SURE: Shizuoka University REpository http://ir.lib.shizuoka.ac.jp/ Title Author(s) Citation Issue Date URL Glaucony and carbonate grains as indicators of the condensed section: Omma Formation, Japan Kitamura, Akihisa Sedimentary Geology. 122(1-4), p. 151-163 1998-12 http://hdl.handle.net/10297/534 Version author Rights (c)1998 Elsevier Science B.V. All rights reserved This document is downloaded at: 2016-03-01T09:30:20Z Glaucony and carbonate grains asindicators of the condensed section:0mma Formation,Japan AkihisaKitamura* InstituteofGeosciences,FacultyofScience,ShizuokaUniversity,Shizuoka422,Japan Received15January1997;accepted2July1997.Availableonline21February1999. Abstract The nflh−Order depositionalsequences ofthe Early Pleistocene Omma Formation exposed along theJapan Sea coastofcentralJapan wereformed by glacial−euStaSy during oxygenisotope stages 50 to 28.In each depositional sequence,tWO ecostratigraphicdatumsarealwayspresent:theappearanceanddisappearancedatums Of warm−Water mOlluscan species.These datums areindependent of sequence Stratigraphic concepts,because the establishment ofthemis based onimmlgration events of molluscan species associated with glacio−euStatic sea−level changes. Determinationoftimeplanesshowsthattheappearancedatumseemstooccurnearthe midpointofsea−levelriseontheglacialtointerglacialshiftindeep−Sea6180records.In Ordertoevaluatetheslgni丘canceofthecondensedsectioninsequencestratigraphyand alsotohcilitateitsrecognition,this studyexaminesthe stratigraphicrelationship of the condensed sectionindicators,glaucony and carbonate grains,With respectto the POSition of the ecostratigraphic datumsin depositional sequences of the Omma Formation.Theresultsshowthatthemaximumconcentrationofcarbonategrainsisa morereliablemaximumfl00dingsurhceindicatorthantheconcentrationofglaucony. The combination ofindicators of condensed section and ecostratigraphic datums represented bylnCurSion epiboles enables the boundary between transgressive and highstand systems tracts to be recognlZedin theinner shelfparts of depositional SequenCeS.Moreover,trunCation of ecostratigraphic datums during sea−level hlls demonstrates slgni丘Cant erosion atthe sequence boundaries.Integration ofclimatic Palaeoecologyandsequencestratigraphypermitsalevelofcorrelationalprecisionofthe Orderofafewthousandsofyears. Keywords:Early Pleistocene;sequence stratigraphy;ecostratigraphy;condensed SeCtion;maximumfl00dingsurface;sea−levelchange 1.1ntroduction Bothtypeland2depositionalsequenceshavetransgressiveandhighstandsystems tracts(e.g.Ⅵlilet a1.,1991).The physicalboundary between themis called the maximumfl00dingsurhce.This surhcecommonlyoccurswithinthetopof,Oratthe baseot acondensedsectioncausedbyverylowsedimentationrates(e.g.Ⅵlileta1., 1991;Abbottand Carter,1994).Stratigraphic condensationonthe continentalshelf maybecharacterizedbyconcentrationsofplanktonicorganisms,glaucony,Sulphides, phosphate,andairborneparticlessuchasvoIcanicashandiridium(e.g.Loutiteta1., 1988;Baum and Vail,1988).Condensed sections usually coincide with zones of maximumdiversityandabundanceoffossils.Ontheotherhand,COndensedsectionsin epeiricsettingsarecharacterizedbyhighertotalorganiccarbon,reducedoxygenvalues, low concentrations ofbenthicforaminifera,and minimalor no burrowing,COmPared withrocksdepositedduringmoreelevatedsedimentationrates(Pembertoneta1.,1992). AlthoughthecharacterofcondensedsectionsvariesaccordingtogeologlCSettings,any COndensedsectionisinterpretedasasediment−StarVedintervalthatwascausedbythe trappingofterrlgenOuS Sediments duringtimesofrelativelyrapid sea−levelrise and marinefl00ding.Thus,the distributionoflowsedimentationrateindicatorshasbeen usedtorecognizethecondensedsection,maXimumfl00dingsurhceandthehighstand andtransgressivesystemstracts. Withtheexceptionofafewstudies(e.g.Saito,1991),mOStStudieshavebeenbased On Pre−Pliocene sedimentary sequences,Where the sea−level slgnatureis not known independently but has to beinhrred from the sediments under study.One ofthe exceptions was a depositional sequence of shelf and upper slope hciesformedin response to Late Pleistocene to Holocene sea−level changes but the distribution of indicatorsofthecondensedsectionwerenotinvestigatedindetail(Saito,1991).Thus, the purpose ofthispaperis to examine the relationship between the distribution of glauconyandcarbonategrainsasindicatorsofthecondensedsection,andtruesea−level Changes. TheOmmaFormationisidealforthispurpose,becauseitsmiddlepartiscomposed Of eleven depositional sequences deposited during glacio−euStatic sea−level changes between about1.5andl.O Ma(Kitamura and Kondo,1990∴Kitamura eta1.,1994). Moreover,eaCh depositional sequencein the Omma Formation contains two Chronostratigraphic horizons,namely the appearance and disappearance datums of warm−WatermOlluscanspecies(Kitamura,1995).Becausethesedatumsarebasedon the frequency variations of climatically controlled molluscan associations,their recognitionisindependent ofsequence stratigraphic criteria.Thus,uSing these two horizons the sequence stratigraphic slgnincance of concentrations of glaucony and Carbonategrainscanbeevaluated. 2.DepositionalsequencesoftheOmmaFormation TheOmmaFormationisexposedaroundKanazawaCityontheJapanSeacoastof centralJapan(Fig.1).The sedimentarybasinissituatedinaback−arCPOSitionwith respecttothesubductingplateboundariesbetweenthePaci丘C,PhilippineandEurasia Plates.Elevencyclothems are recognizedinthe middlepartofthe OmmaFormation (Kitamuraeta1.,1994).Thesecyclothemsarenumberedupwardsinsuccessionfroml toll(Fig.2).Inthispaper,CyClothemsofthe OmmaFormationatthetype section (Okuwa)andatYuhideraareexamined(Fig.1). The typelocality of theformationislocatedin the bed of the Saikawa River, KanazawaCity.Exceptforcyclothem9,allsequencescanbeobservedatOkuwa(Fig.2). The thickness ofindividual cyclothems exposed at this sectionis highly variable, ranglngfrom2mto12mwithanaveragethicknessof7m.Inarepresentativecycle, thelithohcies present are,in ascending order,a basal shellbed,a Well−SOrted丘ne sandstone,amuddy丘netoverynnesandstoneandawell−SOrtednnesandstone(Fig.3 andFig.4;Kitamuraeta1.,1994). Although cyclothems1−4 areidenti丘ed at Yuhidera,thelower boundary of CyClothemlandtheupperboundaryofcyclothem4areobscuredduetopoorexposure (Fig.3工Kitamuraeta1.,1997).Individualcyclothemsareabout5mthick.Incyclothem 2,thelithohciespresentare,inascendingorder,abasalshellbed,anneSandstone,a muddynnetoverynnesandstone,anintenselyburrowedsandysiltstoneandamuddy 丘ne to very nne sandstone(Fig.3).On the other hand,lithohcies recognizedin CyClothem3are,inascendingorder,abasalshellbed,nne Sandstone andmuddyvery 丘ne sandstone. Aremarkablefeatureofthesecyclothemsisthatwithinthemtheyshowacyclicityin the verticaldistribution ofin−Situ molluscanfossil associations.The term‘association− used hereis denned as the recurrent autochthonous relicts offormer communities (Ftlrsich,1984).Thehunalchangeswithinanindividualcyclothemindicatethatthe marineconditionschangedfromcold−Water,uPPerSublittoral(lowtidemarkto50−60m deep)towarm−Water,lowersublittoral(50−60mtolO0−120mdeep),fo1lowedagainby cold−Water,uPPerSublittoralduringthedepositionofonecyclothem(Kitamuraeta1., 1994).Therefore,thesecyclothemsarebelievedtohaveformedduringglacio−euStatic Sea−levelchanges.In terms of sequence stratigraphy,the cyclothems ofthe Omma Formationeachrepresentone depositionalsequence atnflh−Order scale(see below). Sequenceboundariesunderliethebasalshellbedatthebottomofthedeepening−uPWard SuCCeSSionineachsequence.Thesharperosivebaseofeachshellbedindicatesthatthe lower sequence boundary coincides with a ravinement surhce formed by coastal shorehce erosion during a transgression(Bruun,1962).The basalshellbeds grade upwardintolesscondensedwell−SOrtedsandstone.Basedonthesehctors,theshellbeds areinterpreted as transgressivelag deposits(Kidwell,1991).Consequently, depositionalsequencesinthemiddlepartoftheOmmaFormationcontainnolowstand SyStemStraCtSediment. Manystudies(e.g.,Saito,1991)indicatethatthedepthofshorehceerosionisless than40m,thus the range of0−40mis estimated as the shallowest water depth recordedwithinthedepositionalsequencesofthemiddlepartoftheOmmaFormation. According to Dwyer et al.(1995),the glacialtointerglacialsea−levelfluctuated on average60to70m between2.8and2.3Ma.Naish(1998)reportsfluctuations of between25and90mduringoxygeniosotope stageslO0−72.Therefore,inthispaper, thesea−levelchangeassociatedwithclimaticcyclesduringthedepositionofthemiddle Partisregardedas60to90mbecausethemagnitudeof6180fluctuationsduringthe Early and middle Pleistocene are similar to these Pliocene eustatic estimates. Application ofthese estimates ofeustatic sea−levelchange to the Omma Formation depositionalsequencesimpliesthatthecoarser一grainedsedimentsaccumulatedonthe inner shelfinwaterdepthsof0−40and丘ner一grained sediments accumulatedonthe mid−andoutershelfbetween60andlOOm(Fig.4)(Kitamuraeta1.,1997).Thisrange doesnotcontradict signincantlywiththepalaeobathymetricrange ofthe constituent molluscanfossilassociations(Kitamuraeta1.,1994). The eleven depositional sequences of the middle part of the Omma Formation COrreSPOnd to nflh−Order sequences equivalent to oxygenisotope stages50to 28 (Kitamuraeta1.,1994)(Fig.2).The75−m−thickmiddlepartoftheOmmaFormationat Okuwa showsnoprogressive shiflinhciestowards deeperor shallower deposits.In addition,iftheoxygenisotoperecord(e.g.,Ruddimaneta1.,1989;Shackletoneta1., 1990)is regarded as a proxyfor the glacio−euStatic sea−level record,thereis no signincanttrendinaveragesea−levelduringthedepositionofthemiddlepart(Fig.2) (1.5−1.OMa).TheconstancyofhciesinthemiddlepartoftheOmmaFormationimplies a balance between sedimentation and subsidence.Using both biostratigraphic and magnetostratigraphic data(Ohmura et a1.,1989;Takayama et a1.,1988;Sato and Takayama,1992;Kitamuraeta1.,1993),aVeragerateSOfsedimentationareestimated tobe about16cm/ka. 3.Ecostratigraphicdatums TheJapanSeaisasemi−enClosedmarginalseaandisconnectedtotheEastChina SeathroughtheTsushimaStrait,tOthePacincOceanthroughtheTsugaruStrait,and to the Sea ofOkhotsk through the Soya and Mamiya Straits.At present,the only CurrentflOwinginto theJapan Seaisthe Tsushima Current,abranchofthe warm KuroshioCurrentthatenterstheJapanSeathroughtheTsushimaStrait(Fig.1).The CurrenttranSPOrtSPlanktotrophiclarvaeofbenthicmolluscsthatliveinthewatermass influencedbytheKuroshioCurrent.Suchwarm−WaterOrganisms(incursionepiboles; Brett,1995)Occur cyclicallyin Quaternary sediments oftheJapan Sea.Kitamura (1995)Comparedthestratigraphicpatternofthesespeciesduringthelast1.5Mawith thepublishedoxygenisotoperecord(Ruddimaneta1.,1989).Thecomparisonsuggested thatwarm−WaterOrganisms suchasmolluscsand diatomsexpandedtheirrangeinto theJapanSeaduringallinterglacialstagesfromlto49,eXCePtforstages3and23,and apparentlywerelocallyexterminatedbythe succeeding glacialperiod,implyingthat they were killed off by cooling marine temperatures.These phenomena were SynChronouswithinonelocalreglOn,10×10km2inarea.Moreover,themolluscanfossils (timeplanesindicators)areconsideredtobeinsituinlivingassociations(biocoenoses), and resedimentation offossils from underlying sedimentsis not a concernin the interpretation.Therefore,the appearance and disappearance datums ofwarm−Water molluscs have utility as chronostratigraphic datums that can be used tointerpret depositionalsequencesoftheOmmaFormation(Kitamura,1995).Indeed,theparallel relationshipbetweenvoIcanicashlayerO4andtheappearancedatumofwarm−Water molluscs within depositional sequence 2 demonstrates the synchroneity of the ecostratigraphic datums(Fig.3).However,thereis a distinct di鮎rence between COntemPOraneOuS mOlluscanfossil associations between Okuwa and Yuhidera.For example,atOkuwa,layerO40ccurSattheboundarybetweentheTugurium−PaphiaI AssociationandtheTugurium−PaphiaIIAssociation.Incontrast,theO41ayeroccurs Within the horizon yielding the Tugurium−PaphiaII Association at Yuhidera.In addition,mOlluscanassociationsabovetheappearance datumofwarm−WatermOlluscs within depositionalsequence4are dif鈷rentbetweenboth sites:Okuwa contains the BarneaAssociation,YuhideraisTransitionalIAssociation(Fig.3).Onthebasisofthe recent distribution of molluscan species(Kitamura et a1.,1997),these di鮎rences indicatethatthesequenceatYuhideramayhavebeendepositedinwaterafeWtensof metres deeper than that at Okuwa.The variationinlithohcies between the two SeCtionscanbeexplainedbythe di鮎renceininhrredwaterdepthsbetweenthetwo sites. These ecostratigraphic datums are always presentin each of the depositional SequenCeSinthemiddlepartoftheOmmaFormation,althoughinsomesequencesthe disappearance datum of warm−Water SPeCies coincides with the upper sequence boundary(Fig.3).Forexample,COmParisonbetweendepositionalsequences2and3at Okuwa and Yuhidera shows that the disappearance datum mergesinto an upper sequenceboundarytowardstheshoreline(Fig.3).Thisimpliesthattheupperportionis largelytruncatedattheuppersequenceboundaryandthisportionismorecompletein thicker,mOrebasinwardsections. 4.Sea−levelchangeandecostratigraphicdatuns Because ecostratigraphic datumswithineachdepositionalsequenceinthe Omma Formationarebasedonbiogeographicchangescontrolledbyinterglacia1−glacialcycles, thesedatumsareindependentofsequencestratigraphicconcepts.Thus,analysISOfthe relationship between these datums and sequence and systems tractboundaries may helpclarifySomeconceptsofsequencestratigraphy.Inthefollowingsection,Ifocuson the stratigraphic distributionofecostratigraphic datums andoftheindicatorsofthe COndensedsectionsuchasglauconyandcarbonategrains.Beforedoingthis,however, the temporal relationship must be established between sea−level change and the appearanceanddisappearancedatumsofwarm−WatermOlluscs. Since the depositional sequencesin the Omma Formation were formed by glacio−euStaSy,theoxygenisotoperecordindeep−SeaCOreSCanberegardedasaproxy for contemporaneous sea−levelchange.The temporalpositionofthe ecostratigraphic datumsonthesea−levelcurvecanbeestablishedbydatingthedatumspreciselythenby establishingtheircorrelationswiththeoxygenisotopecurve. TheageoftheyoungestappearancedatumincoresfromtheJapanSeaisshownby 14CdatingtobeaboutlOka(Obaeta1.,1991andObaeta1.,1995).Theageofthe appearance datum within depositional sequencelO ofthe Omma Formation can be datedbymagnetostratigraphy.ThebaseoftheJaramilloSubchronisplacedabout50 cm above the appearance datum ofwarm−Water mOlluscsin this sequence(Fig.4) (Kitamuraeta1.,1994).Thus,thedatumagecorrespondsapproximatelytothebaseof theJaramilloSubchron.OnthebasisofthebenthicoxygenisotoperecordfromNorth AtlanticcoreV30−97(RuddimanandMcIntyre,1984)andODPsite659(Tiedemannet a1.,1994),the6180value atlOkawas about3.5%0.AIso,aCCOrdingtothebenthic oxygenisotoperecordfromODPsite659(Tiedemanneta1.,1994),andatDSDPSite 607(Ruddimaneta1.,1989)whichisquitenearcoreV30−97,the6180valueatthebase oftheJaramillo Subchron was about3.4%0(Fig.4).Asthe appearance datum of warm−WatermOlluscsisplacedabout50cmbelowthebaseoftheJaramilloSubchron, the6180valueatthisperiodalsocanberegardedas3.5%0.Thesecorrelationssuggest thata6180valueof3.5%oisathresholdvalueforphysicalconditionsthatcontrolthe timingofinitiationofinflowoftheTsushimaCurrent.Itappearsthatthesephysical COnditionshavebeenconsistentsince1.5Ma,becauseexceptforstages3,23and39,the 6180valuesofallinterglacialstagesaflertheoxygenisotopestage50becamelighter than3.5%ointhebenthic6180recordsfromDSDPsite607andODPsite659.Thus,I use this6180value of the glacial−interglacial shift to estimate the ages of the appearance datums ofwarm−Water mOlluscs,although the physical conditions that COntrOl ocean currentsin theJapan Sea during the Quaternary remain poorly understood. Accordingtothe oxygenisotope recordscorrespondingto depositionofthe middle Part Of the Omma Formation,6180values of3.5%0hll near midpoints between interglacialand glacialpeaks(Fig.2).AIso,the appearance datum ofwarm−Water molluscsseemstohavehllenmidwayalongglacialtointerglacia16180shifls. 5.Relationship ofecostratigraphic datums toindicators ofcondensed sectionin Siliciclasticsequences To document the stratigraphic distributions ofglaucony and carbonate grainsin eachdepositionalsequence,thinsectionsofsandstoneweremadefromsampleswithout megafossilsandtracefossils,and500sand−Size grainswereidentinedfromeachthin SeCtion.TheseresultsareshowninFig.5andFig.6. Cementationwasnotobservedinanyoftheanalyzedsamples.Mostoftheglaucony COmPrisespalegreen,Wellroundedgrains.Glauconyoccursthroughoutthedepositional SequenCeSandthecontentofglauconylnmOStSamPlesrangesfromlOto20%ofthe totalrock(Fig.5andFig.6).Asystematicpatternwithindepositionalsequencesisnot recognlZedinthestratigraphicdistributionofglaucony. Sand−Size carbonate grains dominate samples,and occur as both benthic and Planktonicforaminifers,Withalessercontributionfromfragmentedgrainsofechinoids andothercarbonatedetritus.Thecontentofcarbonategrainsinallsamplesislessthan 10%ofthe totalrock,eXCePtfor one sample with14%.The abundance ofcarbonate grains shows a systematic change within depositional sequences;these generally increase upwards(to apointidenti丘ed asthe maximumfl00ding surhce)andthen decrease(Fig.5andFig.6).Typically,thestratigraphiclevelofmaximumconcentration Of carbonate grains occurs between the appearance and disappearance datums of warm−WatermOlluscs(Fig.5andFig.6).However,depositionalsequences3and4at Okuwadonothavezoneswithupward−decreasingcarbonategrains.Thisiscausedby erosionofthe upperpartofthe sequence,judgingfrom the disappearance datum of Warm−Water SPeCies which coincides with the upper sequence boundaryin these SequenCeS. 6.Discussionandconclusions From the analytical results described above,the distribution of glaucony and Carbonate grainscanbeusedtoevaluate sequence stratigraphicconcepts.Inthisuse the stratigraphic relationship between glaucony grains and ecostratigraphic datums indicatesthatthedistributionofglauconylSnOtdiagnosticofthecondensedsectionora particularsystemstractinadepositionalsequence(Fig.5andFig.6).Thus,inthecase OftheOmmaFormation,themaximumfl00dingsurhceassociatedwiththecondensed SeCtion cannot beidentined uniquely by the distribution of glaucony alone.The SequenCeStratigraphicinterpretationofmanyglaucony−bearingunitsisconfusedbythe mixingofallochthonousandautochthonousglaucony.Forexample,inthelowerpartof the TST,allochthonous glauconyis supplied by erosion during shoreline retreat 仏morosi,1995).This mixing may obscure the expected distribution ofglauconyin depositional sequences ofthe Omma Formation.The detailed documentationin this PaPer SuggeStS thatfullerinformation on glaucony,including spatial distribution, maturity and genetic attributes,are required for the sequence stratigraphic interpretationofglaucony−bearingsuccessions(Amorosi,1995). Carbonate grains changein abundancein a regular pattern through each depositionalsequence.Moreover,the temporalpatternofchange ofcarbonate grains withindepositionalsequence2atOkuwais similartothose atYuhidera.These hcts implythattheconcentrationofcarbonategrainsprovidesacriteriontohelpidentifythe maximumfl00ding surhce associated with the condensed section.The horizon of maximum concentrationis placed above the appearance datum of the warm−Water molluscsin most depositional sequences(Fig.5and Fig.6).Thus,the horizon of maximumconcentrationofcarbonategrainsmaycorrespondtothepartoftheoxygen isotope curve representingthe mid−POintofthe sea−levelrise to the highest standof Sea−level,and thusis a goodindicator of stratigraphic condensation during rapid drowningoftheshelf. Fromtheresultsdescribedabove,thedistributionofcarbonategrainsseemstobe moree鮎ctiveasanindicatorofthecondensedsectionthanglauconyInalldepositional SequenCeSOftheOmmaFormationexceptfordepositionalsequences3and4atOkuwa, the maximum fl00ding surhce can be denned at the horizon of the maximum concentration ofcarbonate grains(Fig.5and Fig.6).In the case of depositional SequenCe2atbothOkuwaandYuhidera,thedif鈷renceinvaluesbetweenthehorizonof the maximum concentration and the neighbouring horizonsisless than1%.Thus,I Placethemaximumfl00dingsurhceatamidpointbetweenthetwohorizons.Although thereis anexception(depositionalsequence4atYuhidera),the maximumfl00ding Surhceisbetweentheappearanceanddisappearancedatumsofwarm−WatermOlluscs. Thissuggeststhatincursionepibolesofwarm−WatermOlluscsmayoccurintheupper PartS Ofthe transgressive systems tracts and the early highstand systems tracts of depositionalsequencesintheQuaternaryJapanSeabasin. In the case ofdepositionalsequences3and4at Okuwa,the maximumfl00ding Surhceisnotde丘ned.Onthebasisofecostratigraphicdatumsandcarbonate grains, theupperportionsofthesesequencesweremissingduetoerosionatanuppersequence boundary.Thus,these sequences at Okuwa containthe transgressive systems tracts alone.Suchincomplete depositionalsequenceswere reportedbyotherworkers(e.g., PasleyandHazel,1995). Plio−Pleistocene depositional sequences derived from the 40−ka cycle of interglacia1−glacialsea−levelchange arefoundinⅥbnganuiinwesternNorthIsland, NewZealand(AbbottandCarter,1994;NaishandKamp,1997).Inthesesequences,a COndensed shellbedis recognized near the maximumfl00ding surhce.The shellbeds COmPrise a richin−Situ and near−Situm huna of shallowinhunal and epihunal invertebratesandtheirmeanthicknessesare16cm.Theshellbedsprobablyformedat 20−40mdepthina鎚wthousandyears仏bbottandCarter,1994).Incontrast,theyare not presentin the Omma Formation,although the water depth at the maximum fl00dingsurhcewasasmuchas50−100m.The developmentofacondensedshellbed requiresboththeabsenceofama]OrSuPPlyofsedimentandthepresenceofanin−Situ huna.Molluscanspeciesarepreservedinsituornear situmwithinthe horizonnear themaximumfl00dingsurhceineachdepositionalsequenceoftheOmmaFormation. Thelack of a condensed shellbedis thereforeinterpreted as a highly siliciclastic Sediment supply during a transgressive phase.In hct,the average transgressive sedimentthicknessoftheOmmaFormation(Okuwa4.74m,Yuhidera2.37m)isthicker thanthatofdepositionalsequencesatⅥbnganui(1.96m).Thedischargeofriversinto theJapanSea duringtheinflowofthe Tsushima Currentwashr greaterthanthat during glacialperiods亀suda,1982).Thisisbecause the warm Tsushima Current WOuldhavecausedheavysnowhllsontheJapanSeacoastoftheJapaneseislands.At PreSent,theannualrainhllatKanazawaismorethan2600mm/yr,Ofwhichmorethan halfiscontributedbywintersnowhll.Theinterglacialsedimentinfluxaccompaniedby SuChheavyprecipitationseemstohavepreventedacondensedshellbedfromforming. The depositional sequences of the Omma Formation seem to be a special case, becauseconditionsofrelative sedimentstarvationassociatedwithsea−levelrise didnot takeplaceatthedepositionsite.Regardlessofthedegreeofchange,SuChlocaland/or reglOnalenvironmentalchangessuchasclimateparallelingsea−levelrisetookplacein allsedimentarybasins.Thus,thelocaland/orreglOnalenvironmentalhctorsmustbe COnSidered when the concepts of sequence stratigraphy are applied.Climatic fluctuationsassociatedwithsea−levelchangesmaycarrylnCurSionepibolesthathave utilityaslocaltimemarkers(Martineta1.,1993;Brett,1995).Theecostratigraphic datumsrepresentedby suchincursionepiboles areveryhelpfulinthe recognitionof systemstractsandsequenceboundaries(Martineta1.,1993;Brett,1995).Moreover, integration of climatic palaeoecology(ecostratigraphic datums)and sequence Stratigraphy permits alevelofcorrelationalprecision on the order ofafew tens of thousandsofyears(Martineta1.,1993工Kitamura,1995). Acknowledgements I am particularly grateful to Prof.R.M.Carter ofJames Cook University,for encouragement,and for help to attend the sequence stratigraphy workshopin Tbwnsville and the subsequent New Zealand丘eld trip.I acknowledge gratefullyDr. Alan Beu of theInstitute of Geological and Nuclear Sciences,New Zealand,Who Criticallyreadthroughthemanuscriptandmadeconstructivesuggestionsforrevision. ThisstudywasfundedbyGrants−in−AidfromtheMinistryofEducation,Scienceand CultureofJapan(No.08454150). References Abbott,S.T.,Carter,R.M.,1994.The sequence architecture of mid−Pleistocene(C. 1.1−0.4Ma)cyclothemsfromNewZealand:hciesdevelopmentduringaperiodof orbitalcontrolonsealevelcyclicity.In:DeBoer,P.L.,Smith,D.G.(Eds.),Orbital ForcingandCyclicSequences.Int.Assoc.Sedimentol.Spec.Publ.19,367−394. Amorosi,A.,1995.Glaucony and sequence stratigraphy:a conceptualframework of distributioninsiliciclasticsequences.J.Sediment.Res.B65,PP.419−452 Baum,G.R.,Vail,P.R.,1988.Sequence stratigraphy concepts applied to Paleogene OutCrOPS,Gulf and Atlantic basins.In:Wilgus,C.K.,Hastings,B.S.,Kendall, C.G.St.C.,Posamentier,H.W,Ross,C.A.,VanⅥbgoner,J.C.(Eds.),Sea−Level Changes:AnIntegratedApproach.Soc.Econ.Paleontol.Mineral.,Spec.Publ.42, 309−328. Berger,WH.,%suda,M.K.,Bickert,T.,We往きr,G.andTakayama,T.,1994.Quaternary time scaleforthe OntongJavaPlateau:MilankovitchtemplateforOceanDrilling ProgramSite806.Geology22,PP.463−467 Brett,C.,1995.Sequence stratigraphy,biostratigraphy,and taphonomyin shallow marineenvironments.PalaioslO,PP.597−616 Bruun,P.,1962.Sealevelriseasacauseofshorehceerosion.Proc.Am.Soc.Civ.Eng., J.ⅥbterwaysHarborsDiv.88,PP.117−130 Dwyer,G.S.,Cronin,T.M.,Baker,P.A.,Raymo,M.E.,Buzas,J.S.andCorrege,T.,1995. North Atlantic deepwater temperature change duringlate Pliocene andlate Quaternaryclimaticcycles.Science270,PP.1347−1351 Ftlrsich,F.T.,1984.Palaeoecology of Borealinvertebrate hunas from the Upper JurassicofcentralEastGreenland.Palaeogeogr.,Palaeoclimatol.,Palaeoecol.48,PP. 309−364 Imai,I.,1959.Geologicalmap ofKanazawa District(1:50,000)(inJapanese with Englishabstract).GeologicalSurveyofJapan. Kidwell,S.M.,1991.Condensed depositsin siliciclastic sequences:expected and observed鎚atures.In:Einsele,G.,Ricken,W,Seilacher,A.(Eds.),CyclesandEvents inStratigraphy.Springer,Berlin,PP.682−695. Kitamura,A.,1995.Contributionofbiostratigraphytosequencestratigraphicanalysis OfQuaternarysedimentsoftheJapanSea.Intrusionandextinctionofwarm−Water speciesastimeplanes(inJapanesewithEnglishabstract).Mem.Geol.Soc.Jpn.45, pp.110−117 Kitamura,A.and Kondo,Y,1990.Cyclic change ofsediments and molluscanfossil associationscausedbyglaci0−euStaticsea−levelchangesduringtheearlyPleistocene −aCaSeStudyofthemiddlepartoftheOmmaFormationatthetypelocality(in JapanesewithEnglishabstract).J.Geol.Soc.Jpn.96,PP.19−36 Kitamura,A.,Sakai,H.and Horii,M.,1993.Sedimentary cycles caused by glaci0−euStaSyWiththe41,000−yearOrbitalobliquityinthemiddlepartoftheOmma Formation(1.3−0.9Ma)(inJapanesewithEnglishabstract).J.Sedimentol.Soc.Jpn. 387pp.67−72 Kitamura,A.,Kondo,Y,Sakai,H.andHorii,M.,1994.41,000−yearOrbitalobliquity expressedascyclicchangesinlithohciesandmolluscancontent,earlyPleistocene OmmaFormation,CentralJapan.Palaeogeogr.,Palaeoclimatol.,Palaeoecol.112,PP. 345−361 Kitamura,A.,Kimoto,K.andTakayama,T.,1997.Reconstructionofthe thicknessof the Tsushima Currentin theJapan Sea during the Quaternaryfrom molluscan fossils.Palaeogeogr.,Palaeoclimatol.,Palaeoecol.135,PP.51−69 Loutit,T.S.,Hardenbol,J.,Vail,P.R.,Baum,G.R.,1988.Condensedsections:thekeyto agedeterminationandcorrelationofcontinentalmarginsequences.In:Wilgus,C.K., Hastings,B.S.,Kendall,C.G.St.C.,Posamentier,H.W,Ross,C.A.,VanⅥbgoner,J.C. (Eds.),Sea−LevelChanges:AnIntegratedApproach.Soc.Econ.Paleontol.Mineral., Spec.Publ.42,183−213. Martin,R.E.,Neff,E.D.,Johnson,G.W and Krantz,D.E.,1993.Biostratigraphic expression of Pleistocene sequence boundaries,Gulf of Mexico.Palaios 8,PP. 155−171 Naish,T.R.,1998.Constraints on the amplitude oflate Pliocene eustatic sea−level fluctuations:newevidence from the New Zealand shallow一marine sedimentrecord. Geology25,PP.1139−1142 Naish,T.R.andKamp,P.J.J.,1997.Highresolutionsequencestratigraphyof6thorder (41k.y.)Plio−Pleistocenecyclothems,ⅥbnganuiBasin,NewZealand:acaseforthe regressivesystemstract.Bull.Geol.Soc.Am.109,PP.978−999 0ba,T.,Kato,M.,Kitazato,H.,Koizumi,I.,Omura,A.,Sakai,T.andTakayama,T., 1991.PaleoenvironmentalchangesintheJapanSeaduringthelast85,000years. Paleoceanography6,PP.499−518 0ba,T.,Murayama,M.,Matsumoto,E.and Nakamura,T.,1995.AMS−14C ages of JapanSeacoresfromtheOkiRidge.Quat.Res.34,PP.289−296 0hmura,K.,Ito,T.,Masaeda,H.,Danbara,T.,1989.MagnetostratigraphyoftheOmma Formation distributedinKanazawa City,IshikawaPrefecture,CentralJapan(in JapanesewithEnglishabstract).In:Prof.H.MatsuoMemorialⅥ)lume,PP.111−124. Pasley,M.A.andHazel,J.E.,1995.Revisedsequencestratigraphicinterpretationofthe Eocene−01igoceneboundaryinterval,MississippiandAlabama,GulfCoastBasin, U.S.A.J.Sediment.Res.B65,PP.160−169 Pemberton,S.G.,MacEachern,J.A.,Frey,R.W,1992.Tracefossils hcies models: environmental and allostratigraphic signi丘cance.In:Ⅵblker,R.G.,James,N.P. (Eds.),FaciesModelsResponsetoSeaLevelChange.Geol.Assoc.Can.,PP.47−72. Ruddiman,WF.andMcIntyre,A.,1984.Ice−agethermalresponseandclimaticroleof thesurhceNorthAtlanticOcean,400to630N.Geol.Soc.Am.Bull.95,PP.381−396 Ruddiman,WF.,Raymo,M.E.,Martinson,D.G.,Clement,B.M.andBackman,J.,1989. Pleistocene evolution:NorthernHemisphereice sheets and NorthAtlantic Ocean. Paleoceanography4,PP.353−412 Saito,Y,1991.Sequencestratigraphyonthe shelfandupperslopeinresponsetothe latest Pleistocene−Holocene sea−1evel changes off Sendai,nOrtheastJapan.In: Macdonald,D.I.M.(Ed.),Sedimentation,TbctonicsandEustasy:Sea−LevelChanges atActiveMargins.Int.Assoc.Sedimentol.,Spec.Publ.12,133−150. Sato,T.,Takayama,T.,1992.A stratigraphically signi丘cant new species of the calcareous nannofossilReticulo鎚nestra asanoi.In:Ishizaki∴K.,Saito,T.(Eds.), CentenaryofJapaneseMicropaleontologyTbrraScience,Tbkyo,PP.457−460. Shackleton,N.J.,Bergeret,A.and Peltier,WR.,1990.Analternative astronomical calibrationofthelowerPleistocenetimescalebasedonODPSite677.Trans.R.Soc. Edinburgh,EarthSci.81,PP.251−261 Tada,R.,Koizumi,I.,Cramp,A.,Rahman,A.,1992.Correlationofdarkandlightlayers, andtheoriginoftheircyclicityinthe QuaternarysedimentsfromtheJapanSea. Proc.ODPSci.Results127/128(1),577−601. Takayama,T.,Kato,M.,Kudo,T.,Sato,T.andKameo,K.,1988.Calcareousmicrofossil biostratigraphyoftheuppermostCenozoicformationsdistributedinthecoastofthe JapanSea,Part2.Hokurikusedimentarybasin(inJapanesewithEnglishabstract). J.Jpn.Assoc.Pet.Tech.53,PP.9−27 Tiedemann,R.,Sarnthein,M.andShackleton,N.J.,1994.Astronomictimescaleforthe PlioceneAtlantic6180and dustfluxrecordsofOceanDrillingProgram site659. Paleoceanography9,PP.619−638 Vail,P.R.,Audemard,F.,Bowman,S.A.,Eisner,P.N.,Perez−Curz,C.,1991.The StratigraphicslgnatureSOftectonics,euStaSyandsedimentology−anOVerView.In: Einsele,G.,Ricken,W,Seilacher,A.(Eds.),Cycles and Eventsin Stratigraphy. Springer,Berlin,PP.617−659. %suda,Y,1982.PollenanalyticalstudyofthesedimentfromthelakeMikatainFukui Prefecture,CentralJapan−eSPeCiallyonthefluctuationofprecipitationsincethe lastglacialageonthesideofSeaofJapan.Quat.Res.21,PP.255−271 Fig.1.Map oftheJapan Sea andits surrounding region,and geologicalmap and StudiedsectionoftheOmmaFormationaroundKanazawaCity,CentralJapan.Modined fromImai(1959)andTadaetal.(1992). Fig.2.Comparisonofstratigraphic distributionofwarm−Water SPeCiesinthe Omma Formationatthe type sectionandanother sectionlocatedinthebedofthe Fushimi River(Fig.1)withtheoxygenisotoperecordfromDSDPSite607(Ruddimaneta1., 1989).Biostratigraphic datums are after Takayama et al.(1988)and Sato and Takayama(1992);magnetostratigraphic data are from Ohmura et al.(1989)and Kitamuraetal.(1993);timescaleofoxygenisotoperecordofDSDPSite607andagesof biostratigraphic datums and magnetic polarity changes are based on chronology of Bergeretal.(1994).SB=SequenCeboundary;1−11,I−III=numbersofdepositional SequenCeS. Fig.3.Correlationofdepositionalsequencesl to60fthe middle partofthe Omma FormationbetweentheOkuwaandYuhiderasectionsbyecostratigraphicdatumsanda VOIcanicashlayer. Fig.4.Correlationfor theJaramillo Subchronbetweenthe oxygenisotope record of NorthAtlanticDSDPsite607(Ruddimaneta1.,1989)andthein任汀redchangesinwater depth and stratigraphic distribution of ecostratigraphic datumsin the Omma Formation.SeelegendtoFig.2andFig.3forexplanationofsymboIs. Fig.5.Glaucony,Carbonate grains and sequence stratigraphicinterpretation of depositionalsequenceslto60fthemiddlepartoftheOmmaFormationintheOkuwa andYuhiderasections.SeelegendtoFig.3forexplanationofsymboIs.SB=SequenCe boundaries;TS=tranSgreSSivesurhce;RS=raVinementsurhce;TST=tranSgreSSive SyStemStraCt;HST=highstandsystemstract. Fig.6.Distribution of glaucony and carbonate grains and sequence stratigraphic interpretation ofdepositional sequences8andlO ofthe middle part ofthe Omma Formationin the Okuwa section.Seelegendin Fig.3and Fig.5for explanation of SymboIs. [=]0VerlyingR)rmations ∈∃OmmaFormation Eヨunderlyingfbrmations Fig.1 P扁雇員uDN葛工 a F m l . □釧&mudStOne [三コsporadicpebbles ∈≡∃par酬eHaminat旧n E国planar−typecrDS5−Strall 巨書∃hummDCkyc「DSS−St「at・ [:三コburrows 。う○ i′ r E∃sheMossils u雇扇∈LOLd∈EO ● † ・ 1 t : ( ロ ⊂L L q) ⊂L ⊂L コ □sandstone 感知ugトtypecrosS一帥at・ = ll S悪日監S﹂黒石字∈Lm≧ a m 匹盟COnglome「ate E∃Shellbed ■ 書言 tヨーtし直 ・ β ∼ 三 豊 音 曲 」」 産 経瞞 0 :1 A:eXtincIspeciesthat P「ObablydweHedin 0 0 ●● l l t acOはrwate「env巨rOnment Ho血0ny[e旧mg 「 ( 、 L r 【l ∴ Warm−Wate「SPeCies ト . 叫 Ⅵ qqコ . 亡 : . 彗 岳. 書 LAD月e仇:UbferIeざ打8 aSanか 0.899±0.025Ma ・ 岩 r ご T 00 日 ●:Warm−WaterSPEC拍S 0 † [ .・ ト ○:COld−WaterSPeCies 蔓萱 鮎 き 1萱 緋 1 緋蓋 重 量 富 星 喜 量 蒼 FADGephrロCapS8 Paralleは1.045±0.025Ma.− topotJarami110 0.992±0.01Ma − baseofJaramilb 1.073±0.01Ma 仁Om LAD epp rロC叩且ヨ rJ訂ge)1.243±0.03Ma ■ ・ト ・ l這 lJ ⊂L q) 苫 盲 7 ■ 0 0 0 可く コ○● ● ● ● ● 二 ㌧ l L 二 _ リ _ し‘ L . ・. ■ ■ l = ・・ 1 1 ーJ =■ _ l _ = _ __ l− l_−  ̄ − 壬 r l  ̄ 1 0 二㌦ ≡ヨ  ̄山 十 ! 9 ・ 】 ’ ≡l H 享 8 :l l_〔 − 1 6 4 5 3 2 LADH帥C。Sp厄e帽 ge/山 1.451±0.025Ma Fig.2 ■ 1 1工 : 「 「言上 . 、 】 5 lJ ■ l ■ − h L ごl ■ 一二二一一1 −−し 二盲二二ココ=: ̄■−=− コ⊂ = t _ _ __ ーい ! 一 し 一 と 十 l ̄ lT 一 ._ H i −rj∴ ;: 三 l ー i l し ̄t■ 、■ lI lH Myr 。k u w 甜 掴 t= 0 ; コ ・ 琶 0 ■ t舟 的 ヰ 噂 モ I坤 lモ = ロ. C A 4 3 C d 1 . t} ’■ Ⅵ・ ・ 0 . 1 1 醐 ■ひ ■ √ 【・り = C し 晶 u▼ ・ 三 . 三 些 d I d C c B A h l B A _′ ノノ ′ 一 0 0 0 」 q n 二軍二二二二雪二「」二二 い l ≡・ 報 月 コ C a B 一 一 一 ・ 1一 一 一 C一 一 A l D C ㌦■Yd 叩eGant r O GaSh 4 一 一 一 8− ・h A ≡ ■− l ∩・−1一 三_・⊥ i 童 一 一 一 ・ ≡▲ 二■ 干上 t.−こ一 三一 一 …一 ・ 日一 一 ■己⊥ 4二 言」 ■ 1 ̄ ▼ ≡二 三 二 二 二 三 コ :土 一 一 一 … =− 【 一 一一一 一 一 d P A a l【 ln t彗星呈 月 tl亡 l 0票 芳星雲 諾 監お 肌 血 画 曲 nte ■ed朗e s阿ie$△: WaterSPeCleS e畑ncIcoJd− まま,三三二ござ三:三善∴1….・_・.∴..∴∴ a仙nda¶t:10_19 e=Tr耶恥咄摘む亡・■=由rr朋触Sm昏=q伽舶誠・h=向山冊坤抽IAssmi‥叫川仰P甲他ⅡAssoC j:Tr訂闇伽rd五月虐SOC. A:b終alshenbodB:W∋”TSErrtedfhE}Sandston白C二mUddyfin8tOVeryline■SandstDnE} D二月tenSBIyburTOW8dsar.dy会BIston白 Fig.3 U虐罵︼00腑的V 8 ¢ d h I: U 1ヽ p ■ ■ ヾ l ・’ ミ − 喜裏書蓋 一 一 一一 ・ rr・ − 1− 一 一川 一 一一d q≡qqh● C − ∈ 古 羞 空きi空害宣言丘● h 一 一 一 一一 一 一 ・一 l−− L q  ̄■ て・ ヱ 書 。 空、、8月○亡 書聖qゝ0 − ‘ コ■ B A l 望見FhJqEq切石コ、tLqqQE匂≧●− I 句−句で巴bq、qqqEコ● , d 巨竜⋮:ミ盲昌と■ l qEq≡中電竜n l も菖吉∃q空≡道も卓宰た● u F l 月嶋UQat豊嶋鴫 空、q−、ヒbh11 6 C l Y u h id e ra 主d空想l空l椚0 主d空勘︻ Wat即depth 扇 C n a n g e 苫 上 告 S 弛∋6 0 7 8 1 L 扇 【 刃 ロ 冠 ∈ 巾 血 ≡ 4 .5 3 .5 芯 島 ■ 亡 】 l l l − ≡ 2. 芸 書芸 ≡ 妻 . ● − 高 a l l : 指I 琵 O a a コ l d C e a A 詩 聖 若 ■ ・ 一 一 一 一 一 一 一 ⑳ 一 一 一 一 …・ 一 5 −① 27 28 d 亡 11 m 良 心 ■ ■ ロ て 】 盲 m . 10 草 C g. ■ l d ・ 】 C A a B d も . B C d C B b. A : 璧 甘 石 ・ 一 一 一 一 一 一 一 一 一 ⑳ ・ : l l l l l ■ : ・ : l l l l l ■ ① ¢ ≡ ≡ ・ ● 喜 華 う ま ≡ : : 亡 d ∈ ・ 1日 − 斬 : ≡ : = 司 絹 〔 喧 し ・ : ■ つ 薫 ・ 日 日 一 一 ・ SB ・ 慧 二 30 Y √ た : 、  ̄ 諾  ̄  ̄  ̄ ▲  ̄ ⑦■ 増 _ 童 話 離 妻 子 子 千 千 2 − ■ 礎 − .1日5日① 寝 二 続 束 架 j: ■ 一 ■ : 山 32 l l ■ lmoHliSCan fossil assoeiations 21ithologlCはmits Magnetostratigraphy ■■Nomal [=]且帥erSed 旺田Und班ned SB:S七quenCebounda町 ①:Appearancedatumotwarm−WaterSPeCi田 ②:DisappearancedatuTTlOfwarm−WaterSPeCie畠 Fig.4 Okuwa Fig.5 竪宣言 丑句亡巴u叫、鴫亀○モコ● 噂も亡∋盲J叫モuEゝ0土日● 鴫、亡QでQn芸巴旨叫● 嶋、鴫Eu−空岩岳 噂ミ岩2品● ∈丘ヨhu E皇J∋h∋ト● qE層、、uモモり叫鴫芸qqd● 叫、、、屯句︼Q亡でPIqゝ0 、h長∈己句E苫石鴫、已り● 丑bun【l且nt:10・19 0 10 20 豊嶋亡uヨモⅦ高嶋句、、豊でJヨhq 叫竃や叫亡、句、、uq0 t・td llコ 琴ヨ石高磨丁巨王冒毒芝芸事ワ 鴫hmコ句≧空モモuJO Jq、石仏鴫噂Equq毒0 Vとryrare:1 rare:2・4 eOmmOn:5−9 芳邑邑 盲室旨竜遍富五里墓0 鴫、里1苫喜ゝ∼空も盲euq0 .1 510 15 SB=TS=RS −■−⊥−rl Stratig帽Ph弛 interpretation 尉au¢0叩% grains% Sequen¢e BiogeniC TST −⊥lt ・∼5日=TS=RS SB=TS=RS HST ・・・…MFSH・・‥ TST
© Copyright 2024 ExpyDoc