ヲツ棹」オ。冢オ・ーーテ岶クテ律ト腔チ嚊惺オヲ勤オツ怱チ差巻エサ

5&&3;$*755&>@@(%80*5+?(3#<$7-5&->+?.F57 &3K58 2553
15-17 4*5$ 2553
1
!
Color-orthophoto classification by object-based analysis
#$% ( Patcharavadee Thamarux)1
& (Vichai Yiengveerachon)2
1
'' *# +,*#* % !.+%#/
[email protected]
2
* % /03 4#* % *# +,
*#* % !.+%#/
[email protected]
3:
1:4000 !"#$" (resolution) 5
% #&"'*!"+ ,-/2"3"/6&"# ,3'-6/'63"/"
6%7"&'*3"/#89-" RGB 33"/'*3"/#;&!
'!&"<" #,-/%"!!"!<7'!&3"/#7= '
(Interpretation) <#,&$ (Classification) ;
6%7"#,#!'!& #
3,3"/ -6/!%!#,6%&$ (Object Based Image Analysis, OBIA) "?&&%
&;<= (Texture Algorithms) '*!$;&%7&$'D; 6-#, "/
&$"/, segmentation ,#,"/ GLCM homogeneity -%?E ,&;-?= #
#,&$-"&;!-F 5 ! !< ! =, ' $/3/ #H?
; %?7<=H#,!"-/!$/& ?=#,3'+
#,6%"7&$-"&;"3'
': , ', #,&$6%&$, <=, GLCM, homogeneity
Abstract:
Color-orthophoto of Ministry of Agriculture and Cooperatives (MOAC) -- scale 1:4000 with
the resolution 5 cm-- deemed as a high-resolution image, which can see more details and can be used in
various advantages. However, this digital color-orthophoto is got from scanning in RGB mode, not as
the satellite image: the images will always have an error from scanning. Therefore, the interpretation
and object-based classification processes on the digital color-orthophoto by classifying the spectrum
07$?! 0>*4^ >G>0&J >$:0058
5&&3;$*755&>@@(%80*5+?(3#<$7-5&->+?.F57 &3K58 2553
15-17 4*5$ 2553
2
cannot be done easily. By using ‘Object Based Image Analysis’ (OBIA) technique with texture
algorithms to assist the identification. Through the creation of process known as segmentation and
classification by GLCM Homogeneity in directions to classify into 5 classes what were buildings, roads,
rivers, field and a group of trees. In this study found that direction of GLCM Homogeneity is a matter in
classification. This study is leading to specific object-type classification for later on.
Key words: GLCM, homogeneity, classification, Object Based Image Analysis (OBIA), texture
1. 3
'N##$;&H6%7'*7/+"/;;
?+%?,!&F!+/
,6"&;H 3#3"/#
?< " -'?3
1:4000, 1:25000 "+
"&Q"% , ;& ' 'S 2544-2545 '* 7/+!;!$&='? ,-6/
-'7/+ -6/ "% ,-/3 "/H -6/
"%!+/,+
7
-6/ <#
"&'*3"/#"/!<
89-" RGB 33"/'*6%73"/#
;&!'!&" '"/
"/ % "% &= #-6/ -7 % '
"/!%#!'!&76$"=
3,3"/" -6/!%!#,
6%&$ (Object Based Image Analysis, OBIA) "
?&&%
<= (Texture Algorithms) 6
-#, % #/ & $ ,
segmentation &,#,&%
<=
GLCM 6%" Homogeneity -%? #-6/
!%!"& -/H#,-
"&;!+/"
2. #
2.1. ' (field)
'* <= ' + '* 7 2.2. $7/3/ (tree)
!<;%/3/7= 6
;%7; ;%=,
2.3. ! (building)
!<! /"/$
2.4. (road)
-6/-&F# '*
2.5. =, (water)
;%=,7& 23"/6&"##
?
3. 89&*;$
-%#&= -6/
#
(Ministry of Agriculture and
Cooperatives-MOAC) 1:4000 !
"#$" (resolution) 5 % 3"/
543847858, 543847860, 553833608 <= !;!$ ;% , < #& & " !6 7&=?%!""&+' 1
07$?! 0>*4^ >G>0&J >$:0058
5&&3;$*755&>@@(%80*5+?(3#<$7-5&->+?.F57 &3K58 2553
15-17 4*5$ 2553
3
+';; !< [2]
N #1
º 1!
i , j 30
Pi , j
i # j
2
(1)
• i : the row number
• j : the column number
• Pi , j
: the normalized value in the
cell i, j
• N : the number of rows or columns
! GLCM homogeneity !,-%?
E 3"/ !< 0°, 45°, 90°, 135° (+' 2) $
%? (all direction)[3]
4& 1 H"7&=?
#, & $ -? = - 6/ '
Definiens Professional 5.0
4. ! (Segmentation)
Segmentation '*;,&;/&$
'N##&-/!<Scale factor, Color,
Shape, Compactness, Smoothness "! scale
parameter '* ! , " heterogeneity (! <!'*<="&) [1]
5. GLCM Homogeneity
% GLCM Homogeneity [2] !<
“If the image is locally homogeneous, the value is
high if GLCM concentrates along the diagonal.
Homogeneity weights the values by the inverse of the
Contrast weight with weights, decreasing
exponentially according to their distance to the
diagonal.”[2]
4& 2 "%?E7 GLCM
6. *;$
6.1. ? , segmentation H #,&$<3
6.1.1. ? , "! scale factor
parameter -, segmentation ""&= ! &=
50, 60, 70,…, 140
6.1.2. ?,"! color-shape compactness-smoothness parameter -, segmentation "
<! 0.9, 0.7, 0.5,0.3, 0.1
07$?! 0>*4^ >G>0&J >$:0058
5&&3;$*755&>@@(%80*5+?(3#<$7-5&->+?.F57 &3K58 2553
15-17 4*5$ 2553
4
6.1.3. #, , segmentation
/ "/ GLCM homogeneity
6.2. ?%? GLCM Homogeneity H
#,&$<3
6.2.1. , segmentation "-6/ ! #?-7/ 6.1
6.2.2. #,"/ GLCM homogeneity
"; ? '* 5 %?E !< 0°, 45°, 90°, 135°,
$%? (all direction)
7. @*;$
4& 3 , segmentation; scale factor = 50,
color-shape = 0.5, compactness-smoothness = 0.5
7.1. , Segmentation
#? ; 'N ##& -,
segmentation !< ! scale factor ; !&;
100, 110 120 -/H/&$-/!&
!< 3"/ +' !;!$ & $ !/ "&&= -?#-6/! scale factor&; 100 "&
+' 5 ";"-6/ ! scale factor +
100 #!"3 "&+' 6 ! scale factor , 100 #!""&
+' 3 4 <,#,!
,"3/ "-6/%
GLCM Homogeneity 6%"$
%? ; #,&$<! scale factor
/ #,&$/<! scale factor 3
"!/&;+'7&$ #H! overall
accuracy "#2 scale factor&; 100 #
-/ overall accuracy " "& 1
4& 4 , segmentation; scale factor = 70,
color-shape = 0.5, compactness-smoothness = 0.5
07$?! 0>*4^ >G>0&J >$:0058
5&&3;$*755&>@@(%80*5+?(3#<$7-5&->+?.F57 &3K58 2553
15-17 4*5$ 2553
5
1 scale factor
segmentation overall accuracy Scale factor
140
100
60
50
4& 5 , segmentation; scale factor = 100,
color-shape = 0.5, compactness-smoothness = 0.5
Overall accuracy
10.84
73.56
63.38
54.23
KIA *100
0
68.17
57.16
48.24
#= # ? ; , "& '
color-shape -, segmentation &' color 0.5 ;&$!6&"#3"/
","!+ <!, -7
&'compactness-smoothness 3H,
segmentation
7.2. #,"/%
GLCM
#,-?=3"/#,&$ 5 6%" !<
! =, ' $/3/ "
##,!& 2 ! !< plant non-plant
(&+' 7) /##,&$ 5 6%"
6&= &==3"/?H#,"/%
GLCM
Homogeneity -%?E !< 0°, 45°, 90°, 135°,
$%? (all direction)
4& 6 , segmentation; scale factor = 140,
color-shape = 0.5, compactness-smoothness = 0.5
07$?! 0>*4^ >G>0&J >$:0058
5&&3;$*755&>@@(%80*5+?(3#<$7-5&->+?.F57 &3K58 2553
15-17 4*5$ 2553
6
!
=,
$7/3/
'
4& 7 &"#, plant/ Non- plant
;; GLCM Homogeneity $%?
# 2 ; H#,&= 5 !-
(overall accuracy) KIA -/H-/!
& "%? 45° -/!,$" ##%#3"/
%?7 GLCM Homogeneity #3H
#,&$&= 5 6%"
4& 8 "#, Rode/ House/ River/
Field/ Tree ;; GLCM Homogeneity $%?
2 !"#$#
%&'$# GLCM Homogeneity Accuracy
Overall
KIA (*100)
All
0°
45° 90° 135°
direction
73.56 73.56 71.26 72.41 73.56
68.71 68.71 65.38 66.46 68.06
< % # - " "/ '% "/ #; %?7 GLCM Homogeneity H #, & $ 6% " "; #,!"!<"&"+' 8-12 "
&F& "&=
4& 9 "#, Rode/ House/ River/
Field/ Tree ;; GLCM Homogeneity %? 0°
07$?! 0>*4^ >G>0&J >$:0058
5&&3;$*755&>@@(%80*5+?(3#<$7-5&->+?.F57 &3K58 2553
15-17 4*5$ 2553
7
4& 10 "#, Rode/ House/ River/
Field/ Tree ;; GLCM Homogeneity %? 45°
4& 12 "#, Rode/ House/ River/
Field/ Tree ;; GLCM Homogeneity %? 135°
H#,&$!"!<-6%" 7
#,"/%
GLCM Homogeneity -%?E
"&"- 3
3 $#()&
All direction
Building
15
Road
6
Water
12
Tree
5
Field
3
4& 11 "#, Rode/ House/ River/
Field/ Tree ;; GLCM Homogeneity %? 90°
0°
17
15
9
5
4
45°
19
12
2
5
4
90° 135°
3 15
5 12
11 8
4
0
5
0
# 3 #2 #,"/%
GLCM
Homogeneity , & ; !-% ? 90° , & ;
-%? 90° $%? ,&;=,-
%? 45° ,&;$/3/'-
%? 135° !!"!</$"
07$?! 0>*4^ >G>0&J >$:0058
5&&3;$*755&>@@(%80*5+?(3#<$7-5&->+?.F57 &3K58 2553
15-17 4*5$ 2553
8
"& &= #, 6% & $ 7 1:4,000 "/
%
GLCM Homogeneity &= %?7 GLCM H
#,&$&= 5 ! "&$'- 4
&7-2; ! GLCM Homogeneity -
%?&=7&$6%"
All dir
X
(0.08-0.16)
0°
45°
Field
Tree
Water
Building
Road
4 *
$#&'$# GLCM
Homogeneity !(%+*
90°
X
(0.09-0.17)
X
135°
9. [1] Definiens professional 5.0 User Guide.
[2] Rafael C. Gonzales and Richard E. Woods,
Digital Image Processing. 3rd edition,
Pearson Education, 2008
[3] Pornphan Dulyakarn and Yuttapong
Rangsanseri, Textural classification of urban
environment using Gray-level Cooccurrence Matrix.
(0.03-0.08)
X
(0.01-0.10)
X
(0.04-0.07
X
(0.08-0.11)
8. !
'
6%73"/#-
" RGB "/'!%&=,
3"/"-6/<= (texture) "/%
#,6%&$
"-6/ GLCM Homogeneity Algorithm -%?
& #,&$&= 5 ! !< !
=, ' $/3/ 3"/ ,-/6
"-'"/ #-6/ !7/ "H3"/='*-?
#, 6% & $ , &; !- "
„&$3'
07$?! 0>*4^ >G>0&J >$:0058