
Trap
(Catching
15
16
)
AD
AD
17
Catching Trap
15
ALPHA-2
ALPHA-2
Catching Trap
Mixing Trap (Atom Trap)
(
)
510
18
4.4
267
ALPHA-2 Atom Trap
Atom Trap
18
Catching Trap
19
20
243 nm
ALPHA-2
12
72
4.6
4.2 K
243 nm
Toptica
(1S-2S
)
(
20)
Atom Trap
∼ 50 mW
∼ 600
4.5
ALPHA-2
ALPHA-1
3
5
2014
5.1
2014
AD
1
9
8
(1
12
8
ALPHA-2
2014
6
ALPHA-1
5
19
ALPHA-2 Atom Trap
) +α
ALPHA-1
511
268
3
4
5.3
(Stochastic Heating)
ALPHA-1
2014
[34]
ALPHA-2
Stochastic Heating [36]
2014
Run
5.4
21
2014
2015
Run
7
12
Si
+α
11
ALPHA-2
2015
1S-2S
21
1
5
2014
Lyman-α
ALPHA-1
(121.5 nm)
1S-2P
[37]
( τ ≈ 10 ms )
(
30 ms
)
Preliminary
0.06 Hz
60%
2014
ID
Run
∼ 140
∼ 230
1
2.4
1
ALPHA-1
0.7
1
(
)
1
3
4
1S-2S
[4]
5.2
2014
2015
Run
CPT
ALPHA-2
20
243 nm
1
(On-resonance
(proof-of-principle)
500
Run
)
5
512
269
6
Beam Cooling and Related Topics (COOL2013), Mürren, Switzerland, pp. 36—39 (2013).
CERN
[15] L. Bojtár,
ALPHA
Antiproton Decelerator Status Report , in
Proceedings of the International Workshop on Beam
Cooling and Related Topics (COOL2009), Lanzhou,
ALPHA-2
China, pp. 6—10 (2009).
[16] M. Amoretti et al., Nature 419, 456 (2002).
CPT
[17] C. Amole et al., Nature 483, 439 (2012).
[18] W. Bertsche et al., Nucl. Inst. Meth. Phys. Res. A 566,
746 (2006).
[19] X. Fei, Trapping low energy antiprotons in an ion trap
(Ph. D. thesis), Harvard University (1990).
ALPHA
[20] G. B. Andersen et al., Nucl. Inst. Meth. Phys. Res. A
684, 73 (2012).
25
NSERC
TRIUMF
[21] C. Amole et al., Nucl. Inst. Meth. Phys. Res. A 735, 319
(2014).
[22] G. B. Andresen et al., Nature 468, 673 (2010).
[23] G. B. Andresen et al., Phys. Rev. Lett. 105, 013003
27, 37 (2008).
[1]
[2] M. Hori and J. Walz, Prog. Part. Nucl. Phys. 72, 206
(2013).
[4] M. C. Fujiwara, Antihydrogen, CPT, and Naturalness,
ariXiv:1309.7468 [hep-ph] (2013).
[5] N. E. Mavromatos, Found. Phys. 40, 917 (2010).
[6] F. R. Klinkhamer, C. Rupp., Phys. Rev. D 70, 045020
(2004).
[7] C. G. Parthey et al., Phys. Rev. Lett. 107, 203001
(2011).
[8] A. Matveev et al., Phys. Rev. Lett. 110, 230801 (2013).
[9] S. G. Karshenboim, Phys. Rep. 442, 1 (2005).
[10] D. Colladay and V. A. Kosteleck , Phys. Rev. D 55,
6760 (1997); Phys. Rev. D 58, 116002 (1998).
[hep-ph]]
and
references
therein.
(2008).
[26] G. B. Andresen et al., Phys. Rev. Lett. 100, 203401
(2008).
[27] K. Helmerson, A. Martin, D. E. Pritchard, J. Opt. Soc.
Am. B 9, 483 (1992).
[28] P. A. Willems and K. G. Libbrecht, Phys. Rev. A 51,
1403 (1995).
[29] H. Hess et al., Phys. Rev. Lett. 59, 672 (1987).
[30] G. B. Andresen et al., Nat. Phys. 7, 558 (2011).
[31] M. C. Fujiwara et al., Hyperfine Interact. 172, 81
(2006).
[33] M. D. Ashkezari, Microwave Spectroscopy of Magnetically Trapped Atomic Antihydrogen (Ph. D. Thesis),
Simon Fraser University (2014).
[12] Bauer et al., Phys. Lett. B 368, 251 (1996).
[13] G. Blanford et al., Phys. Rev. Lett. 80, 3037 (1998).
[14] T. Eriksson et al.,
(2011).
[32] C. Amole et al., New J. Phys. 16, 013037 (2014).
[11] V. A. Kosteleck and N. Russell, Rev. Mod. Phys. 83, 11
[arXiv:0801.0287
[24] G. B. Andresen et al., Phys. Rev. Lett. 106, 025002
[25] M. C. Fujiwara et al., Phys. Rev. Lett. 101, 053401
[3] G. Lüders, Ann. Phys. 2, 1 (1957).
(2011)
(2010).
AD Status and Consolidation
Plans , in Proceedings of the International Workshop on
[34] C. Amole et al., Nat. Commun. 5, 4955 (2014).
[35] G. Bressi et al., Phys. Rev. A 83, 052101 (2011).
[36] M. Baquero-Ruiz et al., New J. Phys. 16, 083013 (2014).
[37] J. M. Michan, M. C. Fujiwara, T. Momose, Hyperfine
Interact. 228, 77 (2014).