Title Uniformity of mixing transformations with infinite measure Author(s) TOMATSU, Shizuo Citation [岐阜大学教養部研究報告] vol.[17] p.[43]-[49] Issue Date 1981 Rights Version 岐阜大学教養部 (Dep. of Math. Fac. of Gene. Educ. Gifu Univ.) URL http://repository.lib.gifu-u.ac.jp/handle/123456789/47503 ※この資料の著作権は、各資料の著者・学協会・出版社等に帰属します。 43 U niformity of mixing transformations with infinite measure ShiZUO T OM A T SU Dep. of M ath. R lc. of Gene. E duc. Gifu U niv (Rec61ved Oct. 5, 1981) lntroduction. M iχing transformations on a conlpletely regular topologicaI rneasure space , ゛ - with infinite measure are not necessarly ergodic 〔7〕 . T he purpose or this note is to treat that some attached conditions of miχing transformations in order to imply the ergodicity. Let (X s, μ) be a topological measure space of a completely regular topological space X, thむ E field S of Borel sets of X , and a measure μ on S , whel゛e the measure μ assumed to be non-negative, c 7-additive, locally finite and tight in the sense that μ(j ) こ sup{ μ{ 絹 ; K ⊂ 淮 尺 is compact} for every ノ1∈!!3よ A set j E S will be almost clopen if it characteristic function is μ- almost everyw here (in w hat fo110w s it denotes abbreviated a.e. ) continuous. be the set of a11 clopen sets of 旺 lt is clear that 食 is a field but not E field. L et 於 lt is known that 託 is μ-metrically dense in 懇 〔7〕. A n endomorphism T of χ is called m 加加g if it has the following properties 〔6, 7 〕. (i) T is continuous (a.e.), and measure preserving. I U四 (ii) There is a sequence of 貨-subsets HkE 双 (だ= I , 2, 3, ‥.) of χ with finite measure such that X (iii) 肌 (a.e.) There is a sequence of positive numbers pバ71= 1, 2, 3, ‥.) such that the miχing rela- tion 11m 画 μい ∩T- 71B) = μ(j ) μ(召) holds for any 介-sets j and 召 included in some H k T-invariant SUbsetS. L et T be a rneasure preserving transfmation on χ. A 石 invariant ∞ 93-set j which has a S -subset D such that U 7` D こ j ( a.e. ) and O< μ印 ) < E for any small positive number E. Such a set /1 1s called 7こosmoぴc and the seレ D i s called geneTetoT of A A 皿 invariant 忠一set is called 71co se77 d 加e if it has no w andering set. set is called 7こ-e7即 ぷ c if it has no non- triv ia1 7こinv ariant subset. A A 石 invariant S - S - set D iS called 7! £r皿 j l加e if for any μ- non- null subsets £ and F of D there is an integer 7z such that μ(£ ∩ 7¯¯ 司 ≠θ. Then it is clear that the followings. L EMMA 1. 石 e7即 ぷc sd 油 ㎡so 7・-osmolfc. L EMMA 2. T-o8motic 8et lx,hich has T- tm n81tilXe genemtor 18 T-etgodic. 44 Shizuo Tomatsu PRooF. i. e. , j L et /1 be a T- osmotic set having 7! transitive generator D. has non-trivia1 7乙invariant !B-subset 召. elements which belong to j lf /1 1s not r -ergodic, L et C 二 j ¥ 召 (A ¥ 召 denotes the set of but not 召) , then μ( C) ≠ a L et £)1二 D n 召 and D2= 1) n C, then clearlyμ(D1) ≠0, 試D2) ≠0, and D1, D2aregeneratorsof 召, C respectively. SinceD is 7しtransitive, hence there is a positive integer 71 such that μ(仙 n r -リ )2) ≠ θ, i.e. , μ(召 n C) ≠ a lt is a contradiction. L EMMA 3、 T-osmotic sd 18 d 80 T-conseruat辿e. L et j be not T-Conservative, and its w andering set denotes { r £ } ; 71= θ, 土 j , 士 2, X1 7 j PRooF. ‥ . (where ? E = £ ). Now we put 卵y S-subset F of j such that O< μ(F) < μ(£ ). Let F n r £ = 凡 , then clearly 凡 s are mutually disjoint an(卜 7¯¯ ¯ 凡 ⊂ 瓦. Since μ( 0 r 凡 (凡 ) 二μ(F)く μ(£ ), hence we can put a !13-set G such that G⊂£ ¥ U T-゛ Fn. Then we have - ∽ ゛(;Cワ愉づOyS)⊂ ?E¥? (r-凡)=?E¥凡=?£¥Ffo l゛a n yir lte g e l`・, ∞ i.e., ( P G) n F= φor equivalently Gn ( 7¯ ゛ F) 二 φ( φdenotes empty set). lt implies that U r F - is non-trivia1 7! invariant subset of A ∽ T his show s that /1 1s not 7こ osmotic. M iχing transformations. The sequence { み } of positive numbers in the definition of miχing property(iii) is considered as some sort of dilution factor and asymptotically inde- pendent of・the choice of the 肌 ∈屁 in the definition of mixing property(ii) 〔6〕 . lt is know that the behaviour of the dilution sequence { 両 } of miχing transformation concerned to ergo- dicity of the transformation 〔6, 7〕 . N ow we show the followings with regared to the dilution sequence of miχing tr耳nsformations. T HEoREM 1. L d T be an inlJeTtible ・ 咄臨g tTanj oT・ (ltion goueTned by the 8equence { pj . U theTe eχ18t T-o8motic 8et, then Σ pj = ∽. 71= 1 P RooF. L et j be a 7 戸 osmotic set, then there is a ∬ ∈託 in the definition of miχing prop- 」y V such that pj > μ唐 n T`¯¯゛ 出 Z2 μ(H ) 2 for any integer 71≧ N o N ow , if w e suppose oo , t h e l l th el e is 8 11 111t e g e l ゛ ゛ ≧ Ⅳ s u ch th a t s u ch th a t Σ μ ( 77 ∩ r ¯゛ H ) < E fol a il y く 一 几 y︰ ︼ ・ erty(ii) such that μ(Hn 川 ≠θ. From mixing relation(iii) there is a sufficiently large integer p o siti ゛ e m n u m b e [ε . Le tE<{ μ 唐∩ 溺a n d尺 二 (Hn溺¥O(Hnド 珀,th e nμ (幻>θa n dKnT -゛K m - φ for any integer 71≧n /1 such th3t θ< μ( G) < 士 Consequently, 尺∩7¯ 士l尺= φ for 71≧m. Let G be any S -subset of μ( 幻 ・ lf G⊂ 瓦 th叩 μ( ( 0 ≠ひ lt contradicts to 7しosmoticity of A and GI = G n し ∩( 0 ? G) ∩ 尺) < μ( 目 j . e・・ μ( Hence G is not contained in 瓦 ∬∩ T¯゛ H ) ) , then μ( GI ) ≠ a Since μ( 尺 ¥ 0 ? 仙 ) り Let D1= Gn 尺 > μ(幻 - 2mμ(D1) { ぶべ十べごI}低品 ぶべ もの I j1 2s la a a g S1 1 1jJ os s aa s u a PXI I 。 。 石。 日。 壬 χ叩 。 ( 1 1d129 1a l a lclu lu x a JoD a = ぶ こ 。F J 包 壬 低 回 {ぶ } 呂 回 呂 S s }回 目 Q Qs {こ } a9 9 110 a s u o lln llP 911 0j V 1 9 8S m11 24w2 1 Myl Fu呂 s la1 qP t PD I Po jJ al 呂 s lX a s odd nS Q I ooud . a90 jx a s4 q z ts74M 潜 AM5 7jqqW q AllulaoJl u n su t lX u aMJ g y 7 7 7 JaM a19 X uR loJ P u1 2 0 Λ 3 1aq ulnu X uR ao J 3 ▽ 一司 石 )政 - 口 7 wauo3HI W t 11 P aIF o r 6 こ ご sl ll 気 こ I } d壬 { { Dns g PuR F J oa DI 〇i 入罵 名 冨 診 { }} I Po tqH 41 08 Pod g Py t q sm1q hllx1 1 qPI J F8 1 28 1 9 J N HDu〇I Wl a Jjul xl u la g ul Il tu a lo a M I J〇 a s l a A 110 9 l aql a a P is o a aa y o N .s u o ll u u I J o J s u llJ l j u lx lu I J o 4 1u IJ o J lu n tX . ︹ ≒ こ 8 21 jdX 91 1 1ai Po al as lX J 9 9 1119 4 0a 1 1 J F1 1 21111a 11 1 1 01 Ja a 801X8 1as 91 8 俑 } O と沼ぢ臼召 O }jQ 七日芒I } { だ△( じ) 気臼リーミ) 気︿口 ござ気勺罵 じ乱 D CjX l l l a Pu a q P F。 ⊃ ← E・ ツ 8⊃ 7 ← ↓ ( ミも つ )○ }=4 ちてSO Z . ( . ・ d)I=kこマ 仁 口 )冨壬づ+ GバG) ご てじ=﹃ ﹄ 1 7 1aM alu l a A m so d A uR a oJ a △ (こ )気 回 り I (ざ 遭 ︿ ⋮ △ ↓ (J )芯 十 ^ミ ゛( { } だ り 1 (k )ヽ ︿ ヴ ミ べて? ( kj△( T ふつ) ご 盲) こ自( T召へⅦう召) 。土マミ) ユ J) 。Ⅶ( 7召) 。十 ヽ ミ) 遭ざ非( EG) 遭ざ肺( EG) 気 冨石 { :吋吋べ=ごI、 心乱 コ N1 1 7 9 Mg mj gXCk= ら 81 Eミ こ合 に D で心=EG こGTyCk=、 ミ もてょQ とI召{. ら︿( 笞晟だりI( 芒気︿{ ( G) 気十 8 ( ミ) 気心-口) 気 △{ ( G) 遭丈ミ) 辻土石) こ尽Q上慾晟△↑ ( ミ) 気ぺ} 心 上古政 ︿( でもつ) ご丿七 ) 気 回ぶこ G6こに べ=ミ もコ だ非( G) gs nHj ﹂V J o4Pnou l s o U o ls pl PRl l uoDI I ( . 3 )I1( ミL O )つ バk( ︲つ9 卜つ )つ バヌn9 1n NF IにQ} { (ミ 沁一 827 )D({ Q 6一 づ} Uじ 目壬 ざ=( 心) 辻} }. ( 四) 気Ⅶ( ミ) 気十( ミ) 遭 曽ぶこ 心 丿GU心 CXj ix C 7 1 7 1u a H 1 7C hj i 令与) 平首 つ にG=G } 1 . QΛ﹃ 竺気心 人﹄気︿{ ( ミ) 気十( ミ) こ 心人と気Λ 只 召{ 1 sこk=ミ もコ だ非( 召) 4s n HI V J oA I P1 1 0t u s on o ls pl Pu l l uo 91 1. ( jd) こも D 突 8- 8 81 81 8- 8- 日 ⊃7 8冨そ箔j) I肺ミL コ バk白石に D NV a D u l S6 1 C fJD =9J n 6 a yc a yl c tJ 8 8 冨弓 ぐ几 召) jJ Ig I c 7 u Jrlこに=ぷ Lrつ も1 . ( . Qd) I1 1 CtUJ aJn su aul all t M Ju1 9 1a 寸 Uこ 8⊃ ? 8 8 ダV a g u9 9 ︿( い ) ) ご、 ぼり1 ( k) ご、 Λ suol lu t uloJ9 111 M g x lul Jo 4 1t uaoJl un 77 9 m 77 a A 1 11 a M X Jo (ヨ )口 〇 F la a j u lx 11 q m x EI U U H og P u l F U g = oF a a M a 49 y ( 司) 気119` ﹂ ( ・ ごx yW9 qn sj ul xl u lJ 〇{ Ξむい 乱O kQ 引 ぶ 鴎り` 、} 反 目。。 妬 。 ?芥( 巴 晟 16 Q1 (ご x y XI JlaP uaql y NX g p71 . l as 1 51 u9 1 1au1 4 FM F I Fuou l aq F l yl Ql ool l d p91 RgMaz z hl FMM7 40 uu s taa V70V 竺ot pmjo A呂j7jz z t qm pa gX p7 S vww31 q SM OI I 〇J sl Pazl l lal sl l ul aaoat 1 1 Jo asJaAuoo am 11 1 11 M o l ls u 1 9 a M 兄) こ( ご6バヌ u o rm nlls 政Q∇ slql u 1 9 7m jo77u 7 2 79 7z xag as sl q J 11 9 P alF o sl ll u aMP sP lo t l ごヶごLむ) しIしこ言 仁さLむ) 心 に l⊂ て 八 こt Q )゛ ay 一 、 W ら W tx xl a ja 1 mj l u F ygD91 J9 1 s t va a j a l u l a M l l s o d1 2 s l a a a M I Q △ 、J a q u l 舌A U ll O J W 1 1 1。 s o i( ヨ ) qu I x u u Pu1 3 f Jgj alu l aA m sod x u l JoJ JP JaA o aJo W W 2 7 4 Jaj alu i x ul JoJ 3 ▽ 一(Q )気 (了 g uol W aJ jul xl ulal k﹂ づ 94 1 adold a i pq1 1 1 0ql ui U 3H J ol asqns R q oq aa g Pu1 2F l al 4 R3F Ol Sp l P q nl uo ol IV J 〇 nRPunoq a g ulPa uFl uoDs lJ UiEoJ a J gJ V J 〇} 涸oa汀心﹃ロロ〇q 1 7S IUI 6 9 q y兄 バと こ酋 i M Pm2qyFこ亘 ﹄ 卜 回弓 。 `斗司 ごと に( ( ・ ) むに I。I肺ヌc( ( 母言 a Jg j 勝﹁ ご ﹂ バビ こ( ・ ) に 1 . 1勝FIJこ( ・) j a D uI S 9 ( に) 卜u( こと ) Jl m1 19nsgJ 。 ( 心) j Poo9 noq1 1 21 au F sl al aq1 qji J〇 ( 昌 ) 卜 可 〇9 noqqjl au Xu1 2 aoJ 1 19 sa ol l oJ jl J〇 忿 目 ・ 弓o い ). I肺兄 { 沁バに べ 。 } c( ・ 忌 ︱吋 `勝ご L c( ・ ) に ・ 。ミ) に 召。 唱IIJ自 白。 PU RDy X u1 2 JoJ t al k﹂ . D i lu P u n o ( 1 11n 1 1 1 10 u g s1 1 1 F l j1 6 a g y R ol sj u o l a( l lO U F I X Jl 453 F X ji O VP R g F y7 . い べ。§ ぐ07 p m joA I x a 7sz z 07 z g R o 一g 27 97 7 jM Rt i x z t ag ji p 7 j j O( )U d t vww2 1 1 q s uol Wul loJ guJ ljul xl u lJ o 41 t uJo J l un J oa s l l a8 {= a MRa4 1 aonPo4 ul a4 snt 1 1 1 7 1 Jo 4 PI PojJa 9 1 1 d1 1 1 18 E 1 101 111 al am 気 1a - Jo m noD3 uo jl 8 UOl lR Ul JOJSUUll SUlX lUl J〇 AIII JoJl un Jo asuas aul〇s xl aRssagau sl ll w m s4 0t ls z ula loaql 6 UOl pI PU4U( ) ( ) d J } { だ = (g y lO J = (了 x y 6 x1 19 nbasuon )。 ( 忌 詞七 乱 oad S1 1 pquJ aql Jo U 3H Xu1 2 JoJ Q = 口 こき 気 X oQ=安 こき ミ . Q . こQ=口) ミャ) 気の Iト . Q=( 明 r6こぞ) 遭心 1﹂包石 の so l} { 。 ぷ心り▽{ ( こヌ) ・ 。十( t溺) こそ Ⅶ { ( ng X UQ Fy 十 ( 吃眉 r6 ここ 了 I 心 = ( 7 こ。 Fy 9 Pu1 2t 1 2 1am o aM 1 り 。 ゛ cQ= g P1 1 1 g cF sl F a1 q a 4gy OZy 祠 ︿ (蹟 r 6 こ ぞ )P C y9 7 Wg aas ol XsRa slM uat l J W t R lab l ulX41 10J 3 (ぶ )気 (べ )・、 Λ (蔵 r 6 こ べ )、、 ミ 117T t l ons y 32a l ula jJ 11a l q ml nsl s lEa g QΛ3 J a qt unuxul a o Jwm s a l l du l lj J o41 u l aoJ l un a MI 。 (q l g U J こ I ヌ)﹁ 、十 (7Z g U jlこ こ 了 、 、= (蹟 r にIこ ぞ )遭 の so{ { 〇 }{ } 〇s s a u I unI uAu1 2 . J ▽( I溺 ) ・ 。PU U 9 ▽( QFy X1 3a P ua 9 4gUF=昌﹃ で§ 。 gUg=U 4 1 g4 U Fcg=1 4 4 Z F 4FUF =Iぶこベ バ゛=1 4 94 qFUH=べ 司てべ=g71U NS Dロ バご s a l o u a Pg十Fa l a l l M93▽ nsl lul ol ol l zmS Q⊃ 匂` U niformity of miχing transformations with infinite measure 47 (/10n T- 召o) = μひo) μ(召o). Since μい on 7・- 召o) こ θ for any positive integer 71, hence μ(j o) μ(召o) = θ, i.e., μ(A)) = θoΓμ(召o) = a lt is a contradiction. ・ み que址 id un廿ormity and 8ahj ie8 the condition 5J T HEoREM 3、 L et l ¯ ` be an 伍むeTtibLe m臨伍g tT(1n8foTm (1tion gouem ed by { pj . IL f T h s se- 1二 ゜ け hen theTe is (1 T- o8motic 8et. PRooE. Suppose that there is no 孔 osmotic set. F rom L emma l r is not ergodic, hence there is a non-trivia1 7! invariant S -set え L emma 5 1mplies that /1qE屁. L et 公= χ ¥ λ M etrically denseness of 託 in S follow s that there is λoE 介 such that μ(λ 十 j o) く δ` for any δ `> θ . Let Boこχ¥ j 0, j 1= λ∩λ0, λ2= 公∩λo, 瓦 = 公njjo, 瓦 こλnjjo, then it is clear that g(λ2)< δ , μ(烏)く δ ヽ . Sinceλぞ介, hence μ(λ2)≠θ , μ(瓦)≠θ . By theassurnptionthat 7こ -in∞ variant set λ is not 710smtic, hence U - T7゛B2 1s non-trivia1 7! invariant subst of j , i. e. , 1et cね ∞ &=λ¥ U P瓦, the nμ (ご)≠a The reis∬∈託inthepro pe rty(ii) o fm ixingsuc hthat,le t - - j = /1∩凧 召= 召∩凧 j o= j on凧 召o= 召0∩凧 /11= /11∩私 /12= /12∩H, B1= 召1∩H, B2= 召2∩μ and C = & ∩ 凧 then μ(川 , μ( 召) , μい o) ↓μ(召o) , μ(痢 ) / μい 2) , μ(召1) , μ(召2) and μ( C) are a11 non-nu11。 ノ10n T-lj o= (山 ¥ T-1召2) U(血 ∩7-1j 2)⊃j l ¥ 7¯-1召2こj ¥ 召2∩7-1召2⊃C shows that μ(j on アーり 10) ≠θ. Similarly, μいo¥ 7-lj ) ≠θ. For, if μ(j o¥ 7-lj o) = θ, then j o⊂ T-lj o (a.e.). Since 7 1smeasure preserving, hence j o= T-1/10(a.e.) i.e., j ois a non-trivial r-invariant 食-set. By L emma 5 1t is impossible. lnductively, if μ( d ″ r几 40) ≠ θ and μ( U T- り10 )≠ θfo ra nin te g e rん >j,th e n ,s in c en7¯ ¯り1 0⊇ 恚¥UT -JB 2⊃ C ,h e n c eべ∩7・-j ¥ 7-り O i= o j= l j= 0 ゑ+ 1 k k+ 1 ん 7¯- lj O⊃ m(︲ 心 7¯iy 10⊂∩7¯ij . Co nse q ue ntly,∩7¯¯ijo二∩T¯引0. Thus7¯¯i( ∩T-1Ao)二 then j= o i= o k 7 - ij 0. i= o , k i= 0 E( ︲心 £ 0 /1 )≠ θ ,S im ila rly ,べ (07¯り 1 0)¥7¯(゛¯ l¯ 1 )/1 0)≠ θ . Fo r,ifべ 07-りo ¥T -( 1 )y lo )=θ , k 1t follows that 7¯- 1( ∩ 7 ¯ij o) こ ∩ T- ij 0, i. e. , ∩ 7¯- i/10 1s a non-tri i= o via1 7こ invariant 託- set. i= o i= 0 lt impossible by L emma 5. N ow , from the miχing relation(iii) oI T there is a positive integer y for any number E> θ such that ρ・μい0∩7-1召0) - μ(/10) μ(β0) < E for any integer tz≧ 皿 Sequential uniformity of T follows, p N 十 k μ ((U7 ・¯り 1 0¥7・¯りo )∩ r(″ 4 ¯ ゛)召 o )<″ (回T ¯り lo n 7¯りo )イ (B o )十 ゆ (回T -り 1 0¥7 T -りO )/μ 1 0) fol any positive integer ん. Since 48 Shizuo T omatsu μ Oo nr(N 十 い Bo )=μ ((071 う40)∩ 7-(N 十 い Bo )十 万μ ((OT¯り10¥7・¯Mo )∩T べ N ゛い B Q ) サレ Σp N 十 ん μ ((071 -Å o ¥rん 40)∩ T -(″)召 o )<宍 μ (OT 恍 40¥7・几 40)μ 印 o )十 i= 1 瓦 ε 宍 μ (O T 犬 4 0¥T -M 9 )/μ い O )<宍 μ (d7 ・恍 4 0¥T 恍 4 0 )十 ε p N 十 k μ ((OT 恍 4 0 )∩ r(″ ¯ 1 ゛)£o )>μ い o か (召 o )一 万 μ (OT 恍 4 0¥T ¯ り 1 0)μ 印 o )-2ε コ ー1 土 . 卜 1 、 Therefore, Since べ 07几 40¥7・-り 1 0=(071 -り2¥7-jべ )U (フ プ ね 2¥0T ¯哨 2) 9X R hence j4μ (OT 一 山 O ¥7 ・-M O )十 jJ ;μ (7 ・-り と j2¥07¯ 哨 2 ) (白7-咄 2)<μ (志 )十 μ (j1)-μ (O=μ い O )-μ (0. < μ(j 2) 十μ Consequently, らHべ (OT ¯ツ O 卜7¯(″)B O )>ノ ル 1 0M (剛二 悩 い O )-.り (C )h 心 O )-2= = μ( O μ(召o) - 2 ε> θ for sufficiently large integer Ⅳ Since μげ ー(″4 )j on T-(″ )βo) = μいon 召o) = θ, hence ″ ((OT ¯ら 40)∩ √ (″)召 0)さ″ ((07¯り0¥7¯(j¯)j40)∩ 7 ・¯(″ ¯ り い B O ) T herefore, 巧 V 十 ん μ (山 T- i/10 ¥ T- (N十k) 召0 > μ(O μ(召o) - 2 ε> θ , i.e., i= 0 n ん 7・¯jy10 ¥ r (N-χ -1) 召0 / 脳 (O g(£O)- 2ε} i= 0 12ぺ乱< 8p Q1 7 r lt follows that 9 1E べ OT -り1 0¥T -(″ 4)j40)/脳 (C か (召 O )-2ε } < Nμ(j O)バμ(C) g(且)) - 2ε } lt contradicts to 絞 1= (X) T heorem 3 , 1emma 2 and lemma 3 follows that 8 91 EF CoRoLLARY・ U (1 m臨流g tTan8foTmation l¯k s sequentid un廿oT・ ity and l ¯-tTansith)ity, then ρ71= oo impnes 伍at e昭odicity and consenXati折句 好 T. or exanlplej t is easy to see that the mixing transformation defined by shift of nleasure U niformity of miχing transformations with infinite measure 49 theoretical sample space constructed by an irreducible and aperiodic M arkov chain admitted a non-trivial stationaryヽmeasure has the sequential uniformity and T - transitivity 〔 1, 3, 7〕 . R eferenCeS 1 . Chung, K . L . : M (1Tkoむ cha匯8 加ith 8t(ltiona巧 tTansition pTobabUitie8、 Berlin- G6ttingen- H eidelberg : Sp- rmger 1960. 2. H almos, P . R. : LectuTes on ergodic theoTy. 3. K akutani, S. and Parry, W . : I可 1711te measuTe pTeseTIXing tTan8foTmatio718 切ith M ath. Soc. of Japan, 1956. ・ iχ泌g . Bull. A mer. Math. Soc. 69, 752-756 ( 1963). 4. K rickeberg, K . : M 18chenden TT(17tj oTmatione71 a可 M n nighJd tigkeiten une71dlichen M a8se8. Z . W ahr. v. Geb. 7, 235-247 ( 1967). 5. K rickeberg, K . : & ro g m注加g pn)pertie8 0j` M arkop (九c 山1 mith i吋 inite me(18uTe. Symp. Statis. Proc. F ifth Berkley Prob. , 1966, V ol. 1, Part II , 43 1- 446. 6 . Krickeberg, K. : 尺eceM rea /訟 o m加加g 加 lopj oポc㎡ measz zre spαce. Lecture notes in M ath. Vol. 89, Springer V . , 1969. 7. P apangelov, F . : StTong Tatio a・ it8, R -々ecut rence a71d miχing pTopeTties oJ discTete paTa・ d eT M aTkolJ pTocesses. Z. W har . v. G eb. 8 , 259- 297 ( 1967).
© Copyright 2024 ExpyDoc