ඇਖ਼نੑͷԼͰͷଟมྔઢܗϞσϧʹର͢Δߴ࣍ݩۙཧ େֶཧֶ෦ ຊେֶֶ෦ ඣਓ ࢁాོߦ ɹۙɺϏοάσʔλ͕༷ʑͳͰ͞ΕΔΑ͏ʹͳΓɺߴ࣍ݩσʔλͷղੳख๏ͷॏཁੑ͕૿͖ͯ͠ ͍ͯΔɻͦ͜ͰɺຊͰڀݚଟมྔઢܗϞσϧ Y = XB + EΣ1/2 (1) ʹண͢Δɻ͜͜ͰɺY n × p ͷ؍ଌߦྻɺX n × k ͷܭըߦྻɺB k × p ͷະͷߦྻɺ E = ( 1, . . . , n) n × p ͷ͠ͱྻߦࠩޡɺ 1 , . . . , n ͦΕͧΕಠཱͰಉҰͳ F ʹै͏ͷͱ͠ɺF ͷฏۉϕΫτϧ 0ɺࢄڞࢄߦྻ Ip ͱ͢Δɻͦͯ͠ɺn, p ͱʹेେ͖͍ͱ͍͏ঢ়گͷԼͰɺઢ ܗԾઆ CB = O (2) Λߟ͑Δɻͨͩ͠ɺrank(C) = q ͱ͢Δɻ ͜ͷΑ͏ͳଟมྔઢܗϞσϧ (1) ͷઢܗԾઆ (2) ʹର͢Δݕఆ౷ྔܭͷߴ࣍ݩσʔλղੳ͜Ε·Ͱʹ ଟ͘ͷʹऀڀݚΑͬͯߦ͕ڀݚΘΕ͓ͯΓɺಛʹ؍ଌσʔλ͕ਖ਼نʹै͏߹ʢͭ·ΓɺF = N (O, I) ͷ߹ʣ༷ʑͳ݁Ռ͕ใࠂ͞Ε͍ͯΔ (Fujikoshi et al. (2004, JJSS), Schott (2007, JMVA), Srivastava (2005, JJSS) )ɻ͔͠͠ɺҰൠʹߴ࣍ݩσʔλͷ߹ɺσʔλ͕ਖ਼نʹै͏͔Ͳ͏͔ΛௐΔ͜ͱ ͍ͨ͠Ίɺਖ਼نʹैΘͳ͍߹ͷ͕ڀݚॏཁͱͳΔɻ ͕ͩɺਖ਼نʹैΘͳ͍߹ʹɺ੍͍ڧ͕ඞཁʹͳΔ߹͕ଟ͍ɻྫ͑ɺ1 ඪຊͷσʔλ (k = 1) ͷ߹Ͱ͢Βɺྻߦࠩޡͷશ͕ಠཱ·ͨͦΕʹ͍ۙԾఆ͕͓͔ΕΔ߹͕ଟ͍ (Chen et al. (2010, JASA), Chen and Qin (2010, Ann. Statist.), Srivastava et al. (2011, JMVA) )ɻͦ͜Ͱɺզʑͦͷ ݅Λ؇͢ΔͨΊʹɺਖ਼ن͔ΒͷဃͷఔΛද͢ύϥϝʔλ κ11 = E[( i Σ i )2 ] − 2trΣ2 − (trΣ)2 Λ༻͍Δ͜ͱͱͨ͠ʢਖ਼نͷԼͰ κ11 = 0 ͱͳΔ (Magnus and Neudecker, (1979, Ann. Statist.))ʣɻ ͜ͷύϥϝʔλΛ༻͍Δ͜ͱʹΑΓɺैདྷͷڀݚΑΓ͍ʹର͠ɺݕఆΛߦ͏͜ͱΛՄೳͱͨ͠ɻ ·ͨɺ͜ͷύϥϝʔλͷਪఆྔΛఏҊ͢Δ͜ͱͰɺߴ࣍ݩσʔλͷਖ਼نੑΛݕఆ͢Δݕఆ౷ྔܭͷఏҊΛ ߦͬͨ (Himeno and Yamada, 2014)ɻ͞ΒʹɺଟඪຊͷԼͰͯ͢ͷฏ͕ۉ͍͠ͱ͍͏ؼແԾઆʹର͢ Δݕఆ౷ྔܭఏҊ͠ɺͦͷۙΛؼແԾઆͱରཱԾઆͷԼͰಋग़͠ɺۙݕग़ྗΛٻΊɺ͜Ε͕ਖ਼ن ੑͷԼͰఏҊͤͨ͞ݕఆ౷ྔܭͷ֦ுͱͳ͍ͬͯΔ͜ͱΛ֬ೝͨ͠ (Yamada and Himeno, 2013)ɻ ຊൃදͰɺଟඪຊͷԼͰͷ݁Ռ (Yamada and Himeno (2013)) ΛҰൠͷଟมྔઢܗϞσϧ (1) ʹ֦ு ͢ΔͨΊʹඞཁͳ݅Λ۩ମతʹௐɺͲͷΑ͏ͳ݅ͷԼͰ͋ΕɺؼແԾઆ (2) ʹର͢Δݕఆ౷ྔܭ ͷۙؼແͷਖ਼نੑ͕ಘΒΕΔ͔Ͳ͏͔Λٞ͢Δɻ ࢀߟจݙ [1] Yamada, T. and Himeno, T. (2013), Testing homogeneity of mean vectors under heteroscedasticity in high-dimension, TR No. 13-13, Statistical Research Group, Hiroshima University. [2] Himeno, T. and Yamada, T. (2014), Estimations for some functions of covariance matrix in high dimension under non-normality and its applications, Journal of Multivariate Analysis, 130, 27-44.
© Copyright 2025 ExpyDoc