t - 九州工業大学

8. ' part1
&
#
%()
[email protected]
$*"
(!)
1
(@7G
•  D08E-:5 !"#
•  E-7G
–  E-'?=.C
•  =.+9L,J
&;
K;
Hetc)
–  62B4I
•  7G<9FA/)3
–  $1
•  *%9F7G@><λ
2
Poisson process
•  -(.
•  101* #3!,'3
•  5+8/0$7
)62
•  %"&
)9:
•  10&41:
•  20&41:
•  30&41:
3
93
4
Poisson process
•  0t
P(t)
•  1λ
–  10
–  λ=0.1 (1/)
•  0t+dt
P(t + dt) = P(t)(1 − λ dt)
(0t
)x(t~t+dt
P(t + dt) − P(t) = −P(t)λ dt
P(t + dt) − P(t)
= −P(t)λ
dt
5
Poisson process
•  t->0
P(t + dt) − P(t) dP
lim
=
= P'
t→0
dt
dt
P
P(t + dt) − P(t)
= −P(t)λ
dt
P ' = −Pλ
y’=-ayy
?
P'
= − λ 0t
P
0
P(t=0)=1
6
Poisson Process
t
t
P'
∫0 P dt ' = − ∫0 λ dt '
[ ln(P)]0 = − λt
t
ln(P(t)) = − λ t
P(t) = exp ( − λ t )
7
Poisson process
P(t) = exp ( − λ t )
λt1
(10)
λt1
(10)
λt2
(20)
λt3
(30)
8
Poisson Process
•  (G/08H
(GM-
752,;Lλ13
0H
;LtEJH
A=+'F
P(t) = exp ( − λ t )
•  Poisson Process (!&JBO
•  9@
–  ?4.N)I(:DC6<>#& %(?)
*/$&"H
(GK@
9
"
•  "
–  Poisson Process
–  "&
–  t"$&
%
t
P(t) = exp ( − λ t )
P(t)#!R(t)
R(t) = exp ( − λ t )
10
(
•  (
–  (#"!λ&$
P'
–  )'R(t)P(t)
= −λ
P
t
t
R'
∫0 R dt ' = − ∫0 λ dt '
⎛ t
⎞
R(t) = exp ⎜ − ∫ λ (t ')dt '⎟
⎝ 0
⎠
)'R(t)%$
11
•  (MTTF)
–  tR(t)
–  ∞
MTTF = ∫ R(t)dt
0
–  R(t)Poisson
∞
1
MTTF = ∫ exp(− λ t)dt =
λ
0
12
•  (MTBF)
–  13
7$/.
•  &5#
–  ,
•  6()110*%260etc
–  3
•  8-'1etc
–  4
•  "+6!etc
14
)%$
#(!
#&
'
'
*")
15
+"('
•  %
–  S1Sn)
!
–  S1Sn)
–  1#* &$P
–  #* &$,
16
2%
•  N#8*$97(&
156/)8*":.R1,R2,---RN
$!":.
Rs (t) = R1 (t)⋅ R2 (t)RN −1 (t)⋅ RN (t)
•  $8*":.4
•  1-
0,8*0N+
3$!":. •  #8*":.0.9;#2%
–  (0.9)5≈0.59
–  6'3.
Simple is best
17
Rs (t) = R1 (t)⋅ R2 (t)RN −1 (t)⋅ RN (t)
•  ⎛ t
⎞
Ri (t) = exp ⎜ − ∫ λi (t ')dt '⎟
⎝ 0
⎠
•  ⎛ t⎛ N
⎞ ⎞
Rs (t) = exp ⎜ − ∫ ⎜ ∑ λi (t ')⎟ dt '⎟
⎠ ⎠
⎝ 0⎝ 1
N
•  λs = λ1 + λ1 + + λ N −1 + λ N = ∑ λi
1
•  18
)'%*
•  "&
"&
•  "&$#?
•  S1(!R1
•  S1"&$#
•  Q1=1-R1
•  N"&$#
Q1 (t)⋅Q2 (t)QN −1 (t)⋅QN (t)
•  "&$#
Rs (t) = 1 − Q1 (t)⋅Q2 (t)QN −1 (t)⋅QN (t)
Rs (t) = 1− (1− R1 (t))⋅(1− R2 (t))⋅(1− RN −1 (t))⋅(1− RN19(t))
&$#'
•  1
%0.9
"
•  5
–  1-(1-0.9)5=0.99999
•  % •  100,0001
!
•  101!
20
!
•  2
•  1
R(t) = exp ( − λ t )
•  Rs (t) = 1− (1− e
Rs (t) = 2e
− λt
− λt
)(1− e )
−e
− λt
−2 λ t
•  MTTF
∞
MTTF = ∫ 2e
0
− λt
−e
−2 λ t
2 1
3
dt = −
=
λ 2λ 2λ
21
%#!&
•  2" $
•  $MTTF
∞
2 1
3
− λt
−2 λ t
MTTF = ∫ 2e − e dt = −
=
λ 2λ 2λ
0
•  "
∞
MTTF = ∫ exp(− λ t)dt =
0
1
λ
•  $1.5
•  "N
(
Rs (t) = 1 − 1 − e
•  $
)
− λt N
1 1
1
1
MTTF = +
+
+
Nλ
λ 2 λ 3λ
22
9,1#$'(
•  #$'(.?4 +
,1A
•  ;NO
•  $!&%075
ON.36<-2
$!&%0
A
•  $!&%*/0OUT
•  N/)$"
@
•  */$!&%.?4R=0.9
•  N=55>=$!&%0
:8
–  (0.9)5=0.59
23
/$
• 
• 
• 
• 
• 
• 
%-31
2*4
&/$+)
N!#""
! 5'R=0.9
N=5,31
"0.
–  1-(1-0.9)5=0.99999
"*4&/$
(
24
6
$
•  $ '!
•  *"R=0.9
•  %#
–  S1,S2,S3
%#0.93=0.729
–  S1,S2,S3&()%# 1-0.93=0.271
–  S1,S2,S3&(S1’,S2’,S3’&()%#
(1-0.93)2=0.0734
–  %#+*")1-(1-0.93)2=0.927
25
/"'
•  21%0.
–  S1,S2,S3&+30.(1-0.9)3=0.001
–  S1,S2,S3 +30. 1-(1-0.9)3=0.999
–  S1,S2,S3 +3
S1’,S2’,S3’
+30.(1-(1-0.9)3)2=0.998
•  %,%$4*21%
$4*(#(0.9),-)!
26
'L5DC
•  >)
–  ',;JG*%
IA
•  ")
–  ',;:?1*%IA
•  >")
–  !924+@
–  #
H.8/→0
•  7K <
E&
'L5/
3A6F $=(-B
-3A
27
%"!
%100%
100%
%
$
#
0
Co C1
C2
28