Departmental Bulletin Paper / 紀要論文 部分ユニモジュラー構造についてのノート (III) Notes on Partially Unimodular Structures (III) 蟹江, 幸博 Kanie, Yukihiro 三重大学教育学部研究紀要. 自然科学. 1983, 34, p. 1-5. http://hdl.handle.net/10076/4696 Bulletin of the Faculty of Education,Mie University.34肋EuTqL Science(1983),1-5 NotesonPartia"yUnjmodularStructures(ⅠⅠⅠ) by Yukihiro KANIE β甲∬加e〝J(が肋助e〝∽血3,〟おこ加γe和砂 ThisnotesisacontinuationofPartIandⅡ(【K-5,6]),andhereweusethesamenota・ tions.Theresultsstatedhereareannouncedin[K・7]. S6.FoliationsonToruS(Ⅲ)・ Inthissection,WeStudyderivationsof2,(Tq+L) fortheproductfo1iationJonthe(q+1)-tOruSTq+L=S主×Tq=((x,y,,…‥,yq)∈Rq+L/ r=血・ (22rZ)q+L),givenby(yi=COnStant),andthestrictlypartiallyunimodularstruCture Then,Z=∂x,C¢(Tq+))Ly=CO(Tq),弟(Tq+))=、‰T(Tq+L)=C00(r'L)∂xand gr(r折り=g。,(r叶り=し鶏(r叶り⑳部(アマ)=C閣(r9)∂ズ⑳∑C00(r9)∂f, Wherewedenote∂,iby∂i(1≦i≦q). At丘rst,WegetthesimilarpropositionsasLemmalOandPropositionll. Lemma.14.(i)Ifx∈.乾(Tq+L)satiiPestheTehltibns[x,∂L]=[X,SinyE∂)]=0 (J≦f≦α),班e〃ズ由eズpreJJedα∫方=C∂∬βr∫0椚eCO那ね乃Jc. 「fり 乃ece乃ねr′〆.玖(r頼)00血血ね川血カ月∂ズ. Proposition15.Dq伽ethelinear椚仰ingsA.B.andCq/},(Tq+L)Eoitseqas Aし省(r叶J))=β, A(′(γ)∂J)=(∂J′)(γ)∂ズノ 夙(し汽(T拙))=♂, 風(′(γ)∂J)=∂り′(γ)∂よJ C(′(γ)∂ズ)=′(γ)∂ズ, Cは(γ出))=β わm叩γル胱瀬川/欄=㌘(γ出).乃飢A,風α〃dCαre血相Jわ那qr gT(r叶J),鍋飢腔 叩〝か0〟肘,J如才れ助町αre仰rreα肋α抽わ′γeCわrβe肋0〃r…. 肋rβ0γ〝,[A,&]=β,【臥β」=♂,[C,A】=Aα乃d[C,&】=β`(j≦f,メ≦α). Thenweget ¶leOreml` 「り 上eJβ∂eα庇わ帽Jわ乃(がゑ(r叶1).7触乃,Jゐe柁α由ねαyeCわr βと〟Ⅳ0乃r拙α〃dの乃∫ね〃ねα,∂f(J≦i≦¢)α乃dc∈Rぷ〟C力J如J β=adⅣ+αA+冥∂一風+cC 一1- Yukihiro 此〉reOpeち血co那加摘 α,∂`α〃d Kanie c∬e〟両〟eかde館〝乃加e4α乃dⅣ由加gr(r拙) α〃d由〟両〟e椚0血わ〟柁Ce〃おrJ=月∂ズ q「裳(r…).乃耶α柁仰湖山和J仙妙虚血Jわ那`が名(7サ=). 「可 乃e伽Jco如椚0わ紗J㍗=J㌢(裳(T州);名(r叶り)由げ肋乃e〃血乃中2, α〃dαぶα上feα如ム相計加ざヴゼ邸乃e和ね柑A,β`α乃dCw肋作加わ那【A,&】=♂, 【&,昆】=0,【C,A]=Aand[C,Bi]=Bi. bea L>oqf:Sincethestatement(i)implies(ii),WePrOVeherethe丘rststatement.LetD derivationof2T(Tq+)). Let D'bethelinearmappingof9t(Tq)toitselfwhichassignstoX∈9t(Tq)the 9t(T.)-COmPOnent OfD(X)・Then,SimiladyasintheproofofTheorem12,WegetaVeCtOr 丘eld取∈9t(Tq)suchthat X∈9t(Tq). D,(X)=【町J,X]fbrany Let DL=D-adWL,then DLisaderivationofし弟(Tq+))suchthat D)(9t(Tq)) ⊂し汽(γ出). De血ethefunctions hi(y)∈C∞(Tq)asD)(ai)=hi(y)∂x(1≦i≦q).Thenweget that∂Ehj=∂jhi.Infact,aPPly DL tOtheequality[∂t,∂j]=0.Put bi(y)=(27r) L L2㌔i(y)dyi,thenweget ∂J∂刷=(2けイ2て∂勅))れ=(2けイ2て∂勅))れ=(2が[ゐ刷 hencethesefunctions biareCOnStantS,SOWemayPut ∂f=(2がJ2も`(β・t・‥伽,♂・…・・のれ 柚)=真上ツ紘(♂,…・♂,抽+1,…・・釣十-れ)d′・ Now,We de丘ne vector丘eldI佐 asl偽=-H(y)∂xin D2=DL L7t(Tq+L),andlet -ad取-∑biBi.Then,WegetthatD2isadeTivationofし7;(Tq+))suchthat D2(9((Tq)) ⊂し先(γ出)α乃dβ2(∂`)=β(J≦才≦わ.Inねct, ∂酌)=鼠1上方∂`招・…・・柚仙…・,γq肋+払肌…伽,γ =引篭メ紬…・裾γ出…・,γ。)d什…,…・,♂,γ跡目 =諦ゐf(β,…・,抽げ‥,γ9)】ごご+れ(♂,…・,紬,γ =巌(γ㍉…・,γ。)-∂`, 鋸∂f)=鋸∂fト【眺,∂f]一兵岨(∂f) =ゐf∂∬-(広一占`)∂∬-∂f∂ズ=仇 -2- NoTES Apply that ON PARTIALLY UNIMODULAR SrRUCTURES(皿) D2tOtheequalities[∂x,∂i]=[∂x,Sinyi∂)]=0,thenbyLemma14weget forsomeconstant D2(∂x)=C∂x Let D3=D2-CC, c∈R. then yr(Tq+L)suchthat D3isaderivationof D3(9((Tq)) ⊂し苑(T軒J)andβ3(∂ズ)=β∫(∂i)=♂. men,Weget b皿m17.7加虎〟帽Jわ乃βぷ由z〝00〃伽肋Jし汽(r巾」). L>0(がDe丘nethefunctionsん,fAij,ghiandgAij∈C¢(Tq)as D3(sinkyi∂x)=fhi∂x+∑f頼∂jandD3(coskyL∂x)=ghi∂x+∑g柏∂j. D3tOthe Then,WegCtthatthesefunctionsdependonlyonthevariableyi・Infact,aPPly qpalities8i,ksinkyi∂,=koskyi∂x,∂,]and8ijkcoskyL∂x=[∂j,Sinkyi∂x]・Moreover,by thesimnarargumentsasintheproofofTheorem14,Wegetthatthesefunctionsvmish,and thestatementofthelemma. D3isaderivationof裳(Tq'L) Returningtotheproofofthetheorem,Weknowthat and suchtbatヱ)J(乳(Tq))⊂し苑(r拙),β3(∂f)=β fij and De丘nethefunctions gtj(1≦i,j≦q)inC∞(Tq)as D3(sinyi∂j)=fij(y)∂x D3(cosyt∂j)=gtj(y)∂x. and Thenwegetthatthesefunctionsfij apply 上)よし汽(r叶J))=β. and depend gij only onthe variabley`・Infact, D3tOtheequalities 8LhSinyi∂j=kosyi∂j,∂.] 8i鳥COSyi∂j=[∂h,Sinyi∂j]. and Moreover,bythesimi1arargumentsasinthepr00fofTheorem14,Wegettheconstants のり≦i≦仔)sucb血at D3(sinyi∂j)=8ijaiCOSyi∂x D3(cosyL∂j)=-8ijaiSinyi∂x. and 乃瑠eeO那ぬ乃ねのの加c克おw肋朗C力0助仇 bmma18. Hereweshowthat 伽qf aL=a2.Puty=y)and z=y2・De丘nethefunctions ′andg∈C00(r9)as D3(sin(y+z)∂))=f∂x D3(cos(y+z)∂L)=g∂x and (notethat∂,=∂,,.).Simnarlyasabove,Wegetthatthefunctionsfandgdependonlyon thevariable yL Apply and y2. D3tOtheeqpalities kos(y+勿∂L,∂i]=Sin(y+可∂Land[∂L,Sinh7十Z)∂L]= cos付+z)∂,(i=1,2),thenwegctthatthesefunctionsfandgsatisfytheconditionofthe followinglemma. -3- Yukihiro bmmal,・上eりα〃d Kanie gα柁伽α加∫げル仰W由抽ぷγ∫α乃dγヱ,∬上砂加g伽 蜘乃J血Jeq〟αJわ耶 ∂f′=g α乃d ∂fg=一′ (オ=j,2).乃e〃班即∬eCO耶ぬ乃ねαα乃dβ乳化力∫血〟 f=aSin(yL+y2)+β.cos(yL+y2)and g=-βsin(y,+y2)+acos(y,+y2). WecanprovethislemmabyuslngLemma13twice. Here,this constantαPrOVeS tObezero・Infact,aPPlyD3tOtheequality∂)= kos(γ+之)∂J,Sin(γ+g)∂止 ApplyD3tOtheequalitysinz∂]=[sin(y+z)∂L,Siny∂L],thenweget O=hgcos(y+z)∂x,Siny∂L]+[sin(y+z)∂,,a)COSy∂x] =βsinysin(y+z)∂x-aLSin(y+z)siny∂L, hencewegetthatβ=aL,thatis, β3(sin(γ+z)∂ヱ)=αJCOS(γ+z)∂ズ. Simi1arlywegetthat β∂(sin(γ+z)∂2)=α2COS(γ+z)∂ズ. Apply D3tOtheequality 【sinz∂L,Siny∂2]+kosy∂2,COSZ∂L]=Sin(y+z)∂2-Sin(y+z)∂,, thenweget ♂=α2COS(γ+z)∂ズーα∫COS(γ+z)∂ズ, hence,a)equalsto a2・Thus,Lemma18isproved. Returnmgtotheproofofthetheorem・Put a=ai,andlet D4=D3-aA,thenD4 isaderivationof9Pr(Tq+L)suchthat D4(5i(Tq+)))=0,D4(9I(Tq))⊂Lr;(Tr(T…), β一(∂f)=β4(sinγf∂J)=β。(cosγf∂J)=β(J≦f,ノ≦わ. Moreover,bythesimilarargumentSaSintheproofofTheorem14,WeCanShowthat D4(f∂L)=0foranyf∈C00(Tq),hence D4(裳(Tq+L))=0,thatis, β=ad(帆+取)十αA+∑れ&+cC. FortheunlqueneSSOftheexpressionofD,itissumcienttoshowthat andW∈,,ifthe derivation a=bE=C=O adW+aA+∑biBL+cC(W∈夙(T…))iszeroon 2r(Tq+))・Infact,aPPlythisderivationtothevectornelds∂x,∂Landsinytaj. -4- Q.E.D. N)TES ON UNIMODULAR PARTIALLY this §7.FoliationsonCylinder(Ⅰ).In SrRUCTURES(Ⅲ) section,We Study derivations of 裳(R]×Tq)fortheproductfbliationontheproductmanifo1d点LxTq,givenby2r-L(t), t∈Tq,andconsiderthes・♪・u・StruCtureT=dx・Thenwehave 名(Rlxrq)=夙(Rヱ×丁年)⑳部(rq)=C00(Tq)∂ズ+∑C虚(r冨)∂ズ・ C A,Bi(1≦i≦q)and Wecande丘nethederivation inProposition150f§6.ThederivationsAandBt of.玖(R]×Tq)similarlyas areproperlyouter,butthelatestCcan C=-ad(x∂x)・ berealizedbythevector丘eldas Thenwegetthefo1lowingtheoremsimilarlyasTheorem16・ 職∞托m20.「り 裳(RJxrq).乃e乃,伽reα血α 上eJβ如α庇わ相加〝〆 γeCわrβe揖Ⅳ0乃R】×㍗α舶00脚加仙川崩れり≦f≦α)∈月∫〟C力血J β=adⅣ+αA+茅∂f昆・ 肋柁卯叫伽co那ぬ畑αα乃d∂f〝e以呵〟ゆ虎ねm加d,α乃dⅣ由加島(R∫×r9) +R∬∂ズα乃d如殉以e椚α加わ助ece乃托r′=R∂ズOrg;(Rlxrq). 仲ノ 乃eβざJco力0椚0わ紗餅=餅(名(RJxT9);g右肘×r9))ね〆成me那加針2, 4凰(j≦よ≦留)and 仇緑川烏山廟如上鮮血臥西行抑矧加ゞ 【A,BL]=[Bt,Bi]=0,[C,A]=A C w肋柁血ぬ耶 and[C,Bi]=Bi. RefereれCeS 【K-1】Y.Kanie:α力omo物ね∫げ上fgα加ゎ招∫げγeCわ′βe肋w肋の亜おぉ旭加α郎)如 Univ・11(1975), representa(ions:Cbsedchzssical卯e,Publ・RJMS・,Kyoto 213-245. 【K-2】-:αゐ0仰わ如∫げ上ねα鹿ム和∫げyecわ′舟肋w肋co敵お咄加α尋わ如 rq?reSentatibns:Eblbtedase,Publ.RIMS.,Kyoto Univ・,14(1978),487-501・ 【K-3】-:助椚e上おα如加∫げγeCわr舟肋0乃βぬねd〝昭〃紳助α乃d伽か血ガ用血〃 abbns,Proc.JapanAcad.,55,Ser.A(1979),409-411・ 【K-4】-:助meエfeα如加Ⅶ∫げyecわr押通α乃d鋤か血血血那ご c加∫血J加〉e,Nagoya αぶeげp∬ぬ砂 Math.J.,82(1981)・ 【K-5]-:Nbtesontwtb砂unimodLhzrstructures似Bul1・Ofthe Mie Umiv.,32NaturalScience,(1981),17-26・ Fac・OfEducation, 【E-6】-:肋細0〃卯r血砂〟〃血0血お∫助血昭働鋸d・,33(1981),ト6・ 【K-7】-:0囁α珊〟明り〃㌦0如甲脇ばC呵)′仰卯αズ〟〝0∼M∽OZ〟那α必中此 c8幻afLfLbLrCfLLLN14,tOapPearin Russ.Math.Surv・(inRussian)・ 【T-1]F.Takens:DerivatibnsdvectorJkhis,Comp・Math・,26(1973),15l-158・ ー5-
© Copyright 2024 ExpyDoc