数理統計後期演習プリント No.4 4.1(ex.4.3.1) ∫ x FX (x) = P (X ≤ x) = fX (x)dx −∞ 0 (x < 0) = x2 (0 ≤ x < 1) 1 1 ≤ x (i) X(4) は標本の中の一番大きな観測値なので F(4) (x) = P (X(4) ≤ x) = P (X1 ≤ x, X2 ≤ x, X3 ≤ x, X4 ≤ x) = P (X1 ≤ x)P (X2 ≤ x)P (X3 ≤ x)P (X4 ≤ x) = [FX (x)]4 = x8 (0 ≤ x < 1) x = 0, 1 のとき微分不可なので f(4) (x) = d F(4) (x) = 4{F (x)}3 fX (x) = 8x7 (0 < x < 1) dx fX (x) は 0 < x < 1 以外で 0 なので 8x7 (0 < x < 1) f(4) (x) = 0 その他 (ii)X(1) は標本のなので一番小さい観測値なので F(1) (x) = P (X(1) ≤ x) = 1 − P (X(1) > x) = 1 − P (X1 > x, X2 > x, X3 > x, X4 > x) = 1 − P (X1 > x)P (X2 > x)P (X3 > x)P (X4 > x) = 1 − {1 − F (x)}n = 1 − (1 − x2 )4 (0 ≤ x < 1) x = 0, 1 のとき微分不可なので d F(1) (x) dx = −4{1 − F (x)}3 (−f (x)) f(1) (x) = = 4{1 − F (x)}3 f (x) = 8x(1 − x2 )3 fX (x) は 0 < x < 1 以外で 0 なので f(1) (x) = 8x(1 − x2 )3 (0 < x < 1) 0 その他 1 (iii) F(3) (x) = P (X(3) ≤ x) = ( ) 4 ∑ 4 j=3 = 4 ∑ j=3 = {F (x)}{1 − F (x)}4−j j 4! {F (x)}j {1 − F (x)}4−j j!(4 − j)! 4! {F (x)}3 {1 − F (x)}4−3 + {F (x)}4 3!(4 − 3)! = 4x6 − 4x8 + x8 = 4x6 − 3x8 x = 0, 1 のとき微分不可なので d F(3) (x) dx = 24x5 (1 − x2 ) (0 < x < 1) f(3) (x) = fX (x) は 0 < x < 1 以外で 0 なので f(3) (x) = 24x5 (1 − x2 ) (0 < x < 1) 0 その他 (iv) ∫ E(X(4) ) = ∞ −∞ ∫ 1 xfX(4) (x)dx x · 8x7 dx = = ∫ 0 1 E{(X(4) ) } = x2 · 8x7 = 2 0 Var(X(4) 8 9 4 5 4 = E{(X(4) ) } − {E(X(4) )} = − 5 2 2 ( )2 8 4 = 9 405 2 ¯ ∼ N (5, 42 ) 4.2(ex.4.4.1) X 6 5−5 (a)P Z < √ = P (Z < 0) = Φ(0) = 0.5 16 36 6 − 5 (b) P Z < √ = P (Z > 23 ) = 1 − Φ(1.5) ≃ 0.0668 16 36 ( ¯ ) ( ) ¯ − 5| < 1 = P X − 5 < 1.5 = P (|Z| < 1.5) = 2Φ(1.5) − 1 ≃ 0.8664 (c)P |X 2 3 c−5 (d)P Z < √ = 0.95 c−5 2 3 16 36 = 1.65 c = 2 3 · 1.65 = 6.10 ¯ − 5| ≥ 5) = 0.01 (e)P (|X P (|Z| ≥ 32 c) = 0.01 1 − (2Φ( 32 c) − 1) = 0.01 2Φ( 23 c) = 1.99 Φ( 32 c) = 0.995 2 32 c = 2.58, c = 1.72 4.3 (1) カイ二乗分布 fX (x) = (2) ガンマ分布 1 x (n 2 )−1 e− 2 (x > 0) n x 2 Γ( 2 ) n 2 0 (その他) α β xα−1 e−βx (x > 0) fX (x) = Γ(α) 0 (その他) カイ二乗分布はパラメータ α = n2 , β = 21 のガンマ分布,(ex.4.1.3) より [ ]α β ガンマ分布の m.g.f は (t < β) より, カイ二乗分布の m.g.f は β−t mX (t) = E[etX ] ∫ ∞ = etX fX (x)dx −∞ ∫ ∞ n 1 1 = n n (x 2 −1 e−( 2 −t)x )dx 2 2 Γ( 2 ) −∞ Γ( n ) 1 = n n · 1 2 n 2 2 Γ( 2 ) ( 2 − t) 2 ( ) n2 1 1 = (t < ) 1 − 2t 2 [ ] n2 −1 1 1 d (3)E(X) = dx mX (0) = n2 (−1) (−2) = n 1−2·0 (1 − 2 · 0)2 ( )2 [ ]2 d d Var(X) = mX (0) − mX (0) dx dx 1 ]2 )[ (n 1 1 +1 (−1) (−2) − n2 = n2 + 2n − n2 = 2n = n 2 1−2·0 (1 − 2 · 0)2 4.4(ex.4.4.4) (4.4.4) X1 , X2 , . . . , Xn ∼ N (µ, σ 2 ) ∑n ¯ 2 とする. 標本分散 S 2 = n1 i=1 (Xi − X) (ii) P.144(3.9.2) E(X) = n,Var(X) = 2n n 2 S ≪∼ χ2n−1 σ2 (n ) n S 2 = 2 E(S 2 ) = n − 1 σ2 σ n2 − 1 E(S 2 ) = n ( ) (n ) n2 Var 2 S 2 = Var(S 2 ) = 2(n − 1) σ σ4 σ4 Var(S 2 ) = 2 2(n − 1) n E 3
© Copyright 2024 ExpyDoc