xX9\mZ]f xXqRo5qwo59`df*=;DQHOM&$DLOF&$ "DLOF& jp 9|Z]f Wjp Y9|Z]f ,uh4-@ {T[$[9l_$St nc5UXc9J&H,}4)?$c9\i5$09zr8:jp ,} %v~DLOF&#### %DQHOM&##### %DQKPM&##### %NEGIC&##### J&H+>_eVy %DLOF&### % "DLOF&# ga*=;_e Z]:jpsf! !^$ (8=23_e4-@ Z]Bke.3$0ABb8c\i57@jp B_e/@8:$\iB_e /@1<9+>76B_e/@1<9jp Y9\mZ]f'|Z]f(,} \mZ]f U =q+w H = U + PV G = H TS A = U TS dS = dU = dq + dw = TdS PdV dH = dU + PdV + VdP = TdS PdV + PdV + VdP = TdS + VdP dG = dH TdS SdT = TdS + VdP TdS SdT = VdP SdT dA = dU TdS SdT = TdS PdV TdS SdT = PdV SdT dq , dw = PdV T dU = dq + dw = TdS PdV dU dU = TdS =T dS v dU dU = PdV = P dV S dH = TdS + VdP dH =T dS P dH =V dP S dG = VdP SdT dG = S dT P dG =V dP T dA = PdV SdT dA = P dV T dA = S dT V Z = f ( x, y ) f (x, y) Z Z dZ = dx + dy x y y x Z Z = y x y x x y x y U U dU = TdS PdV = dS + dV S V V S U U = V S V S S V S V dU =T dS v T P = V S S V dU = P dV S H H dH = TdS + VdP = dS + dP S P P S H H = P S P S S P S P dH =T dS P T V = P S S P dH =V dP S G G dG = VdP SdT = dP + dT P T T P G G = T P T P P T P T dG =V dP T V S = T P P T dG = S dT P A A dA = PdV SdT = dV + dT V T T V A A = T V T V V T V T dA = P dV T dA = S dT V P S = T V V T %CFN%Mj ;J(#%+$J#%CFNep?%mq"OK%E a" O$kl!. dH = TdS + VdP SN!<b1;_$ ni1!@. H S = T + V P T P T S /&28365%9p:[W1g0N!.28475%9p:[W 1^ P T YZ_."&d !%CFN1l Z_>f#o$hA * V S . = 1l/' T P P T H V = V T P T T P "#-\X"<b9p;_%TI!%<b$+.\Xh=0/'28365%9 p:[WD),/."$#. %+$ep?`$cQ/P%U]CVB%C F1Z_>f#.&HL>f#G$RA.)$l,/.%%C FN!. 2H` P-‐V-‐T JSk/im3&H 0L\T~vuBARjf@+b#? -D5*b0_Um 2H CP, CV P-‐V-‐T J J! Gq{s qw| qz| Rjf2Hd ⎛ ∂H ⎞ CP = ⎜ , ⎝ ∂T ⎟⎠ P ⎛ ∂U ⎞ CV = ⎜ ⎝ ∂T ⎟⎠ V qz|o]^>Y` dH = TdS + VdP jl P = _ddH = TdS ⎛ ∂H ⎞ ⎛ ∂S ⎞ CP = ⎜ =T⎜ ⎟ ⎝ ∂T ⎠ P ⎝ ∂T ⎟⎠ P dU = TdS − PdV jl V = _ddU = TdS ⎛ ∂U ⎞ ⎛ ∂S ⎞ CV = ⎜ =T⎜ ⎟ ⎝ ∂T ⎠ V ⎝ ∂T ⎟⎠ V qz| S o V, T c(J( S = f(V, T) `Ym` C ⎛ ∂S ⎞ ⎛ ∂S ⎞ ⎛ ∂P ⎞ dS = ⎜ dV + ⎜ dT = ⎜ dV + V dT ⎟ ⎟ ⎟ ⎝ ∂V ⎠ T ⎝ ∂T ⎠ V ⎝ ∂T ⎠ V T Maxwell cJ!jl g[qz|No S = f(P, T) `Ym` C ⎛ ∂S ⎞ ⎛ ∂S ⎞ ⎛ ∂V ⎞ dS = ⎜ dP + ⎜ dT = − ⎜ dP + P dT ⎟ ⎟ ⎟ ⎝ ∂P ⎠ T ⎝ ∂T ⎠ P ⎝ ∂T ⎠ P T Maxwell cJ!jl WnTP-‐V-‐T J`qz|o;V!_PmO U H S Gq{s U d dU = TdS − PdV jlU = f(V, T) `X^_/i[NdS cJ!oYne ⎫ ⎫ ⎧⎛ ∂P ⎞ ⎧ ⎛ ∂P ⎞ CV dU = T ⎨⎜ dT ⎬ − PdV = ⎨T ⎜ ⎟⎠ dV + ⎟⎠ − P ⎬ dV + CV dT ⎝ ⎝ T ⎩ ∂T V ⎭ ⎩ ∂T V ⎭ g[U = f(P, T) `X^dS `cJ!oYne ⎫ ⎧ ⎛ ∂V ⎞ C ⎛ ∂V ⎞ dU = T ⎨− ⎜ dP + P dT ⎬ − PdV = −T ⎜ dP + CP dT − PdV ⎟ ⎝ ∂T ⎟⎠ P T ⎩ ⎝ ∂T ⎠ P ⎭ ,bqw| H d dH = TdS + VdP jlH = f(V, T) `X^NdS cJ!oYne ⎫ ⎧⎛ ∂P ⎞ C ⎛ ∂P ⎞ dH = T ⎨⎜ dV + V dT ⎬ + VdP = T ⎜ dV + CV dT + VdP ⎟ ⎝ ∂T ⎟⎠ V T ⎩⎝ ∂T ⎠ V ⎭ g[H = f(P, T) `X^dS `cJ!oYne ⎫ ⎤ ⎧ ⎛ ∂V ⎞ ⎡ ⎛ ∂V ⎞ C dH = T ⎨− ⎜ dP + P dT ⎬ + VdP = ⎢ −T ⎜ + V ⎥ dP + CP dT ⎟ ⎟ T ⎣ ⎝ ∂T ⎠ P ⎦ ⎩ ⎝ ∂T ⎠ P ⎭ WW_CP ` CV `cJo/i^hmO ⎛ ∂U ⎞ ⎛ ∂S ⎞ CV = ⎜ =T⎜ ⎝ ∂T ⎟⎠ V ⎝ ∂T ⎟⎠ V C ⎛ ∂S ⎞ ⎛ ∂S ⎞ ⎛ ∂V ⎞ dS = ⎜ dP + ⎜ dT = − ⎜ dP + P dT ⎟ ⎟ ⎟ ⎝ ∂P ⎠ T ⎝ ∂T ⎠ P ⎝ ∂T ⎠ P T C C ⎛ ∂S ⎞ ⎛ ∂V ⎞ ⎛ ∂P ⎞ ∴⎜ = −⎜ + P= V ⎟ ⎟ ⎜ ⎟ ⎝ ∂T ⎠ V ⎝ ∂T ⎠ P ⎝ ∂T ⎠ V T T ⎛ ∂V ⎞ ⎛ ∂P ⎞ ∴ CP − CV = T ⎜ ⎝ ∂T ⎟⎠ P ⎜⎝ ∂T ⎟⎠ V 4%.cPV = RT jl R ⎛ ∂P ⎞ R ⎛ ∂V ⎞ ⎜⎝ ⎟⎠ = , ⎜⎝ ⎟⎠ = ∂T P P ∂T V V 2 ⎛ R ⎞ ⎛ R ⎞ TR ∴ CP − CV = T ⋅ ⎜ ⎟ ⋅ ⎜ ⎟ = =R ⎝ P ⎠ ⎝ V ⎠ RT Gibbs – Helmholtz c! G = H − TS ⎛ ∂G ⎞ S = −⎜ ⎝ ∂T ⎟⎠ P ⎛ ∂G ⎞ ∴ G = H +T ⎜ ⎝ ∂T ⎟⎠ P ∴ TdG − GdT = −HdT P : const Eo T2 _m` TdG − GdT dT = −H 2 2 T T ⎛ G⎞ d⎜ ⎟ ⎝T⎠ P : const ⎛ 1⎞ Hd ⎜ ⎟ ⎝T ⎠ ⎡ ∂( G T ) ⎤ ∴ ⎢ ⎥ =H ∂ 1 T ( ) ⎣ ⎦P Gibbs – Helmholtz c!
© Copyright 2025 ExpyDoc