業績一覧のPDF

業績リスト
学術論文
[1] Y. Kitao, T. Inada, T. Arinami, C. Hirotsu, S. Aoki, Y. Iijima, T. Yamauchi and G. Yagi (2000). A
Contribution to Genome-wide Association Studies: Search for Susceptibility Loci for Schizophrenia using
DNA Microsatellite Markers on Chromosomes 19, 20, 21 and 22. Psychiatric Genetics, 10, 139–143.
[2] M. S. Srivastava, C. Hirotsu, S. Aoki and E. Glimm (2001). Multivariate One-Sided Tests. In Data
Analysis from Statistical Foundations. (A Festschrift in Honor of the 75th Birthday of D. A. S. Fraser),
Nova Science Publishers, New York, 387–401.
[3] C. Hirotsu, S. Aoki, T. Inada and Y. Kitao (2001). An exact test for the association between the disease
and alleles at highly polymorphic loci — with particular interest in the haplotype analysis—. Biometrics,
57, 148–157.
[4] S. Aoki (2002). Improving path trimming in a network algorithm for Fisher’s exact test in two-way
contingency tables. Journal of Statistical Computation and Simulation, 72, 205–216.
[5] S. Aoki and A. Takemura (2003). Minimal basis for connected Markov chain over 3 × 3 × K contingency
tables with fixed two-dimensional marginals. Australian and New Zealand Journal of Statistics, 45,
229–249.
[6] S. Aoki (2003). Network algorithm for the exact test of Hardy-Weinberg proportion for multiple alleles,
Biometrical Journal, 45, 471–490.
[7] 太田絵里, 青木敏, 広津千尋 (2003). 2 × 2 × K 分割表における単調仮説の検定. 応用統計学, 32, 107–126.
[8] A. Takemura and S. Aoki (2004). Some characterizations of minimal Markov basis for sampling from
discrete conditional distributions. Annals of the Institute of Statistical Mathematics, 56, 1–17.
[9] A. Takemura and S. Aoki (2005). Distance reducing Markov bases for sampling from discrete sample
space. Bernoulli, 11, 793–813.
[10] T. Suzuki, S. Aoki and K. Murota (2005). Use of primal-dual technique in the network algorithm for
two-way contingency tables. Japan Journal of Industrial and Applied Mathematics, 22, 133–145.
[11] S. Aoki and A. Takemura (2005). Markov chain Monte Carlo exact tests for incomplete two-way contingency tables, Journal of Statistical Computation and Simulation, 75, 787–812.
[12] S. Aoki and A. Takemura (2008). Minimal invariant Markov basis for sampling contingency tables with
fixed marginals. Annals of the Institute of Statistical Mathematics, 60, 229–256.
[13] S. Aoki and A. Takemura (2008). The largest group of invariance for Markov bases and toric ideals.
Journal of Symbolic Computation, 43. 342–358.
[14] S. Aoki, A. Takemura and R. Yoshida (2008). Indispensable monomials of toric ideals and Markov bases.
Journal of Symbolic Computation, 43, 490–507.
[15] S. Aoki, T. Hibi, H. Ohsugi and A. Takemura (2008). Gr¨obner bases of nested configurations. Journal
of Algebra, 320, 2583–2593.
[16] T. Sei, S. Aoki and A. Takemura (2009). Perturbation method for determining the group of invariance
of hierarchical models. Advances in Applied Mathematics, 43, 375–389.
[17] S. Aoki and A. Takemura (2009). Some characterizations of affinely full-dimensional factorial designs.
Journal of Statistical Planning and Inference, 139, 3525–3532.
[18] T. Yanagawa, S. Aoki and T. Ohyama (2009). Diversity of human vein patterns and its application to
personal identification. Bulletin of Informatics and Cybernetics, 41, 1–9.
[19] D. Sarpono and S. Aoki (2009). Mixed geographically weighted regression-kriging model for small area
estimation. Japanese Journal of Applied Statistics, 38, 111–129.
[20] S. Aoki and A. Takemura (2009). Markov basis for design of experiments with three-level factors. In
Algebraic and Geometric Methods in Statistics, (dedicated to Professor Giovanni Pistone on the occasion
of his sixty-fifth birthday), edited by P. Gibilisco, E. Riccomagno, M. P. Rogantin and H. P. Wynn,
Cambridge University Press, 225–238.
[21] S. Aoki and A. Takemura (2010). Markov chain Monte Carlo tests for designed experiments. Journal of
Statistical Planning and Inference, 140, 817–830.
[22] S. Aoki, T. Hibi, H. Ohsugi and A. Takemura (2010). Markov basis and Gr¨obner basis of Segre-Veronese
configuration for testing independence in group-wise selections. Annals of the Institute of Statistical
Mathematics, 62, 299–321.
[23] H. Hara, S. Aoki and A. Takemura (2010). Minimal and minimal invariant Markov bases of decomposable models for contingency tables. Bernoulli, 16, 208–233.
[24] S. Aoki (2010). Some optimal criteria of model-robustness for two-level non-regular fractional factorial
designs. Annals of the Institute of Statistical Mathematics, 62, 699–716.
[25] 青木敏, 大津起夫, 竹村彰通, 沼田泰英 (2010). 大学入試センター試験科目選択データの統計解析. 応用統
計学, 39, 89–93.
[26] H. Hara, S. Aoki and A. Takemura (2012). Running Markov chain without Markov basis. In T. Hibi
(editor) Proceedings of the Second CREST-SBM International Conference, Harmony of Gr¨obner Bases
and the Modern Industrial Society. World Scientific, Singapore, 45–62.
[27] S. Aoki, T. Hibi and H. Ohsugi (2013). Markov chain Monte Carlo methods for the regular two-level
fractional factorial designs and cut ideals. Journal of Statistical Planning and Inference, 143, 1791–1806.
[28] S. Aoki and M. Miyakawa (2014). Statistical testing procedure for the interaction effects of several
controllable factors in two-valued input-output systems. Journal of Statistical Theory and Practice. 8,
546–557.
[29] S. Aoki (2014). Minimal Markov basis for tests of main effect models for 2p−1 fractional factorial designs
of resolution p. Communications in Statistics - Simulation and Computation. To appear.
著書
[30] 竹村彰通, 青木敏 (2006). 統計学におけるグレブナー基底. グレブナー基底の現在, 数学書房, 日比孝之 (編),
60–84.
[31] 青木敏, 竹村彰通 (2011). 4 章 マルコフ基底と実験計画法. グレブナー道場, 共立出版, JST CREST 日比
チーム (編), 204–270.
[32] S. Aoki, H. Hara and A. Takemura (2012). Markov Bases in Algebraic Statistics. Springer Series in
Statistics.
[33] S. Aoki and A. Takemura (2014). Chapter 4 Markov Bases and Designed Experiments. Gr¨obner Bases
– Statistics and Software Systems, T. Hibi (editor), Springer, 165–221. ([31] の英訳.)
論説, 解説
[34] 青木敏, 竹村彰通 (2007). 統計学とグレブナー基底, 計算代数統計の発端と展開. 数学, 論説, 59, 283–302.
[35] S. Aoki and A. Takemura (2009). Statistics and Gr¨obner basis – the origin and development of computational algebraic statistics. In Selected Papers on Probability and Statistics, American Mathematical
Society Translation, Series 2, 227, 125–145. ([34] の英訳.)
[36] 青木敏, 竹村彰通 (2009). 実験計画法とグレブナー基底. Bulletin of Japanese Society for Symbolic and
Algebraic Computation, 16, 15–22.
[37] S. Aoki and A. Takemura (2012). Design and analysis of fractional factorial experiments from the
viewpoint of computational algebraic statistics. Journal of Statistical Theory and Practice, 6, 147–161.