プログラムの説明ドキュメント(PDF)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
サンプルプログラムソースコード
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <GLUT/glut.h>
ライブラリ
#define NN 10000
// size of array
#define PI 3.14159265
#define echarge
#define ep0
#define emass
// charge of an elementary electron
// Electric permittivity of free space
// mass of a free electron
物理定数
注意)行末にセミコロン(;)は必要ない
/*Declaration of variables related to electron dynamics */
int PARTICLE_NUM;
double dt,time;
int step,total_step;
double side_x,side_y,side_z,sideh_x,sideh_y,sideh_z,Efield;
double epsilon;
static double cd[NN];
static double cd_draw[NN];
static double vl[NN];
static double fc[NN];
static double mass[NN];
static double kinenergy[NN];
配列指定
/***** Declaration of variables related to OpenGL *****/
int stop_flg = 1;
double eye_len=220;
double trans[3] = {0.0, 0.0, 0.0};
double angle[3] = {0.0, 0.0, 0.0};
int mouse_l = 0;
int mouse_m = 0;
int mouse_r = 0;
int mpos[2];
double m_matrix[16];
double i_matrix[16];
/********************************/
/** Declaration of the variables to open the file **/
FILE *fp_output;
/*Initialization of electron dynamics)*/
void init_dynamics(void)
{
int i,j,k;
int ix,iy,iz;
double vl2_sum;
電子のダイナミクスに関する初期条件の設定
/* Device size (in units of nano mater)*/
side_x=
;
side_y=
;
side_z=
;
導体のサイズの指定(nm 単位)
/*Half of the device size ( Don't change this part.)*/
sideh_x=side_x*0.5;
sideh_y=side_y*0.5;
sideh_z=side_z*0.5;
1
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
/*Number of electrons*/
PARTICLE_NUM=
;
PARTICLE_NUM=計算に使う粒子数
/*time step */
dt=
;
dt=時間の刻み幅
/*time initialization*/
step = 1;
step=計算回数.すなわち時刻 time=step*dt
/*total number of simulation steps*/
total_step =
;
/*electric field in units of [V/m]*/
Efield=
;
Efield=-Efield;
Efield は導体にかける電界
/*file open command */
fp_output=fopen("output.dat","w");
データ保存用に output.dat という名前のフ
ァイルを開く(作成する)
/*mass of electrons */
for(i = 0; i < PARTICLE_NUM; i++)
{
mass[i]=
;
}
164 行目を参照のこと
材料の有効質量はここで指定する
/*dielectric constant*/
epsilon=
;
材料の誘電率はここで指定する
/*initial positions of electrons in units of [m] */
for (i=0;i<PARTICLE_NUM;i++)
{
cd[i*3]
= ((double)rand()/RAND_MAX-.0)*side_x*1.0e-9; → x
cd[i*3+1] = ((double)rand()/RAND_MAX-.0)*side_y*1.0e-9; → y (初期配置座標)
→z
cd[i*3+2] = ((double)rand()/RAND_MAX-.0)*side_z*1.0e-9;
}
0∼1 の乱数を発生させる組み込み関数(このまま使う)
/*initial velocities of electrons in units of [m/s] */
for(i = 0; i < PARTICLE_NUM; i++)
{
→ vx
vl[i*3] =
;
→ vy (初期速度)
vl[i*3+1]=
;
vl[i*3+2]=
;
→ vz
}
初期条件の設定に関するサブルーチンはここまで
}
/*electron dynamics */
void run_dynamics(void)
{
int i,j;
double dis,ld,md,nd,sumvz;
実際に運動方程式を解く部分
(run_dynamics を total_step=10000 回繰り返す)
time+=dt;
/* update of forces acting on electrons*/
2
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
double dist;
for(i = 0; i < PARTICLE_NUM; i++)
{
fc[i*3]=0.0;
fc[i*3+1]=0.0;
fc[i*3+2]=0.0;
for(j = 0; j < PARTICLE_NUM; j++)
{
if(j != i)
{
dist=sqrt(
(cd[i*3]-cd[j*3])*(cd[i*3]-cd[j*3])
(cd[i*3+2]-cd[j*3+2])*(cd[i*3+2]-cd[j*3+2]) );
fc[i*3]+= 0.0 ;
fc[i*3+1]+= 0.0 ;
fc[i*3+2]+= 0.0 ;
}
}
}
電子間クーロン反発力の計算
+
/*update of positions */
for(i = 0; i < PARTICLE_NUM; i++)
{
cd[i*3] =
;
cd[i*3+1] = ;
cd[i*3+2] = ;
}
→ fx
→ fy
→ fz
(cd[i*3+1]-cd[j*3+1])*(cd[i*3+1]-cd[j*3+1])
+
式(10)
/*update of velocities*/
for(i = 0; i < PARTICLE_NUM; i++)
{
vl[i*3]=
;
vl[i*3+1]=
;
vl[i*3+2]=
;
}
式(9)
/*average velocity in z-direction*/
sumvz=0;
for(i = 0; i < PARTICLE_NUM; i++)
{
sumvz+=vl[i*3+2];
}
sumvz=sumvz/PARTICLE_NUM;
全電子(100 個)の z 方向の平均速度(sumvz)
を計算する
時刻と全粒子の平均速度を出力させる
・fprintf はファイルに保存
・printf は画面に表示
/*file output*/
fprintf(fp_output," %e %e ¥n",time,sumvz);
/*printf("average velocity= %e (m/s) ¥n",sumvz);*/
%e: 実数型で出力、%d: 整数型で出力
¥n は改行を与える
/* reflections at x,y boundaries and periodic b.c. at z boundaries */
/* for(i = 0; i < PARTICLE_NUM; i++)
{
if (cd[i*3+2]>side_z*1.0e-9)
{
cd[i*3+2]= ;
3
境界条件を与える部分
周期的境界条件(z 方向)
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
}
if (cd[i*3+2]<0)
{
cd[i*3+2]= ;
}
if (cd[i*3]>side_x*1.0e-9)
{
vl[i*3]= ;
cd[i*3]= ;
}
if (cd[i*3]<0)
{
vl[i*3]= ;
cd[i*3]= ;
}
if (cd[i*3+1]>side_y*1.0e-9)
{
vl[i*3+1]= ;
cd[i*3+1]= ;
}
if (cd[i*3+1]<0)
{
vl[i*3+1]= ;
cd[i*3+1]= ;
}
}*/
周期的境界条件(z 方向)
鏡面反射条件(x, y 方向)
/* time increment*/
step++;
if(step == total_step)
{
fclose(fp_output);
exit(1);
}
glutPostRedisplay();
// file close.
// exit the dynamics time roop
electron dynamics に関するサブルーチンはここまで
// OpenGL command
}
/*ここから以下はグラフィックスに関する部分*/
void draw_box(void)
{
glDisable(GL_LIGHTING);
glColor3f(1.0,1.0,1.0);
glBegin(GL_LINE_LOOP);
glVertex3f(
0,
0,0);
glVertex3f(side_x,
0,0);
glVertex3f(side_x,side_y,0);
glVertex3f(0,
side_y,0);
glEnd();
4
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
glBegin(GL_LINE_LOOP);
glVertex3f(
0,
0,side_z);
glVertex3f(side_x,
0,side_z);
glVertex3f(side_x,side_y,side_z);
glVertex3f(0,
side_y,side_z);
glEnd();
glBegin(GL_LINES);
glVertex3f(
0,
0, 0);
glVertex3f(
0,
0,side_z);
glVertex3f(side_x,
0, 0);
glVertex3f(side_x,
0,side_z);
glVertex3f(
0,side_y,
0);
glVertex3f(
0,side_y,side_z);
glVertex3f(side_x,side_y,
0);
glVertex3f(side_x,side_y,side_z);
glEnd();
glEnable(GL_LIGHTING);
}
void draw_dynamics(void)
{
int i;
粒子の動きを描画する部分
double color_level;
GLfloat color[4];
glTranslated(-sideh_x,-sideh_y,-sideh_z);
draw_box();
for(i = 0; i < PARTICLE_NUM; i ++){
cd_draw[i*3]=cd[i*3]*1.0e9;
cd_draw[i*3+1]=cd[i*3+1]*1.0e9;
cd_draw[i*3+2]=cd[i*3+2]*1.0e9;
glPushMatrix();
glTranslated(cd_draw[i*3],cd_draw[i*3+1],cd_draw[i*3+2]);
→ Red
color[0]=0;
→ Green
color[1]=1;
→ Blue
color[2]=0;
color[3]=1.0;
glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE,color);
glutSolidSphere(0.2, 20, 10);
glPopMatrix();
}
0.2:粒子の大きさを設定
}
void mat_inv(double a[4][4])
{
int i,j,k;
double t, u, det;
5
粒子を緑色に光らせる部分
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
int n = 3;
det = 1;
for(k = 0; k < n; k++){
t = a[k][k]; det *= t;
for(i = 0; i < n; i++) a[k][i] /= t;
a[k][k] = 1 / t;
for(j = 0; j < n; j++)
if(j != k){
u = a[j][k];
for(i = 0; i < n; i++)
if(i != k) a[j][i] -= a[k][i] * u;
else
a[j][i] = -u/t;
}
}
}
void init_gl(void)
{
GLfloat light_position[] = {1.0, 1.1, 1.2, 0.0};
glShadeModel(GL_SMOOTH);
glLightfv(GL_LIGHT0, GL_POSITION, light_position);
glMatrixMode(GL_MODELVIEW);
glGetDoublev(GL_MODELVIEW_MATRIX,m_matrix);
glGetDoublev(GL_MODELVIEW_MATRIX,i_matrix);
}
void display(void)
{
int i,j;
double d0,d1,d2,d3,d4,d5;
GLfloat color[4];
glClearColor(0.0, 0.0, 0.0, 1.0);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glEnable(GL_DEPTH_TEST);
glEnable(GL_CULL_FACE);
glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);
glCullFace(GL_BACK);
glLoadIdentity();
glPushMatrix();
gluLookAt(eye_len, 0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0);
glTranslated(trans[0], trans[1], trans[2]);
glPushMatrix();
glLoadIdentity();
glRotatef( angle[0],1.0,0.0,0.0);
glRotatef( angle[1],0.0,1.0,0.0);
glRotatef( angle[2],0.0,0.0,1.0);
glMultMatrixd(m_matrix);
glGetDoublev(GL_MODELVIEW_MATRIX, m_matrix);
glPopMatrix();
6
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
for(i = 0; i < 16; i++)
i_matrix[i] = m_matrix[i];
mat_inv((double(*)[4])i_matrix);
glMultMatrixd(m_matrix);
if(mouse_l == 1 || mouse_m == 1 || mouse_r == 1){
angle[0] = 0;
angle[1] = 0;
angle[2] = 0;
}
draw_dynamics();
glPopMatrix();
glDisable(GL_DEPTH_TEST);
glDisable(GL_LIGHT0);
glDisable(GL_LIGHTING);
glDisable(GL_CULL_FACE);
glutSwapBuffers();
}
void reshape(int w, int h)
{
int i;
glViewport(0, 0, (GLsizei)w, (GLsizei)h);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(30.0, (double)w / (double)h, 1.0, 800.0);
glMatrixMode(GL_MODELVIEW);
}
void mouse(int button, int state, int x, int y)
{
switch (button) {
case GLUT_LEFT_BUTTON:
if (state == GLUT_DOWN) {
mpos[0] = x;
mpos[1] = y;
mouse_l = 1;
}
if (state == GLUT_UP) {
mouse_l = 0;
}
break;
case GLUT_MIDDLE_BUTTON:
if (state == GLUT_DOWN) {
mpos[0] = x;
mpos[1] = y;
mouse_m = 1;
}
if (state == GLUT_UP) {
mouse_m = 0;
}
7
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
break;
case GLUT_RIGHT_BUTTON:
if (state == GLUT_DOWN) {
mpos[0] = x;
mpos[1] = y;
mouse_r = 1;
}
if (state == GLUT_UP) {
mouse_r = 0;
}
break;
default:
break;
}
}
void motion(int x, int y)
{
double d0;
double len = 10;
len = eye_len;
if(mouse_l == 1 && mouse_m == 1){
trans[0] += (double)(y-mpos[1])*len/150;
angle[0] = -(double)(x-mpos[0])*0.2;
} else if(mouse_m == 1 || (mouse_l == 1 && mouse_r == 1)){
trans[1] += (double)(x-mpos[0])*len*.001;
trans[2] -= (double)(y-mpos[1])*len*.001;
} else if(mouse_r == 1){
trans[0] -= (double)(y-mpos[1])*len/150;
angle[0] = (double)(x-mpos[0])*0.2;
} else if(mouse_l == 1){
d0 = len/50;
if(d0 > 1.0) d0 = 1.0;
angle[1] = (double)(y-mpos[1])*d0;
angle[2] = (double)(x-mpos[0])*d0;
}
if(mouse_l == 1 || mouse_m == 1 || mouse_r == 1){
mpos[0] = x;
mpos[1] = y;
glutPostRedisplay();
}
}
void keyboard(unsigned char key, int x, int y)
{
if( key == 'q' || key == 'Q') exit(0);
if(key == 's')
{
if(stop_flg == 1)
{
stop_flg = 0;
glutIdleFunc(run_dynamics);
}
else if(stop_flg == 0)
{
stop_flg = 1;
glutIdleFunc(NULL);
8
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
}
}
}
int main(int argc, char** argv)
{
init_dynamics();
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGBA | GLUT_DEPTH);
glutInitWindowSize (1000, 1000);
glutInitWindowPosition (400, 100);
glutCreateWindow (argv[0]);
init_gl();
glutDisplayFunc(display);
glutReshapeFunc(reshape);
glutMouseFunc(mouse);
glutMotionFunc(motion);
glutKeyboardFunc(keyboard);
glutMainLoop();
return 0;
}
9
メイン文