磁石材料微細構造最適化に向けて <<SPring-8との連携>> Sept. 2, 2014 合田 義弘 Y. Gohda Department of Materials Science and Engineering Tokyo Institute of Technology 1 /24 Acknowledgments In collaboration with: Z. Torbatian (ESICMM-UT) D. Hirai (ESICMM-UT) Y. Tatetsu (ESICMM-UT) S. Tsuneyuki (UT) H. Misawa (UT) T. Ozaki (UT) T. Nakamura Sept. 2, 2014 2 /24 (JASRI/Spring-8) Y. Gohda contents microstructures of magnets XMCD in SPring-8 First-principles calculations of microstructure interfaces Toward calculations of interface magnetic anisotropy Method for calculations of site/orbital decomposition Strain effects on anisotropy in Y2Fe14B system Summary Sept. 2, 2014 3 /24 Y. Gohda wind turbine permanent magnets permanent magnet synchronous motor used at high temperature Large magnetic moment High Curie temperature High coercivity Sept. 2, 2014 4 /24 Y. Gohda figure of merit: BHmax Sept. 2, 2014 Hc: coercive field 5 /24 J.M.D. Coey, IEEE Trans. Magn. 47, 4671 (2011). Y. Gohda magnetic couplings in Nd2Fe14B Nd 4f 3d-5d hybridization Hund coupling Nd 5d Fe 3d Density of states [arb. unit] up Ndf 4f j2 Fe 3d Ndf 5d 0 Ndf 5d Fej2 3d down −10 −8 Ndf 4f −6 −4 −2 0 2 4 6 8 Energy relative to εF [eV] a=8.76Å, c=12.11Å, μ=36.9μB/fu: DFT+U(6eV) w/o SOC Sept. 2, 2014 a=8.79Å, c=12.18Å μ=37.3μB/fu: experiment 6 /24 [J.M.D. Coey, 2009] Y. Gohda Nd-Fe-B sintered magnet @ 1000 ℃ B. Hallemans et al., J. Phase Equilibria (1995). W.F. Li et al., Acta Mater. (2011). Nd2Fe14B ≈5 μm main phase: micrograin of Nd2Fe14B grain-boundary phase: amorphous Nd-Fe alloy sub-phase: Nd-rich phases including oxides formed as the final point of solidification Sept. 2, 2014 7 /24 Y. Gohda supercomputer「京」 HPCIシステム一般利用 (hp120086) 「新磁石材料探査とその保磁力発現機構の解明」 Sept. 2, 2014 第一原理計算とマイクロマグネティクスシミュレーションを組み 合わせたマルチスケール解析 Y. Gohda 8 /24 微細構造の丸ごとシミュレーション(富士通・NIMS) SW model Considering a magneto-static interaction Non Magnetic layers(NML) at GBs Introduction of SMLs at GBs 富士通 プレスリリース (2013) Soft Magnetic layers(SML) at GBs 系のサイズ:サブμm Including initial reverse domain Soft Magnetic layers at GBs and initial reverse Domain 磁壁幅:∼5 nm 京による超並列計算:1 nm程度のグリッド幅 -> 磁壁幅を考慮に入れたシミュレーション Sept. 2, 2014 9 /24 Y. Gohda contents microstructures of magnets XMCD in SPring-8 First-principles calculations of microstructure interfaces Toward calculations of interface magnetic anisotropy Method for calculations of site/orbital decomposition Strain effects on anisotropy in Y2Fe14B system Summary Sept. 2, 2014 10/24 Y. Gohda Evaluation of mGB w/o knowledge of GB details To obtain mXMCD by sum-rule analysis, the number of 3d holes is needed. First-principles calculations Sept. 2, 2014 12 /24 Y. Gohda Number of Fe 3d electrons Fe 3d in Nd2Fe14B Fe 3d in Y2Fe14B up+down 6.67 6.60 up-down 2.60 2.47 Mulliken population analysis mGB = 1.4 μB -> GB phase identified as ferromagnetic Sept. 2, 2014 13/24 Y. Gohda Further collaboration 第一原理計算による実験対象とする系の同定 計算結果に応じたモデル試料の作成 放射光等による計測 計測結果に応じた第一原理計算による理論解析 微細構造の副相および主相/副相界面 Sept. 2, 2014 14/24 Y. Gohda contents microstructures of magnets XMCD in SPring-8 First-principles calculations of microstructure interfaces Toward calculations of interface magnetic anisotropy Method for calculations of site/orbital decomposition Strain effects on anisotropy in Y2Fe14B system Summary Sept. 2, 2014 15/24 Y. Gohda role of oxygen Sepehri-Amin et al., Acta Mater. 60, 819 (2012). non-equilibrium NdOx phase nucleation of magnetic domains at main-phase/triple-junction interfaces? Sept. 2, 2014 16 /24 Y. Gohda Nd4O 0 Mixing energy [eV] Nd −0.5 octahedral −1 tetrahedral Nd O Nd4O −1.5 −2 −2.5 −3 mixing entropy ≈ 0.02 eV (300 K) 0 0.1 0.2 0.3 NdO 0.4 0.5 Oxygen concentration Oxygen at tetrahedral sites Density of states [arb. units] up Nd f Nd f O 0 O Nd f down Nd: [Xe](6s5d)2.54f3 −10 −5 0 5 10 Energy relative to εF [eV] a=5.44 Å <- agrees with experiment Sept. 2, 2014 17/24 Y. Gohda Nd2Fe14B(001)√2×√2-Nd4O(001)√5×√5 Fe 2 3d μ=2.64μB DOS [1/eV] 1 0 -1 -2 -8 -6 -4 -2 0 2 4 6 8 6 8 Energy [eV] 2 μ=2.44μB DOS [1/eV] 1 0 -1 -2 -8 -6 -4 -2 0 2 4 Energy [eV] anisotropy at the interface? Sept. 2, 2014 18/24 Y. Gohda contents microstructures of magnets XMCD in SPring-8 First-principles calculations of microstructure interfaces Toward calculations of interface magnetic anisotropy Method for calculations of site/orbital decomposition Strain effects on anisotropy in Y2Fe14B system Summary Sept. 2, 2014 19/24 Y. Gohda strain effect Y2Fe14B YFe3 MAE (MJ/m3) . 2.0 . . . 0.0 . . 0.97 . . 1.0 0.97 1.0 1.0 . c/c0 a/a0 1.03 Y: [Ar+3d10]4s24p65s24d1 Fe: [Ne]3s23p64s23d6 3d-5d hybridization Nd 5d Fe 3d Sept. 2, 2014 Y2Fe14B 20/24 Y. Gohda MAE expressed by perturbation scheme Sept. 2, 2014 21/24 Y. Gohda anisotropy decomposition Y2Fe14B perturbation self-consistent equilibrium 4.0 meV (0.69 MJ/m3) 2.6 meV (0.45 MJ/m3) compressed 13.4 meV (2.58 MJ/m3) 11.2 meV (2.16 MJ/m3) 1MJ=6.24151x1024eV Sept. 2, 2014 22/24 Y. Gohda LDOS at the Fe j2 site (b) Y †* k2 k2 j1 k2 k1 k1 j2 j1 k2 k2 Y *† Z. Torbatian, T. Ozaki, S. Tsuneyuki, & Y. Gohda, Appl. Phys. Lett. (2014). Sept. 2, 2014 23/24 Y. Gohda summary microstructures of magnets XMCD in SPring-8 First-principles calculations of microstructure interfaces Toward calculations of interface magnetic anisotropy Method for calculations of site/orbital decomposition Strain effects on anisotropy in Y2Fe14B system Sept. 2, 2014 24/24 Y. Gohda
© Copyright 2024 ExpyDoc