発表資料

磁石材料微細構造最適化に向けて
<<SPring-8との連携>>
Sept. 2, 2014
合田 義弘
Y. Gohda
Department of Materials Science and Engineering
Tokyo Institute of Technology
1 /24
Acknowledgments
In collaboration with:
Z. Torbatian (ESICMM-UT)
D. Hirai (ESICMM-UT)
Y. Tatetsu (ESICMM-UT)
S. Tsuneyuki (UT)
H. Misawa (UT)
T. Ozaki (UT)
T. Nakamura
Sept. 2, 2014
2 /24
(JASRI/Spring-8)
Y. Gohda
contents
microstructures of magnets
XMCD in SPring-8
First-principles calculations of microstructure
interfaces
Toward calculations of interface magnetic
anisotropy
Method for calculations of site/orbital decomposition
Strain effects on anisotropy in Y2Fe14B system
Summary
Sept. 2, 2014
3 /24
Y. Gohda
wind turbine
permanent magnets
permanent magnet synchronous motor
used at high temperature
Large magnetic moment
High Curie temperature
High coercivity
Sept. 2, 2014
4 /24
Y. Gohda
figure of merit: BHmax
Sept. 2, 2014
Hc: coercive field
5 /24
J.M.D. Coey, IEEE Trans. Magn. 47, 4671 (2011).
Y. Gohda
magnetic couplings in Nd2Fe14B
Nd 4f
3d-5d hybridization
Hund coupling
Nd 5d
Fe 3d
Density of states [arb. unit]
up
Ndf 4f
j2
Fe 3d
Ndf 5d
0
Ndf 5d
Fej2 3d
down
−10
−8
Ndf 4f
−6
−4
−2
0
2
4
6
8
Energy relative to εF [eV]
a=8.76Å, c=12.11Å, μ=36.9μB/fu: DFT+U(6eV) w/o SOC
Sept. 2, 2014
a=8.79Å, c=12.18Å μ=37.3μB/fu: experiment
6 /24
[J.M.D. Coey, 2009]
Y. Gohda
Nd-Fe-B sintered magnet
@ 1000 ℃
B. Hallemans et al.,
J. Phase Equilibria (1995).
W.F. Li et al., Acta Mater. (2011).
Nd2Fe14B
≈5 μm
main phase: micrograin of Nd2Fe14B
grain-boundary phase: amorphous Nd-Fe alloy
sub-phase: Nd-rich phases including oxides formed as the final point of solidification
Sept. 2, 2014
7 /24
Y. Gohda
supercomputer「京」
HPCIシステム一般利用 (hp120086)
「新磁石材料探査とその保磁力発現機構の解明」
Sept. 2, 2014
第一原理計算とマイクロマグネティクスシミュレーションを組み
合わせたマルチスケール解析
Y. Gohda
8 /24
微細構造の丸ごとシミュレーション(富士通・NIMS)
SW model
Considering a magneto-static
interaction
Non Magnetic layers(NML) at GBs
Introduction of
SMLs at GBs
富士通 プレスリリース (2013)
Soft Magnetic layers(SML) at GBs
系のサイズ:サブμm
Including initial
reverse domain
Soft Magnetic layers at GBs
and initial reverse Domain
磁壁幅:∼5 nm
京による超並列計算:1 nm程度のグリッド幅 -> 磁壁幅を考慮に入れたシミュレーション
Sept. 2, 2014
9 /24
Y. Gohda
contents
microstructures of magnets
XMCD in SPring-8
First-principles calculations of microstructure
interfaces
Toward calculations of interface magnetic
anisotropy
Method for calculations of site/orbital decomposition
Strain effects on anisotropy in Y2Fe14B system
Summary
Sept. 2, 2014
10/24
Y. Gohda
Evaluation of mGB
w/o knowledge of GB details
To obtain mXMCD by sum-rule analysis, the
number of 3d holes is needed.
First-principles calculations
Sept. 2, 2014
12 /24
Y. Gohda
Number of Fe 3d electrons
Fe 3d in Nd2Fe14B Fe 3d in Y2Fe14B
up+down
6.67
6.60
up-down
2.60
2.47
Mulliken population analysis
mGB = 1.4 μB -> GB phase identified as ferromagnetic
Sept. 2, 2014
13/24
Y. Gohda
Further collaboration
第一原理計算による実験対象とする系の同定
計算結果に応じたモデル試料の作成
放射光等による計測
計測結果に応じた第一原理計算による理論解析
微細構造の副相および主相/副相界面
Sept. 2, 2014
14/24
Y. Gohda
contents
microstructures of magnets
XMCD in SPring-8
First-principles calculations of microstructure
interfaces
Toward calculations of interface magnetic
anisotropy
Method for calculations of site/orbital decomposition
Strain effects on anisotropy in Y2Fe14B system
Summary
Sept. 2, 2014
15/24
Y. Gohda
role of oxygen
Sepehri-Amin et al., Acta Mater. 60, 819 (2012).
non-equilibrium NdOx phase
nucleation of magnetic domains at main-phase/triple-junction interfaces?
Sept. 2, 2014
16 /24
Y. Gohda
Nd4O
0
Mixing energy [eV]
Nd
−0.5
octahedral
−1
tetrahedral
Nd
O
Nd4O
−1.5
−2
−2.5
−3
mixing entropy ≈ 0.02 eV (300 K)
0
0.1
0.2
0.3
NdO
0.4
0.5
Oxygen concentration
Oxygen at tetrahedral sites
Density of states [arb. units]
up
Nd f
Nd f
O
0
O
Nd f
down
Nd: [Xe](6s5d)2.54f3
−10
−5
0
5
10
Energy relative to εF [eV]
a=5.44 Å <- agrees with experiment
Sept. 2, 2014
17/24
Y. Gohda
Nd2Fe14B(001)√2×√2-Nd4O(001)√5×√5
Fe
2
3d
μ=2.64μB
DOS [1/eV]
1
0
-1
-2
-8
-6
-4
-2
0
2
4
6
8
6
8
Energy [eV]
2
μ=2.44μB
DOS [1/eV]
1
0
-1
-2
-8
-6
-4
-2
0
2
4
Energy [eV]
anisotropy at the interface?
Sept. 2, 2014
18/24
Y. Gohda
contents
microstructures of magnets
XMCD in SPring-8
First-principles calculations of microstructure
interfaces
Toward calculations of interface magnetic
anisotropy
Method for calculations of site/orbital decomposition
Strain effects on anisotropy in Y2Fe14B system
Summary
Sept. 2, 2014
19/24
Y. Gohda
strain effect
Y2Fe14B
YFe3
MAE (MJ/m3)
.
2.0
.
.
.
0.0
.
.
0.97
.
.
1.0
0.97
1.0
1.0
.
c/c0
a/a0
1.03
Y: [Ar+3d10]4s24p65s24d1
Fe: [Ne]3s23p64s23d6
3d-5d hybridization
Nd 5d
Fe 3d
Sept. 2, 2014
Y2Fe14B
20/24
Y. Gohda
MAE expressed by perturbation scheme
Sept. 2, 2014
21/24
Y. Gohda
anisotropy decomposition
Y2Fe14B
perturbation
self-consistent
equilibrium
4.0 meV
(0.69 MJ/m3)
2.6 meV
(0.45 MJ/m3)
compressed
13.4 meV
(2.58 MJ/m3)
11.2 meV
(2.16 MJ/m3)
1MJ=6.24151x1024eV
Sept. 2, 2014
22/24
Y. Gohda
LDOS at the Fe j2 site
(b)
Y
†*
k2
k2
j1
k2
k1
k1
j2
j1
k2
k2
Y
*†
Z. Torbatian, T. Ozaki, S. Tsuneyuki, & Y. Gohda, Appl. Phys. Lett. (2014).
Sept. 2, 2014
23/24
Y. Gohda
summary
microstructures of magnets
XMCD in SPring-8
First-principles calculations of microstructure
interfaces
Toward calculations of interface magnetic
anisotropy
Method for calculations of site/orbital decomposition
Strain effects on anisotropy in Y2Fe14B system
Sept. 2, 2014
24/24
Y. Gohda