Event-related Synchronization/Desynchronization Affected by Spatial Frequencies of Background Visual Pattern during a Cognitive Task 背景画像の空間周波数特性が認知課題遂行中の 事象関連同期/脱同期に与える影響 Kazuo Kato (Tohoku Gakuin University) Osamu Miura (Graduate school of Tohoku Gakuin University) 加藤 和夫/東北学院大学 三浦 孟/東北学院大学大学院 Introduction 2 Introduction Visual information Color, Shape, Movement, Depth Spatial Frequency, etc… Spatial Frequency Phyco-physiological activity ? 例:建築デザイン etc… 例:安心、快適感 etc… 3 Background Spatial Frequency 輝度の空間的変化のパターンを表す指標 4 Background Vuilleumier P, Armony JL, Driver J, Dolan RJ: ”Distinct spatial frequency sensitivities for processing faces and emotional expressions,” Nature Neuroscience. 6(6): 624-631, 2003 5 Background Our previous study Real environmental scene 空間周波数スペクトルを 1/f の直線で近似し,そ の傾き で定義 the slope () of its power spectral density 風景などの実空間画像に対する注視情報と空間周波数特性の傾き には,関連 があることを示している Kato K, Shikoda A, Nishida M, Kuroki T, Ishikawa A and Kobayashi T: “Characteristics of image properties inducing eye movement,” IEEJ Trans. EIS, Vol. 131, pp. 175-181 (2011) (in Japanese) Neural activity were not addressed in this study 6 Background Our previous study We evaluated how the spatial frequency characteristics of a visual stimulus, as indexed by the slope () of its power spectral density, affected the eventrelated potentials (ERPs) observed during a simple cognitive addition task. (1) the low spatial frequency components may preferentially participate in the neural activity associated with the retrieval of arithmetic data and that the 1/f frequency characteristics may be optimal for playing important roles in internal spatial processing of numbers. Fz (2) the most advantage of this method utilizing a parameter, compared to the alternative method using high or low pass filtering for images, is that which enables to obtain multiple data by adopting arbitrary and consecutive values. Kato K et. al.: “Event-related Potential Affected by Spatial Frequency of Background Visual Pattern During a Cognitive Task,” IEEJ Trans 2013, Vol.8, pp. 483-488 Cz 182 ms 360 ms Pz What is Event-Related Synchronization /Desynchronization (ERS/ERD) ? 自発脳波 誘発脳波 自発的に発生している脳電位 (θ波, α波, β波) 特定の事象に関連して発生する 自発脳波リズム変動(ERS/ERD)について検討を行った 事象関連同期/脱同期(ERS/ERD): 外的,あるいは内的な事象に関連して生じる脳波リズムの変動 ERS/ERS Auditory Information Visually Information 8 Objective Objective 空間周波数特性に着目 タスクとして 単純な認知課題の一つである計算課題を行う 空間周波数が認知活動に関わる大脳神経活動に与える影響を評価 空間周波数特性が認知課題における自発脳波リズムに与える影響についての検討 The purpose of this study is to characterize the oscillatory changes in neural activity associated with cognitive processes that are affected by the spatial frequency of a visual stimulus during simple calculation tasks by using electroencephalography. Goal 人間特性を考慮した空間設計への適用 9 Visual stimuli White noise ( = 0) 1/f ( = 1) 1/f2 ( = 2) 1/f3 ( = 3) 10 Visual stimuli Spatial luminance fluctuations in an image 1/f White Noise 1/f2 1/f 1/f2 1/f 1/f23 1/f 1/f23 1/f3 11 Visual stimuli Slope of 2the regression curve fitted to the power spectral density 1/f of spatial luminance fluctuations in an image 1/f White noise 1/f Slope : 0 1/f3 1/f21/f2 Slope : 1 1/f3 Slope : 2 Slope : 3 12 Visual stimuli 1/f3 1/f2 1/f 低周波数の影響が大きい White noise Power spectrum density 高周波数の影響が大きい white noise 1/f 1/f 3 1/f 2 Frequency [Hz] Low frequency High frequency 13 Visual stimuli - Randomly selected number between 0–9 embedded in each stimulus - 4種類の模擬画像に0~9の数字を挿入した輝度3cd/m2の縦902×横1282 ピクセルの画像 30.5° 3 White noise (1/f0) 1/f 3 3 1/f2 1/f3 20° 3 1.5° 1° 14 Task 2000ms 250ms 7 1 trial 3 ・・・ ×25 times ×2 sets ×4 stimulus - Each 250-ms stimulus was presented 25 times per set and the numbers were repeated twice for a total of 50 stimulus presentations 7 3 ・・・ (1) Addition task (計算有タスク) (2) Reference task (参照タスク) adding 7 No adding adding 3 No adding ・・・ 15 Methods EEG measurement ・ Subjects: 8 males (age, 21-23) - All participants provided written informed consent ・ 19 electrodes based on the 10-20 system - Reference electrodes: Linked electrode at both ears - Impedance < 10kΩ 16 Methods Data analysis ・ Continuous Wavelet Transform - with the mother function of morlet were conducted for each EEG epoch from 1 to 80 Hz per 0.1 Hz ・ Intertrial Variances - of the wavelet coefficients for each frequency per 0.1 Hz were calculated using the equation below where N = 50 at maximum, indicating the total number of trials, xf(i,j) denotes the j-th sample (wavelet coefficients) of the i-th trial, and represents the mean of data at the j-th sample. ・Band Average Variances - in the theta(4–6 Hz), alpha (8–13 Hz), low beta (13–20 Hz), and gamma (40–80 Hz) frequency ranges were also calculated and the 500-ms prestimulus period served as the value for baseline normalization. 17 Flow of analysis Step1: Comparison between addition and reference task 認知活動の 比較 • 計算有・無タスク間の分散の比較(time-frequency analysis) • 特徴帯域毎の分散の時間変化の検討(time course) • 特徴帯域毎の分散の空間分布の検討(spatial distribution) Step2: Comparison among stimuli 空間周波数 特性の比較 • 各空間周波数特性刺激に対する分散の変動の比較 18 Flow of analysis Step1: Comparison between addition and reference task 認知活動の 比較 • 計算有・無タスク間の分散の比較(time-frequency analysis) • 特徴帯域毎の分散の時間変化の検討(time course) • 特徴帯域毎の分散の空間分布の検討(spatial distribution) Step2: Comparison among stimuli 空間周波数 特性の比較 • 各空間周波数特性刺激に対する分散の変動の比較 19 Overall mean intertrial variances Pz O2 (a) Addition task (b) Reference task (c) Addition - Reference 20 Flow of analysis Step1: Comparison between addition and reference task 認知活動の 比較 • 計算有・無タスク間の分散の比較(time-frequency analysis) • 特徴帯域毎の分散の時間変化の検討(time course) • 特徴帯域毎の分散の空間分布の検討(spatial distribution) Step2: Comparison among stimuli 空間周波数 特性の比較 • 各空間周波数特性刺激に対する分散の変動の比較 21 Time Course of band-averaged variances Addition Task Reference Task Alpha (8-13Hz) at O2 Theta (4-6 Hz) at O2 376ms 198ms Gamma (40-80 Hz) at Pz Low Beta (13-20 Hz) at Pz 1,012ms 490ms 1,742ms 22 Flow of analysis Step1: Comparison between addition and reference task 認知活動の 比較 • 計算有・無タスク間の分散の比較(time-frequency analysis) • 特徴帯域毎の分散の時間変化の検討(time course) • 特徴帯域毎の分散の空間分布の検討(spatial distribution) Step2: Comparison among stimuli 空間周波数 特性の比較 • 各空間周波数特性刺激に対する分散の変動の比較 23 Differential Topographical Map (Addition - Reference Task) : p < 0.05 (a) Theta band 20 [%] 1/f 1/f2 (b) Alpha band -20 0 [%] 1/f2 1/f3 -20 24 Differential Topographical Map (Addition - Reference Task) : p < 0.05 (c) Low Beta band 25 [%] (d) Gamma band -25 1/f3 1/f 20 [%] Fp1 Fp2 F7 F3 Fz F4 F8 T3 C 3 C z C 4 T4 T5 P3 Pz P4 T6 O1 1/f2 -20 O2 25 Flow of analysis Step1: Comparison between addition and reference task 認知活動の 比較 • 計算有・無タスク間の分散の比較(time-frequency analysis) • 特徴帯域毎の分散の時間変化の検討(time course) • 特徴帯域毎の分散の空間分布の検討(spatial distribution) Step2: Comparison among stimuli 空間周波数 特性の比較 • 各空間周波数特性刺激に対する分散の変動の比較 26 120 * * p < 0.05 * 110 100 90 80 White noise 1/f * 1/f2 Visual stimuli 1/f3 Normalized variance S.E. [%] Normalized variance S.E. [%] Results and Discussion 120 110 * p < 0.05 * * 100 90 80 White noise (a) Theta at F4 1/f * 1/f2 Visual stimuli 1/f3 (b) Theta at C4 Theta band (198ms, fronto-central area) - ERS for the 1/f and ERD for the 1/f2 stimulus - A linear change in variance in response to a frequency change - This phenomenon may suggest the existence of a neural frequency discrimination function accompanying simple cognitive calculations 27 120 * p < 0.05 110 * 100 90 80 White noise 1/f * 1/f2 Visual stimuli 1/f3 Normalized variance S.E. [%] Normalized variance S.E. [%] Results and Discussion 120 * p < 0.05 * 110 100 90 80 White noise (c) Alpha at T5 * 1/f2 1/f Visual stimuli 1/f3 (d) Alpha at P3 Alpha band (376ms, left-temporal area) - In the reference task, the alpha-ERD associated with high spatial frequencies may suggest the importance of the left hemisphere area over areas associated with early visual processing . - In the addition task, all frequencies activate neural processes suggest to relate to the retrieval of arithmetic data calculations and the interpretation of operation symbols. 28 Conclusion - A frequency discrimination function has been suggested to exist at a latency of 198 ms in the theta band activity recorded in the addition task from the fronto-central area. - The alpha ERD in the reference task at the left temporal-parietal area at the latency of 376 ms also showed a spatial frequency dependency concerned with perceptual filter. - The frequency dependence of low Beta and Gamma bands could not be confirmed from our data set. Therefore, we suggest that oscillatory changes in the neural activity associated with cognitive processes affected by spatial frequency occur along with ERP responses. 29
© Copyright 2025 ExpyDoc