Nov 5, 2014 Symposium in AAPS2014 (San Diego) What is new in oral delivery of biologics? Mechanistic aspects, delivery platforms, and clinical development with case studies. Paracellular or transcellular? Promising approaches for oral delivery of macromolecules Masuo Kondoh, Kiyohito Yagi Graduate School of Pharmaceutical Sciences Osaka University Spiral progression The philosopher Hegel(1770-1831) Future Present Past Nothing is lost or destroyed but elevated and preserved as in a spiral. The past will re-emerge with progress. Motivation behind today’s talk The philosopher Hegel(1770-1831) Future Present Past Nothing is lost or destroyed but raised up and preserved as in a spiral. The past will re-emerge with progress Spiral progression of oral delivery of macromolecules with progress in understanding the epithelial barrier Outline of today’s talk Future 1)The beginning of the spiral progression ・What the epithelial barrier was thought to be ・1st generation permeation enhancers ・Transporter- and receptor-mediated strategies Present Past 2) Recent spiral progression ・Current understanding of the epithelial barrier ・2nd generation permeation enhancers ・Tricellular tight junctions Biologics http://www.xconomy.com/seattle/2009/07/09/how-healthcare-legislationcan-ensure-patient-safety-and-spur-innovation/ Interface for oral delivery of biologics Mucosal surface area per person http://upload.wikimedia.org/wikipedia/commons/8/8f/Illu_epithelium.jpg The beginning of the spiral progression in enhancing absorption Windsor and Cronheim, Nature, 4772, 263, 1961 EDTA enhanced mucosal absorption of heparin However, the mode of action was unclear. Epithelial barrier TJ : tight junction Before 1963 Tsukita and Furuse, Trend Cell Biol, 9, 268, 1999 After 1963 TJ Absorption enhancers (of many) Enhancer EDTA Sodium caprate Sodium laurate Year 1960s 1980s 1980s PODTM technology (Oramed Pharm., Inc.) Insulin U.S. Phase 2a Increased paracellular permeability of possible toxic molecules EDTA Will launch in 2015 TPETM technology (Chiasma, Inc.) Octreotide Phase 3 Sodium caprylate Eligen® technology (Emisphere Technol., Inc.) Calcitonin, heparin, insulin Phase 2 SNAC ChronotropicTM technology (Dexcel Pharma Technol., Ltd.) Insulin Sodium glycocholate GIPETTM technology (Merrion Pharma Technol., Ltd.) Increased paracellular permeability Acyline, Heparin, Insulin, GLP-1 Sodium caprate AxcessTM delivery system (Proxima Concept, Ltd.) Insulin Phase 2a Permeation enhancers of possible toxic molecules Increased paracellular permeability of possible toxic molecules PeptelligenceTM technology (Enteris BioPharma, Inc.) Increased paracellular permeability Calcitonin Phase 3 Permeation enhancers Ref) Choonara et al., Biotechnol. Adv., in press of possible toxic molecules TPE technology (Chiasma, Inc.) Octreotide Absorption enhancers Phase 3 Sodium caprylate Eligen® technology (Emisphere Technol., Inc.) Calcitonin, heparin, insulin Phase 2 SNAC ChronotropicTM technology (Dexcel Pharma Technol., Ltd.) Insulin Sodium glycocholate GIPETTM technology (Merrion Pharma Technol., Ltd.) Increased paracellular permeability Acyline, Heparin, Insulin, GLP-1 Sodium caprate AxcessTM delivery system (Proxima Concept, Ltd.) Insulin Phase 2a Permeation enhancers of possible toxic molecules Increased paracellular permeability of possible toxic molecules PeptelligenceTM technology (Enteris BioPharma, Inc.) Increased paracellular permeability Calcitonin Phase 3 Permeation enhancers Ref) Choonara et al., Biotechnol. Adv., in press Absorption enhancer TJ of possible toxic molecules Spiral progression continues Enhancer EDTA Sodium caprate Sodium laurate Year 1960s 1980s 1980s Problems with absorption-enhancers 1)Influx of non-drug solutes by opening TJ 2)Non-specificity 3)Cytotoxicity Paracellular delivery Transcellular delivery TJ Active targeted drug delivery systems RCF, reduced folate transporter; PCFT, proton-coupled folate transporter SMVT, sodium-dependent multivitamin transporter Ref) Li et al., Expert Opin. Drug Deliv., in press Active targeted drug delivery systems Problems with ATDDS 1)Conjugation: loss of activity and affinity 2)Fusion: low bioavailability due to larger size 3)Carrier: size limitations 4)All: GI degradation of ligands Currently no clinical studies Ref) Li et al., Expert Opin. Drug Deliv., in press How to resolve these problems? Problems with absorption-enhancers 1)Influx of non-drug solutes by opening TJ Paracellular delivery 2)Non-specificity 3)Cytotoxicity Future Problems with ATDDS Present 1)Conjugation: loss of activity and affinity 2)Fusion: low bioavailability due to larger size Past Transcellular delivery 3)Carrier: size limitation 4)All: GI degradation of ligands TJ Spiral progression The philosopher Hegel(1770-1831) Future Present Progress in Barriology From para to trans DDS Past 1963:Identification of TJ Spiral progression of oral delivery for macromolecules with progress in understanding of the epithelial barrier. Biological roles of TJs 1) Barrier separating the apical side and the basal side 2) Compartmentalization of tissues 3) Maintenance of homeostasis in each tissue by regulation of solute movement Goal keeper Gate keeper Modulation of the TJ barrier Will lead to the development of novel tissue- and drug-specific delivery systems Progress in TJ cell biology TJ Year Event 1963 Identification of TJ 1964 Various CLDNs Opening TJ-seal by EDTA Occludin 1973 Identification of TJ strands 1982 Lipid micelle theory 1993 Identification of occludin 1998 Identification of claudin (CLDN) 1999 onwards TJ-barrier function of CLDNs 2005 Identification of tricellulin CLDNs, key components in TJ-seal formation CLDN family Epithelium TJs CLDN ・MW ~23 kDa ・A tetra-transmembrane protein ・Component of the TJ-seal ・27 members ・Tissue-specific expression ・Tissue-specific barrier function CLDN-1, epidermis; CLDN-4, mucosal epithelium; CLDN-5, blood-brain-barrier CLDN strands Side-by-side CLDNs-based paracellular routes Size-selective Charge-selective Head-to-head Trends Cell Biol, 2006 The CLDN technology will make a breakthrough in paracellular drug delivery from disrupting or opening TJs-seal to modulating TJs-seal Classification of absorption-enhancers 1st generation absorption-enhancers (of many) Absorption-enhancer Possible mode of action EDTA Sequestration of Ca2+ Surfactants Perturbation of the plasma membrane Sodium caprate Phospholipase C 2nd generation absorption-enhancers (of many) Absorption-enhancer Possible mode of action Occludin EL peptide CLDN EL peptide C-CPE Prevention of head-to-head interaction Prevention of head-to-head interaction CLDN-3/-4 Drug Discov Today, 2008 Dynamism of CLDN strands Annealing CLDN strands min:sec Bar= 1 mm Breaking CLDN strands PNAS, 100, 3971, 2003 CLDN strands exhibit dynamic behavior Curr Opin Cell Biol, 16, 140, 2004 Breaking/resealing CLDN strands may result in solute movement Schematic illustration of CLDN-strands 1st generation enhancers Disruption or opening TJs-seal 2nd generation enhancers No disruption or opening TJs-seal Safety evaluation of the CLDN strategy CLDN-5 knockout analysis Tracer assay CLDN-5 +/+ Morphology of tight junction CLDN-5 -/- CLDN-5 +/+ Red, biotinylation reagent (443 Da) CLDN-5 -/- J Cell Biol, 161, 653, 2003 Influx of solutes (~800 Da) into brain TJ with normal appearance CLDN-5 knockdown analysis CLDN-5 siRNA 24h 48h 72h Blue, Hoechst 33342 (562 Da) Green, FITC-dextran (4400 Da) J Gene Med, 10, 930, 2008 Control siRNA No apparent adverse effects during the 48 h period Targets for 2 nd generation enhancers Bicellular tight junction (bTJ) Occludin Claudin Tricellulin Angulin (LSR) Tricellular tight junction (tTJ) CLDN-targeted mucosal absorption C-CPE ・A receptor binding domain of Clostridium perfringens enterotoxin ・The first identified CLDN binder and modulator ・Binding to CLDN-3 and -4 with high affinity ・The best characterized CLDN binder J Biol Chem, 283, 268, 2008 20 15 10 5 0 0 0.05 0.10 C-CPE Amount of absorbed FDs (h·µg/ml) Amount of absorbed FD-4 (h·µg/ml) Jejunal absorption of FD 40 (mg/ml) Sodium caprate 16 14 12 10 8 6 4 2 0 Vehicle C-CPE 0.1 mg/ml FD-4 FD-10 FD-20 FD-40 Mol Pharmacol, 67, 749, 2005 CLDN-3/-4 binder is a 400-fold more potent absorption enhancer Mucosal absorption of a biologic Plasma hPTH (ng/ml) hPTH:human parathyroid hormone. MW 4000. A clinically used peptide drug. Injection route of admin. Biochem Pharmacol, 79, 1437, 2010 Nasal 3 Jejunal 3 Vehicle 300 Vehicle CLDN binder CLDN binder 0.2 mg/ml 0.2 mg/ml 4.0 mg/ml 2 200 1 1 100 30 60 90 Time (min) 0 120 0 30 60 90 Time (min) 120 Vehicle CLDN binder 0.2 mg/ml 0.8 mg/ml 2 0 0 Pulmonary 0 0 30 60 90 Time (min) 120 CLDN binder enhanced mucosal absorption of a peptide drug Effects of CLDN-specificity on jejunal absorption C-CPE ・CLDN-3/-4 binder m19 ・A C-CPE mutant ・CLDN-1~-5 binder Blue: positive charge White: neutral Red: negative charge 8 AUC values Vehicle C-CPE m19 6 4 2 0 0 1 2 3 4 Time (h) 5 6 Absorbed FD-4 (µg・h/ml) Plasma FD-4 (µg/ml) Time-course * p<0.05 20 15 10 5 0 Vehicle C-CPE m19 Biomaterials, 33, 3464, 2012 CLDN specificity may control absorption-enhancing activity The first angulin binder, angubindin-1 Tricellular TJ The first tTJ component A determinant factor for the localization of tricellulin Tissue Barriers, 2, e28755, 2014 Angulin binder Cell numbers Angubindin-1 28 kDa EpH4 cells (Angulin-1) LSR-kd cells Angulin-2/ LSR-kd cells Angulin-3/ LSR-kd cells Our unpublished data Fluorescence intensity Angubindin-1 is an angulin-1 and -3 binder Immuno-fluorescent analysis of angubindin-1 Angulin Angubindin-1 Merge + DAPI EpH4 cells (Angulin-1) Angulin-2/ LSR-kd cells Angulin-3/ LSR-kd cells Our unpublished data Angubindin-1 is a tricellular TJ binder. Effects of angubindin-1 on localization of biotin reagent passage Vehicle-treated cells X-Z image X-Y image Y-Z image Angubindin-1-treated cells Merge: X-Z image Y-Z image X-Y image mZO-1 Biotin DAPI mZO-1 Biotin DAPI Our unpublished data Angubindin-1 is a modulator of tricellular TJs Cut off sizes in TJs TJs Tricellular TJ Tissue Barrier, 2, e28755, 2014 Cut off sizes in TJs 0.1 1.0 Diameter (nm) 10 Compr Physiol, 2, 1819, 2012 Take home messages Transcellular technology is in the translational stage. 1) Clinical evaluation ~from bench to bed side~ 2) Overcoming future problems encountered in the beginning of clinical studies 3) Issues with conjugation of ligand and biologics Paracellular technology using 1st generation enhancers is in the clinical stage. Paracellular technology using 2 nd generation enhancers is at the stage of basic research. 1) Safety evaluation 2) Development of bi- or tri-specific claudin binders 3) Combination of bTJ binder and tTJ binders Spiral progression of our TJ projects Spiral progression The philosopher Hegel(1770-1831) 2026 Future Present 2014 2002 Past Acknowledgements Freie Universitat and Humboldt Prof. Michael Fromm Dr. Susanne M. Krug National Institute of Health Sciences Dr. Akiko Watabe-Ishii Dr. Minor Tada Showa Pharmaceutical University National Institute of Infection Diseases Dr. Masayoshi Fukasawa Prof. Yoshiaki Watanabe Dr. Makiko Fujii Ehime University Dr. Naoya Koizumi Prof. Tatsuya Sawazaki Dr. Hiroyuki Takeda Asubio Pharma. Co. Ltd. Dr. Hiroshi Uchida Dr. Takeshi Hanada The University of Tokyo Prof. Takao Hamakubo Osaka University Prof. Yasuhiko Horiguchi Prof. Tadayuki Uno Dr. Hiroshi Aoyama Kobe University Prof. Mikio Furuse Funding Acknowledgements Thank you for your attention!! 当グループのパイプライン Binder創製 低分子化合物 論文 POC 特許申請 CL-3, CL-4 粘膜吸収促進 国内・PCT 論文 CL-3, CL-4 粘膜ワクチン 国内・PCT 論文 CL-3, CL-4 癌治療 国内・PCT 論文 CL-1~-5 粘膜吸収促進 国内・PCT 論文 Angulin-1/-3 粘膜吸収促進 国内・PCT 論文 CL-1 HCV感染阻害 国内・PCT 論文 CL-4 癌診断・治療 論文 CL-3, CL-4 CL-1, CL-2 CL-4, CL-5 ペプチド 抗体 CL-2 CL-5 Occludin 国内・PCT 補足資料2 低分子claudin binder創製系 Claudin binderのハイスループットスクリーニング(HTS)系 TR-FRET XL665-anti GST アルファスクリーン Acceptor 655 nm ドナービーズ アクセプター 1O 2 ビーズ 励起光 (680 nm) Claudin Eu(K)-anti His Donor CL 1O 2 発光シグナル (520-620 nm) Claudin binder 620 nm 337 nm 1O 2 発光シグナル (520-620 nm) 使用予定のライブラリ 化合物ライブラリ 文科省創薬等PF事業 理研化合物ライブラリ 特殊環状ペプチドライブラリ 文科省創薬等PF事業 ファージライブラリ scFv, ペプチド
© Copyright 2024 ExpyDoc