4STEP 数学Ⅰを解いてみた 数と式 5 http://toitemita.sakura.ne.jp 根号を含む式の計算 分母の有理化( a > 0, b > 0, a ¹ b のとき) A a = A a A a+ b A a- b a ´ a = A a a´ a A = a+ b A = = a- b ´ ´ A a ( a) 2 a- b a- b a+ b a+ b = = A a a = ( A a- b ( a+ b ( )( a- A a+ b ( a- b )( ) ) a+ ( ) b) ( a) - ( b) A a- b = 2 2 ( ) b) ( a) - ( b) A a+ b = 2 2 ( ) ( ) = A a- b a-b = A a+ b a-b 53 (1) (1 + 2- 3 ) = {1 + 2 = 12 ( )} + ( 2 ) + (- 3 ) 2+ - 3 2 2 2 ( ) ( ) + 2 ×1× 2 + 2 × 2 × - 3 + 2 × - 3 ×1 =1+ 2 + 3 + 2 2 - 2 6 - 2 3 =6+2 2 -2 3-2 6 (2) (3 - )( ) {( ) }({ = (3 - 2 ) - ( 11 ) ) } 2 - 11 3 - 2 + 11 = 3 - 2 - 11 3 - 2 + 11 2 2 = 9 - 6 2 + 2 - 11 = -6 2 54 (1) 3 5 -5 3 5+ 3 + 3 5+4 3 3 5 -4 3 = 3 5 -5 3 5+ 3 ´ 5- 3 5- 3 + 3 5+4 3 3 5-4 3 ´ 3 5+4 3 3 5+4 3 (3 5 - 5 3 )( 5 - 3 ) + (3 5 + 4 3 ) = ( 5 + 3 )( 5 - 3 ) (3 5 - 4 3 )(3 5 + 4 3 ) 2 = 15 - 3 15 - 5 15 + 15 45 + 24 15 + 48 + 5-3 45 - 48 = 30 - 8 15 93 + 24 15 + 2 -3 = 15 - 4 15 - 31 - 8 15 = -15 - 12 15 1 4STEP 数学Ⅰを解いてみた http://toitemita.sakura.ne.jp (2) 2 -1 2 +1 3- 2 + 3+ 2 + 3+ 2 2- 3 2 -1 = = ( ( 2 +1 × 2 -1 2 -1 + 3- 2 3+ 2 × 3- 2 3- 2 + ) + ( 3 - 2 ) + ( 3 + 2 )(2 + 3 ) 2 -1 2 -1 2 2 3-2 4-3 ) ( 3 - 2 ) + ( 3 + 2 )(2 + 3 ) 2 2 = 2 -1 + =3-2 2 +5-2 6 +2 3 +3+2 2 + 6 = 11 + 2 3 - 6 55 (1) 5+2 x+ y= ( 5-2 = 5+2 5-2 + 5+2 5+2 = ) + ( 5 - 2) 2 5 -2 × 5+2 5+2 5-2 + 5+2 2 =9+4 5 +9-4 5 = 18 (2) xy = 5+2 5-2 × 5-2 5+2 =1 (3) x 2 y + xy 2 = xy (x + y ) = 1 × 18 = 18 (4) x 2 + y 2 = (x + y ) - 2 xy 2 = 18 2 - 2 × 1 = 322 (5) x 3 + y 3 = (x + y )3 - 3x 2 y - 3xy 2 = (x + y )3 - 3xy(x + y ) = 18 3 - 3 × 1 × 18 = 5778 あるいは ( x 3 + y 3 = (x + y ) x 2 - xy + y 2 ( ) ) = 18(322 - 1) x + y 2 = 322, xy = 1 = 5778 2 3 + 2 2+ 3 × 2- 3 2+ 3 2 × 5-2 5-2 4STEP 数学Ⅰを解いてみた http://toitemita.sakura.ne.jp 重要:2 変数の対称式とその基本対称式 x2 + y2 , x3 + y3 , x2 y2 , 1 1 + , x + y , xy など, x y x の値と y の値を入れ替えても同じ値になるような式を対称式という。 また, x + y , xy を基本対称式といい,対称式はすべて基本対称式で表すことができる。 ( = (x ) x 2 + y 2 = x 2 + 2 xy + y 2 - 2 xy = (x + y )2 - 2 xy 3 x +y 3 3 ) + 3x y + 3xy 2 + y 3 - 3x 2 y - 3xy 2 = (x + y )3 - 3 xy(x + y ) 2 ( x + y = (x + y ) x - xy + y 2 3 2 3 3 2 3 3 ) = (x + y ){(x + y ) 2 2 2 - 3xy } ちなみに, x + y + z , x y z など 3 変数の対称式の基本対称式は x + y + z , xy + yz + zx , xyz の 3 つである。 56 (1) x+ 1 = 2 -1+ x = 2 -1+ 1 2 -1 1 2 -1 × 2 +1 2 +1 = 2 -1+ 2 +1 =2 2 (2) 2 1ö æ x + 2 =çx + ÷ - 2 xø x è 2 1 ( ) = 2 2 2 -2 =6 (3) 3 1ö 1æ 1ö æ x + 3 = ç x + ÷ - 3x × ç x + ÷ xø xè xø x è 3 1 ( ) = 2 2 3 - 3× 2 2 = 10 2 (4) x5 + 1 öæ 1 ö æ 1ö æ = ç x 2 + 2 ÷ç x 3 + 3 ÷ - ç x + ÷ xø x x øè x ø è è 1 5 = 6 × 10 2 - 2 2 = 58 2 3 4STEP 数学Ⅰを解いてみた http://toitemita.sakura.ne.jp 57 (1) 10 ( 10 3 - 2 = ) ( 3 + 2 )( 3 - 2 ) = 10( 3 - 2 ) 3+ 2 = 10(1.7321 - 1.4142) = 10 × 0.3179 = 3.179 (2) 1 12 - 2 12 + 2 12 - 2 = 2 3+ 2 10 2 × 1.7321 + 1.4142 = 10 4.8784 = 10 = 0.48784 = 58 (1) 無理数を分離する。つまり x = 1 - 5 を x - 1 = - 5 とする。 すると, x 2 - 2 x - 4 = (x - 1)2 - 5 ( = - 5 =0 ) 2 -5 (2) x 2 - 2 x - 4 = 0 より, x 2 - 2 x = 4 よって, ( x 3 - 2x 2 = x x 2 - 2x ( ) ) = 1- 5 × 4 =4-4 5 59 (1) 2 2 -1 = ( 2 ( )( 2 -1 ) 2 +1 )= 2+ 2 +1 2 1 < 2 < 2 より, 2 + 1 < 2 + 2 < 1 + 2 よって, a = 3 4 4STEP 数学Ⅰを解いてみた http://toitemita.sakura.ne.jp (2) 2 + 2 = a + b , a = 3 より, b = -1 + 2 (3) a + b + b 2 = a + b(1 + b ) ( ){ ( = 3 + (- 1 + 2 ) × 2 = 3 + -1+ 2 1+ -1+ 2 )} =5- 2 あるいは, a + b + b 2 = (a + b ) + b 2 ( ) 2 + (3 - 2 2 ) 2 = 2 + 2 + -1+ 2 =2+ =5- 2 60 (1) 1 1+ 2 - 3 = = = = = 1 (1 + 2 ) - 3 × (1 + 2 ) + (1 + 2 ) + 3 3 1+ 2 + 3 (1 + 2 ) - ( 3 ) 2 2 1+ 2 + 3 (3 + 2 2 ) - 3 1+ 2 + 3 2 2 1+ 2 + 3 2 2 = 2 +2+ 6 4 = 2+ 2 + 6 4 × 2 2 5 4STEP 数学Ⅰを解いてみた (2) http://toitemita.sakura.ne.jp ( 3 - 2) 5+ 3- 2 5 + ( 3 - 2) 5 - ( 3 - 2) ( 5 + 3 + 2 )( 5 - 3 + 2 ) = 5 - ( 3 - 2) {( 5 + 2 ) + 3}({ 5 + 2 ) - 3} = 5 - (5 - 2 6 ) ( 5 + 2) - 3 = 5+ 3+ 2 5+ 3+ 2 = 5- × 2 2 2 6 = = = = (7 + 2 10 ) - 3 2 6 4 + 2 10 2 6 2 + 10 (2 + 6 10 6 )× = 2 6 + 2 15 6 = 6 + 15 3 6 6 (3) 2+ 5+ 7 2+ 5- 7 = = ( ( ( = 2+ 5+ 7 × ) 2+ 5 - 7 ( 2+ 5+ 7 ) ( ( ) 5 )+ 2+ 5 + 7 2+ 7 2 ) - ( 7) 2 + 5 + 7) (7 + 2 10 ) - 7 ( 2 + 5 + 7) = 2+ 5 2 2 2 2 2 10 = = 2 + 5 + 7 + 2 10 + 2 35 + 2 14 2 10 7 + 10 + 35 + 14 10 6 4STEP 数学Ⅰを解いてみた 2- 5+ 7 2- 5- 7 = http://toitemita.sakura.ne.jp 2- 5+ 7 ( × ) 2- 5 - 7 = ( ( = ( 2- 5+ 7 ) ( ( ) 5)+ 2- 5 + 7 2- 7 2 ) - ( 7) 2 - 5 + 7) (7 - 2 10 ) - 7 ( 2 - 5 + 7) =2- 5 2 2 2 2 2 10 = == 2 + 5 + 7 - 2 10 - 2 35 + 2 14 2 10 7 - 10 - 35 + 14 10 - 7 + 10 + 35 - 14 10 よって, 2+ 5+ 7 2+ 5- 7 + 2- 5+ 7 2- 5- 7 = = 7 + 10 + 35 + 14 10 2 10 + 2 35 =2+ 10 2 7 2 = 2 + 14 61 x 2 - 10 + 25 = ( x - 5 )2 = x-5 (1) x - 5 ³ 0 より, x - 5 = x - 5 よって, x 2 - 10 + 25 = x - 5 (2) x - 5 < 0 より, x - 5 = -(x - 5) = - x + 5 よって, x 2 - 10 + 25 = - x + 5 7 + - 7 + 10 + 35 - 14 10 4STEP 数学Ⅰを解いてみた http://toitemita.sakura.ne.jp 62 (1) 4+2 3 = = ( 3) + 1 (1 + 3 ) 2 2 + 2 ×1× 3 2 = 1+ 3 =1+ 3 (2) ( 16 ) + ( 3 ) ( 16 - 3 ) (4 - 3 ) 2 19 - 2 48 = = = 2 - 2 × 16 × 3 2 2 = 4- 3 =4- 3 (3) 9 - 2 20 = = = ( 5) + ( 4) ( 4 + 5) (2 + 5 ) 2 2 + 2× 5 × 4 2 2 = 2+ 5 =2+ 5 63 (1) 5 + 24 = 5 + 2 6 = = ( 2 ) + ( 3) ( 2 + 3) 2 2 + 2× 2 × 3 2 = 2+ 3 = 2+ 3 8 4STEP 数学Ⅰを解いてみた http://toitemita.sakura.ne.jp (2) 11 + 4 6 = 11 + 2 24 = = = ( 3) + ( 8) ( 3 + 8) ( 3 + 2 2) 2 2 + 2× 3× 8 2 2 = 3+2 2 = 3+2 2 (3) 12 - 8 2 = 12 - 2 32 = = = ( 4) + ( 8) ( 4 - 8) (2 - 2 2 ) 2 2 - 2× 4 × 8 2 2 = 2-2 2 =2 2 -2 64 (1) 2+ 3 = 4+2 3 2 ( 1) + ( 3 ) 2 = 2 ( 1 + 3) + 2 ×1× 3 2 2 = 2 (1 + 3 ) 2 = = = = 2 1+ 3 2 1+ 3 2 2+ 6 2 9 4STEP 数学Ⅰを解いてみた http://toitemita.sakura.ne.jp (2) 5 - 21 = 10 - 2 21 2 ( 3) + ( 7 ) 2 = 2 - 2× 3 × 7 2 ( 3 - 7) 2 = = = = 2 3- 7 2 7- 3 2 14 - 6 2 (3) 10 + 5 3 = 20 + 10 3 2 = 20 + 2 75 2 = 20 + 2 75 2 ( 5 ) + ( 15 ) 2 = = = = = 2 ( 5+ 15 ) + 2 × 5 × 15 2 2 2 5 + 15 2 5 + 15 2 10 + 30 2 10
© Copyright 2024 ExpyDoc