R/2πZ t ÈR „ Dn = m eikt = |k| tχ |k| n = tχn + tχ k n−1 + ··· + tχ + tχ + tχ 1 0 −1 + ··· + tχ 1−n + tχ−n n −t t Dn = Dn even F −t D t t Dn = Dn = Dn −π|π 0|π t t Dn = 1 = t/2π t/π −π|π −π|π t tχ Dn = |k| t/2π k n t/2π 2t Dn = |t| 2it k e2ikt = 0 k n e = 0 k n Dn 0 = |k| δk = 1 n (2n + 1) t s t π/2 1 − 2iten + 1 1 − 2it (n + 1)e = = 1 − 2ite 1 − 2ite s −it t e − i (2n + 1) te c − its − (2n + 1) tc − i(2n + 1) ts = −it −2its e − ite t e−2ikt = 0 k n c + its − (2n + 1) tc + i(2n + 1) ts 2its c − its − (2n + 1) tc − i(2n + 1) ts tc + its − (2n + 1) tc + i(2n + 1) ts + −2its 2its t 2t e2ikt + e−2ikt = Dn + 1 = 0 k n = 2its + 2i(2n + 1) ts =1+ 2its (2n + 1) t s t s
© Copyright 2024 ExpyDoc