8. ' part1 & # %() [email protected] $*" (!) 1 (@7G • D08E-:5 !"# • E-7G – E-'?=.C • =.+9L,J &; K; Hetc) – 62B4I • 7G<9FA/)3 – $1 • *%9F7G@><λ 2 Poisson process • -(. • 101* #3!,'3 • 5+8/0$7 )62 • %"& )9: • 10&41: • 20&41: • 30&41: 3 93 4 Poisson process • 0t P(t) • 1λ – 10 – λ=0.1 (1/) • 0t+dt P(t + dt) = P(t)(1 − λ dt) (0t )x(t~t+dt P(t + dt) − P(t) = −P(t)λ dt P(t + dt) − P(t) = −P(t)λ dt 5 Poisson process • t->0 P(t + dt) − P(t) dP lim = = P' t→0 dt dt P P(t + dt) − P(t) = −P(t)λ dt P ' = −Pλ y’=-ayy ? P' = − λ 0t P 0 P(t=0)=1 6 Poisson Process t t P' ∫0 P dt ' = − ∫0 λ dt ' [ ln(P)]0 = − λt t ln(P(t)) = − λ t P(t) = exp ( − λ t ) 7 Poisson process P(t) = exp ( − λ t ) λt1 (10) λt1 (10) λt2 (20) λt3 (30) 8 Poisson Process • (G/08H (GM- 752,;Lλ13 0H ;LtEJH A=+'F P(t) = exp ( − λ t ) • Poisson Process (!&JBO • 9@ – ?4.N)I(:DC6<>#& %(?) */$&"H (GK@ 9 " • " – Poisson Process – "& – t"$& % t P(t) = exp ( − λ t ) P(t)#!R(t) R(t) = exp ( − λ t ) 10 ( • ( – (#"!λ&$ P' – )'R(t)P(t) = −λ P t t R' ∫0 R dt ' = − ∫0 λ dt ' ⎛ t ⎞ R(t) = exp ⎜ − ∫ λ (t ')dt '⎟ ⎝ 0 ⎠ )'R(t)%$ 11 • (MTTF) – tR(t) – ∞ MTTF = ∫ R(t)dt 0 – R(t)Poisson ∞ 1 MTTF = ∫ exp(− λ t)dt = λ 0 12 • (MTBF) – 13 7$/. • &5# – , • 6()110*%260etc – 3 • 8-'1etc – 4 • "+6!etc 14 )%$ #(! #& ' ' *") 15 +"(' • % – S1Sn) ! – S1Sn) – 1#* &$P – #* &$, 16 2% • N#8*$97(& 156/)8*":.R1,R2,---RN $!":. Rs (t) = R1 (t)⋅ R2 (t)RN −1 (t)⋅ RN (t) • $8*":.4 • 1- 0,8*0N+ 3$!":. • #8*":.0.9;#2% – (0.9)5≈0.59 – 6'3. Simple is best 17 Rs (t) = R1 (t)⋅ R2 (t)RN −1 (t)⋅ RN (t) • ⎛ t ⎞ Ri (t) = exp ⎜ − ∫ λi (t ')dt '⎟ ⎝ 0 ⎠ • ⎛ t⎛ N ⎞ ⎞ Rs (t) = exp ⎜ − ∫ ⎜ ∑ λi (t ')⎟ dt '⎟ ⎠ ⎠ ⎝ 0⎝ 1 N • λs = λ1 + λ1 + + λ N −1 + λ N = ∑ λi 1 • 18 )'%* • "& "& • "&$#? • S1(!R1 • S1"&$# • Q1=1-R1 • N"&$# Q1 (t)⋅Q2 (t)QN −1 (t)⋅QN (t) • "&$# Rs (t) = 1 − Q1 (t)⋅Q2 (t)QN −1 (t)⋅QN (t) Rs (t) = 1− (1− R1 (t))⋅(1− R2 (t))⋅(1− RN −1 (t))⋅(1− RN19(t)) &$#' • 1 %0.9 " • 5 – 1-(1-0.9)5=0.99999 • % • 100,0001 ! • 101! 20 ! • 2 • 1 R(t) = exp ( − λ t ) • Rs (t) = 1− (1− e Rs (t) = 2e − λt − λt )(1− e ) −e − λt −2 λ t • MTTF ∞ MTTF = ∫ 2e 0 − λt −e −2 λ t 2 1 3 dt = − = λ 2λ 2λ 21 %#!& • 2" $ • $MTTF ∞ 2 1 3 − λt −2 λ t MTTF = ∫ 2e − e dt = − = λ 2λ 2λ 0 • " ∞ MTTF = ∫ exp(− λ t)dt = 0 1 λ • $1.5 • "N ( Rs (t) = 1 − 1 − e • $ ) − λt N 1 1 1 1 MTTF = + + + Nλ λ 2 λ 3λ 22 9,1#$'( • #$'(.?4 + ,1A • ;NO • $!&%075 ON.36<-2 $!&%0 A • $!&%*/0OUT • N/)$" @ • */$!&%.?4R=0.9 • N=55>=$!&%0 :8 – (0.9)5=0.59 23 /$ • • • • • • %-31 2*4 &/$+) N!#"" ! 5'R=0.9 N=5,31 "0. – 1-(1-0.9)5=0.99999 "*4&/$ ( 24 6 $ • $ '! • *"R=0.9 • %# – S1,S2,S3 %#0.93=0.729 – S1,S2,S3&()%# 1-0.93=0.271 – S1,S2,S3&(S1’,S2’,S3’&()%# (1-0.93)2=0.0734 – %#+*")1-(1-0.93)2=0.927 25 /"' • 21%0. – S1,S2,S3&+30.(1-0.9)3=0.001 – S1,S2,S3 +30. 1-(1-0.9)3=0.999 – S1,S2,S3 +3 S1’,S2’,S3’ +30.(1-(1-0.9)3)2=0.998 • %,%$4*21% $4*(#(0.9),-)! 26 'L5DC • >) – ',;JG*% IA • ") – ',;:?1*%IA • >") – !924+@ – # H.8/→0 • 7K < E& 'L5/ 3A6F $=(-B -3A 27 %"! %100% 100% % $ # 0 Co C1 C2 28
© Copyright 2024 ExpyDoc