ឡ⥲◊࣭◊✲ሗ࿌ 愛総研・研究報告 ➨ 16 号 2014 ྕ 2014 年 ᖺ 第 61 Ca(OH)2 ࢆᢸᣢࡋࡓ࣮࢝࣎ࣥከᏍయᆺᏛ⇕ᮦࡢᛶ⬟ Performance Evaluation of Carbonaseous Porous Solid Supported Ca(OH)2 Chemical Heat Storage Material ᯫ㇂ᫀಙ†㸪Ώ㎶⸨㞝†† Masanobu Hasatani†, Fujio Watanabe†† Abstract With regard to chemical heat storage materials applicable to solid base metal compounds, a manufacturing concept has been shown for a new porous solid supported chemical heat storage material (PSM) which can maintain high reactivity and cope with volume changes. The pore structure characteristics of a carbonaceous porous solid supported Ca(OH)2 chemical heat storage material (Ca(OH)2-PSM) prepared based on this concept was evaluated, and as a result, it was found that the Ca(OH)2-PSM can be made into a high-density heat storage material with a maximum CaO/C weight ratio of 2.18, and the Ca(OH)2 is supported through thin layer dispersal primarily in pores of diameter 0.15μm and 30 μm in the unsupported carbonaceous porous solid. An evaluation of reactivity was conducted on a sample of this material, using the exothermic characteristics in repeated heat storage and release as an indicator, and an evaluation of long-term stability in form was conducted based on optical observation of the sample after repeated heat storage and release. In evaluation of exothermic characteristics, the heat production temperature was measured in a hydration reaction, under saturated steam conditions at 60ºC, using a packed-bed reactor simulating a chemical heat storage/chemical heat pump. The results showed that with Ca(OH)2-PSM, the maximum temperature rise is maintained even with 15 repetitions. This is because agglomeration inhibition was controlled due to support of Ca(OH)2 in pores through thin layer dispersal. In addition, the results of optical observation showed that, even after repeated hydration/dehydration reactions, both the shape of the heat storage material particles and the Ca(OH)2 support state are maintained in their original condition, and that secondary reactions do not occur. Thus it is evident that Ca(OH)2-PSM functions as a high-performance heat storage material for CHP. 1䠊 ⥴ゝ † ឡ▱ᕤᴗᏛ ᶵᲔᏛ⛉ ᩍᤵ ††ឡ▱ᕤᴗᏛ ⥲ྜᢏ⾡◊✲ᡤ ᩍᤵ ᅛయ༝㔠ᒓྜ≀ࡣ㧗ᐦᗘ୰㺃ప (100㹼400Υ)⇕ᮦ ࡋ࡚ᶵ⬟ࡍࡿࠋࡋࡓࡀࡗ࡚ࠊࡇࡢ⇕ᮦ⏝ࡢ⇕㥑ືᆺ Ꮫ⇕㺃Ꮫࣄ࣮ࢺ࣏ࣥࣉ(CHP)ࡣ࢚ࢿࣝࢠ࣮㧗ຠ⋡ ⏝ᢏ⾡ࡢ☜❧ྍḞ࡞⇕ᶵჾ⨨࡙ࡅࡽࢀࡿࠋࡇࡢほ Ⅼࡽ⇕ᮦ༢యࢆᑐ㇟ࡋ࡚ࠊỈࢆసື፹యࡍࡿ࢝ࣝ ឡ▱ᕤᴗᏛ⥲ྜᢏ⾡◊✲ᡤ◊✲ሗ࿌㸪➨ 16 ྕ㸪2014 ᖺ 愛知工業大学総合技術研究所研究報告,第 16 号,2014 年 62 ࢩ࣒࢘⣔ࠊ࣐ࢢࢿࢩ࣒࢘⣔ࠊࣥࣔࢽࢆసື፹యࡍࡿ ሷ࢝ࣝࢩ࣒࢘⣔ࠊ㓟Ⅳ⣲ࢆసື፹యࡍࡿ࢝ࣝࢩ࢘ ࣒⣔࡞ࡢᛂᖹ⾮ㄽⓗ᳨ウࠊᛂ㏿ᗘㄽⓗ᳨ウࡀᩘከࡃ ࡞ࡉࢀ࡚ࡁࡓࠋࡑࡢ⤖ᯝࠊࡑࢀࡒࢀࡢᛂ ᗘ⠊ᅖ࡛㧗ᐦ ᗘ⇕㺃ᨺ⇕ࡀྍ⬟࡛࠶ࡿࡇࡀ♧ࡉࢀࡓࠋ ୖグࡢ⤖ᯝᇶ࡙࠸ࡓྛᛂ⣔ࡢ CHP ࡢ㐺⏝㛵ࡋ ࡚ࡶࠊࡑࡢ㧗ᛶ⬟ࢆ┠ᣦࡋ࡚ࠊ⇕ᮦ༢యࢆ⏝࠸ࡓ⇕ ᆺ⇕ჾ࡛ᵓᡂࡉࢀࡿ CHP ࡢฟ⇕ᛶ⬟ホ౯ࡀ࡞ࡉࢀ࡚ ࠸ࡿ㸦CaO/ H2O /Ca(OH)2 ⣔(Ogura et al.,1991) ࠊCaO/CaCO3 ⣔(Kubota et al., 2001)ࠊMgO/Mg(OH)2 ⣔(Kato et al., 2003ࠊ Ishitobi et al., 2012) ࠊ㓟≀/CO2 ⣔(Li et al., 2002) 㸧ࠋࡋ ࡋࠊ⇕ᮦ༢యࢆ⏝࠸ࡓሙྜࡣ࠸ࡎࢀࡢ⣔࠾࠸࡚ࡶ ⧞㏉ࡋ⇕㺃ᨺ⇕ඹ㏻ࡍࡿ⇕ᮦࡢࠊձᛂᛶపୗࠊղ ⭾ᙇ㺃⦰ࡼࡿయ✚ኚࡢ㞴ࣁࣥࢻࣜࣥࢢᛶࡢ 2 ㄢ㢟ࡀ ᮍゎỴࡢࡲࡲṧࡉࢀ࡚࠾ࡾࠊࡇࢀࡀỗ⏝ⓗ CHP ࡢᐇ⌧ࢆ 㜼ᐖࡍࡿせᅉ࡞ࡗ࡚࠸ࡿࠋ ලయⓗࠊձࡣḟࡢࡼ࠺ㄝ᫂ࡉࢀࡿࠋ୍⯡ᛂ㏿ᗘ ࡢ㧗㏿ᛶ⥔ᣢࡢࡓࡵࡣᑠ⢏Ꮚ (⢏ᚄ 10μm ௨ୗ)⇕ᮦ ࡢ⏝ࡀዲࡲࡋ࠸ࠋ୍᪉࡛ࠊCHP ࡢࢥࣥࣃࢡࢺࡢࡓࡵ ࡣ⇕ჾෆሸ⇕ᮦ࠶ࡿ⛬ᗘࡢᒙཌࡳࡀせồࡉࢀࡿࠋ ࡑࡢࡓࡵࠊ⇕㺃ᨺ⇕ࡢ⧞㏉ࡋక࠺⇕ჾෆሸᚤ⢏Ꮚ ࡢจ㞟ࡀ㐍⾜ࡋࠊࡇࢀࡼࡿ⇕ᮦ ⢏Ꮚᚄࡢቑࡀ㑊ࡅࡽࢀ࡞࠸(Kato et al., 2007)ࠋࡇࢀࡣࠊ ᛂ⏺㠃✚ࡢῶᑡ࡞ࡽࡧసື፹యࡢ⢏Ꮚෆ≀㉁⛣ື ᢠࡢቑࡘ࡞ࡀࡾࠊᛂ㏿ᗘࢆపୗࡉࡏࡿཎᅉ࡞ࡿࠋ ࡉࡽࠊ㧗 సືࡢ CaO/CaCO3 ⣔࡛ࡣᨺ⇕㐣⛬࡛ࡢ㏿ࡸ ࡞㝖⇕ࡢᅔ㞴ᛶࡽจ㞟ຍ࠼࡚จᅛࡢ㐍⾜ࡀᣦࡉ ࢀ࡚࠸ࡿ(Kubota et al., 2001)ࠋࡇࡢࡇࡣ⇕ᐦᗘࡢῶᑡ ࡢཎᅉࡶ࡞ࡿࠋࡇࢀࡽࡢᨵၿἲࡋ࡚ࠊMgO/Mg(OH)2 ⣔࡛ࡣᏛ⇕ᮦࢆ㉸ᚤ⢏Ꮚࡍࡿࡇࡢ᭷ຠᛶࡀ♧ࡉ ࢀ࡚࠸ࡿࡀ (Kato et al., 2007)ࠊྠᡭἲࡢࡢᛂ⣔ࡢᒎ 㛤ࡣࢇ࡞ࡉࢀ࡚࠸࡞࠸ࠋࡲࡓࠊղࡣḟࡢࡼ࠺ㄝ᫂ ࡉࢀࡿࠋ⇕ჾࡣ⇕ᆺ࡛࠶ࡾࠊ㧗㏿⇕ᆺࡋ࡚ᥦ ࡉࢀࡓࣇࣥ⇕ჾ(Kanzawa and Arai, 1981)ࢆᐃ ࡍࢀࡤ⇕ᮦ⢏Ꮚࡣࡇࡢࣇࣥࣆࢵࢳ㛫ሸࡉࢀࡓᵓ 㐀࡞ࡿࠋCaO/Ca(OH)2 ⣔ࢆࢀࡤࠊࣇࣥࣆࢵࢳ㛫 ࡢሸ⢏Ꮚయ✚ࡣỈᛂ㸦ᨺ⇕㐣⛬㸧⤊ࡢ Ca(OH)2 ࡢ≧ែ࠾࠸࡚᭱࡞ࡿࠋࡘࡲࡾࠊࡇࡢⅬ࡛ࡣࡌࡵ࡚ ࣇࣥࣆࢵࢳ㛫ࡢ⇕ᮦ⢏Ꮚࡣࣇࣥ୧㠃ࢆఏ⇕㠃ࡋ ࡓ⇕⛣ືࢆ⾜࡞ࢃࡏ࠺ࡿࠋࡋࡋࠊࡑࢀ௨እ࡛ࡣࣇࣥࡢ ∦㠃ࡀ⇕⛣ືᐤࡏࡎࠊࡇࡢࡇࡀᨺ⇕㐣⛬/⇕㐣⛬ ᅗ 1 ከᏍయᢸᣢᏛ⇕ᮦࡢタィ〇㐀ᴫᛕ ࡀᨺ⇕㐣⛬/⇕㐣⛬࠾ࡅࡿ㝖⇕/⤥⇕ࡢఏ⇕㜼ᐖࡢཎ ᅉ࡞ࡿࠋఏ⇕ಁ㐍ࡢࡓࡵ㔠ᒓࢿࢵࢺࡢᤄධ(Ogura et al., 1991, 1992)ࠊ⇕ᮦࡢ⭾ᙇ࣮࢝࣎ࣥ」ྜయ (Hirata et al., 2003)ࡶ᳨ウࡉࢀ࡚࠸ࡿࡀ⇕ᮦࡢయ✚ኚ ᑐࡍࡿఏ⇕ᨵၿࡢᮏ㉁ⓗゎỴ⟇ࡣ⮳ࡗ࡚࠸࡞࠸ࠋ ୖグࡢほⅬࡽᮏ◊✲࡛ࡣࠊᅛయ༝㔠ᒓྜ≀ࢆᑐ㇟ ࡍࡿ⇕ᮦ㛵ࡋ࡚ࠊ㧗ᛂᛶ⥔ᣢయ✚ኚᑐᛂ࡛ࡁ ࡿ᪂つࡢከᏍయᢸᣢᆺᏛ⇕ᮦ(PSM㸸 Porous Solid Supported Chemical Heat Storage Material)ࡢ〇ࢆᥦ ࡋࠊࡇࢀࢆ⏝࠸ࡿ⇕ჾ࡛ᵓᡂࡉࢀࡿ CHP ࡢྜ⌮ⓗタ ィᇶ‽ࡢ☜❧ࢆ᭱⤊┠ⓗࡍࡿ᳨ウࢆ⾜࠺ࠋලయⓗࡣࠊ ➨୍ẁ㝵ࡋ࡚ࠊከᏍయᢸᣢᆺᏛ⇕ᮦࡢタィ〇㐀ࢥ ࣥࢭࣉࢺࢆ♧ࡋࠊࡇࡢࢥࣥࢭࣉࢺᚑࡗ࡚Ỉࢆసື፹య ࡍࡿ CaO/Ca(OH)2 ⣔ࡢከᏍయᢸᣢᆺᏛ⇕ᮦࢆヨసࡋ ࡓࠋࡘࡂࠊࡇࡢከᏍయᢸᣢᆺᏛ⇕ᮦࡘ࠸࡚ ࢡ࣮ࣟࢬࢻᘧᛂჾࡼࡿ⧞㏉ࡋ⇕㺃ᨺ⇕ࡢⓎ⇕≉ᛶ ࢆᣦᶆࡍࡿᛂᛶࡢホ౯ࠊ࡞ࡽࡧ⧞㏉ࡋ⇕㺃ᨺ⇕ᚋ ࡢヨᩱࡢගᏛほᐹࡼࡿᙧ≧㛗ᮇᏳᐃᛶࡢホ౯ࢆ⾜࡞ࡗ ࡓࠋ 2㸬ከᏍయᢸᣢᆺᏛ⇕ᮦࡢタィ〇㐀ࢥࣥࢭࣉࢺ ከᏍయᢸᣢᆺᏛ⇕ᮦ(PSM)ࡣ 50㹼700μm ࡢ⢏≧⇕ᮦ ࡛࠶ࡾࠊࡇࡢከᏍయෆ⇕ᮦ༢యࡀᢸᣢࡉࢀࡓᵓ㐀࡛࠶ ࡿࠋࡑࡢᇶᮏⓗ〇ἲࡢᴫ␎ࢆᅗ 1 ♧ࡍࠋཎᩱࠊከᏍయ ࡢ㦵᱁ᮦ࡞ࡿ࣏ࣜࣅࢽࣝࣝࢥ࣮ࣝ (PVA)ࢆ⏝࠸ࠊ 1)PVA Ỉ⁐ᾮࠊᡤᐃ㔞ࡢ⇕ᮦ༢యࠊᙉᗘࢆ⥔ᣢࡍࡿࡓࡵ ࡢ⇕◳ᛶࣇ࢙ࣀ࣮ࣝᶞ⬡ࠊPVA ࡢᯫᶫ࡞ࡿࣝࢹࣄ ࢻࠊ࠾ࡼࡧ✵Ꮝᚄไᚚࡢࡓࡵࡢ⃦⢊ࢆຍ࠼࡚ΰ⦎ᡂᆺࡋࠊ ᡤᐃ⢏ᚄࡢᡂᙧయࡍࡿ(a)ࠋ2)ࡇࡢᡂᙧయࢆຍ⇕ฎ⌮ࡋ PVA ࢆᯫᶫࡉࡏࡓᚋࠊ Ỉᾐₕࡋ⃦⢊ࢆ⁐ฟ㝖ཤࡍࡿࡇ ࡼࡾ⥙┠ᵓ㐀ࡢ࣏࣐࣮ࣜ࣍ࣝࣝᶞ⬡ከᏍయᢸᣢᆺ Ꮫ⇕ᮦࡍࡿ(b)ࠋࡉࡽࠊᚲせᛂࡌ࡚ 3)ࡇࢀࢆάᛶ 㞺ᅖẼ୰࡛ᶞ⬡ࡢⅣࢆ⾜࡞࠺ࡇࡼࡾ࣮࢝࣎ࣥከᏍ యᢸᣢᆺᏛ⇕ᮦ(c)ࢆᚓࡿࠋࡇࢀࡽࡣ௨ୗࡢ≉ᚩࢆ᭷ࡍ ࡿࡓࡵࠊࡇࡢ⏝ࡼࡾ㧗ᛶ⬟ CHP ࡢᐇ⌧ࡀᮇᚅ࡛ࡁࡿࠋ 㸧 ⇕ᮦ༢యࡣ✵Ꮝⷧᒙศᩓᢸᣢࡉࢀࡿࠋࡋࡓࡀࡗ࡚ࠊ ⧞㏉ࡋ⇕㺃ᨺ⇕ࡼࡿ⇕ᮦ༢యࡢจ㞟ࡀᢚไࡉࢀࠊ ᛂᛶࡀ⥔ᣢࡉࢀࡿࠋ 㸧 ⇕ᮦ༢యࡢ⭾ᙇ㺃⦰ࡼࡿయ✚ኚࡣ✵Ꮝෆࡢࡳ ࡛⏕ࡌࡿࡓࡵከᏍయᢸᣢᆺ⇕ᮦࡢᙧ≧ࡣ⥔ᣢࡉࢀࠊ 㧗㏿⇕ᆺ⇕ჾࡢタィࢆᐜ᫆ࡍࡿࠋ Ca(OH)2 ࢆᢸᣢࡋࡓ࣮࢝࣎ࣥከᏍయᆺᏛ⇕ᮦࡢᛶ⬟ Ca(OH)2 を担持したカーボン多孔体型化学蓄熱材の性能 63 3㸧 ⇕ᮦ⢏Ꮚయ✚ᇶ‽࡛᭱ 60㸣⛬ᗘࡢ⇕ᮦ༢యࡢ ᢸᣢࡀྍ⬟࡛࠶ࡾࠊ㧗ᐦᗘ⇕ᮦࡋ࡚ᶵ⬟ࡍࡿࠋ 4㸧 ᶞ⬡ከᏍయᢸᣢᆺ⇕ᮦࠊ࣮࢝࣎ࣥከᏍయᢸᣢᆺᏛ ⇕ᮦࡣỈࢆసື፹యࡍࡿ CHP ࠾࠸࡚ࡑࢀࡒࢀ 180Υ௨ୗࡢప ⇕ᮦ࠾ࡼࡧ 500Υ௨ୗࡢ୰ ⇕ ᮦࡋ࡚⏝࡛ࡁࡿࠋ 5㸧 ୖグ(b)ࡢᶞ⬡ከᏍయᢸᣢᆺ⇕ᮦࡣ⃦⢊㝖ཤࡼࡾ ࡇࡢ㒊ศࡀ㐃㏻ࡋࡓ✵Ꮝᵓ㐀ࢆᙧᡂࡍࡿࠋ 6㸧 ࡲࡓ(c)ࡣࠊ(b)ࡢᶞ⬡ᡂศࢆάᛶ㞺ᅖẼ୰࡛Ⅳࡍ ࡿࡇࡼࡾⓎᡂศࡀ㝖ཤࡉࢀࡇࡢ㒊ศࡀ⣽Ꮝࢆ ᙧᡂࡍࡿࠋ࣮࢝࣎ࣥከᏍయᢸᣢᆺᏛ⇕ᮦࡣࡇࡢ⣽ Ꮝୖグࡢ✵Ꮝࡀ㐃⤖ࡋࡓ㐃㏻Ꮝࢆᙧᡂࡍࡿࠋࡑࡢ ࡓࡵసື፹యࡢ⇕ᮦෆ⛣ືᢠࡀ⦆ࡉࢀࡿࠋ 7㸧 ✵Ꮝᚄࠊ✵Ꮝᐜ㔞ࡣ⃦⢊ࡢ⢏Ꮚᚄࠊΰ⦎㔞ࡼࡗ࡚௵ ពㄪᩚ࡛ࡁࡿࠋ 8㸧 ከᏍయࡢᇶ㉁ࡣ⇕◳ᛶᶞ⬡ࡶࡋࡃࡣⅣ⣲࡛࠶ࡿࡢ ࡛ࠊᛂࡀ⏕ࡌ࡞࠸ࠋ ᅗ 2 Ca(OH)2-PSM ࡢ⣼✚⣽Ꮝศᕸ 㸰㸬࣮࢝࣎ࣥከᏍయ Ca(OH)2 ᢸᣢᏛ⇕ᮦࡢヨసࡑ ࡢ≉ᛶ ᮏ◊✲࡛ࡣࠊỈࢆసື፹యࡍࡿ CaO/Ca(OH)2 ⣔ CHP ╔┠ࡋࠊ➨୍ẁ㝵ࡋ࡚ࠊ✵Ꮝᚄไᚚࡢࡓࡵࡢ⃦⢊ῧຍࢆ ⾜࡞ࢃ࡞࠸ሙྜࡢ〇㐀ἲࢆ᥇⏝ࡋࠊฟⓎཎᩱ⨾⃰⏘ Ca(OH)2(▮ᶫᕤᴗओ〇)ࢆ⏝࠸ࠊCa(OH)2 ᢸᣢ㔞ࡀ␗࡞ࡿ 3 ✀ ࡢ ࢝ ࣮ ࣎ ࣥ ከ Ꮝ య Ca(OH)2 ᢸ ᣢ Ꮫ ⇕ ᮦ (Ca(OH)2-PSM)ࢆヨసࡋࡓࠋࡇࡢヨస࡛ࡣࠊ1㸧㔜ྜᗘ 1700ࠊ ࡅࢇᗘ 99%ࡢ PVA ࡢ 20wt%-Ỉ⁐ᾮᡤᐃ㔜㔞ࡢỈ࠾ࡼ ࡧ Ca(OH)2㸦ᖹᆒ⢏ᚄ 50μm㸧ࢆຍ࠼ΰྜࡋࡓᚋࠊ2) ⇕◳ ᛶࣇ࢙ࣀ࣮ࣝᶞ⬡(࣋ࣝࣃ࣮ࣝ S890(࢚㺃࢛࣮࢘ࢱ࣮♫ 〇))ࠊ0.1N-◪㓟࣒࣍ࣝࣝࢹࣄࢻ⁐ᾮ࠾ࡼࡧ⃦⢊ࢆຍ࠼࡚ ΰ⦎ᡂᆺࡋࠊ3㸧 ᗘ 160Υ࡛ᯫᶫᛂࡉࡏᡂᙧయࡋࡓࠋ ࡉࡽࠊ4)ࡇࢀࢆάᛶ㞺ᅖẼ୰࡛Ⅳ(800Υ)ࠊ┿✵ୗ 500Υ࡛ 24h ฎ⌮ࡋࠊ⢊○ᚋỈࡉࡏ࣮࢝࣎ࣥከᏍయ Ca(OH)2 ᢸᣢᏛ⇕ᮦ(Ca(OH)2-PSMࠊ⢏ᚄ 75㹼750μm) ࢆᚓࡓࠋᮏヨᩱࡢཎᩱΰྜẚ࠾ࡼࡧ≀ᛶ್ࢆ⾲ 1 ♧ࡍࠋ ࡲࡓࠊỈ㖟ᅽධἲࡼࡿ⣼✚✵Ꮝศᕸࡢ ᐃ⤖ᯝࠊ࠾ࡼࡧ ࡇࡢ⤖ᯝࡽィ⟬ࡉࢀࡿᚤศ✵Ꮝศᕸࢆ Ca(OH)2 ᮍᢸᣢࡢ ࣮࢝࣎ࣥከᏍయẚ㍑ࡋ࡚ᅗ 2 ࠾ࡼࡧᅗ 3 ♧ࡍࠋࡇࡇ ࡛ࠊ⾲ 1 ࡢ⢏ᏊᐦᗘࡣỈ๓ࡢヨᩱࢆᇶ‽ࡋ࡚ồࡵࡓ್ ࡛࠶ࡿࠋලయⓗࡣࠊ⢏Ꮚయ✚ࡀࠊ1㸧Ỉ๓ࡢヨᩱࡀ CaO C ࡢࡳࡢ⤌ᡂ࡛࠶ࡿࡋࠊࡇࡢ⺯ග X ⥺ศᯒࡼࡾ Ca ྵ᭷⋡ࢆồࡵࠊCaO ⟬ࡢ㉁㔞ࢆィ⟬ࡋ CaO ࡢ┿ᐦᗘ (3350kg/m3)࡛㝖ࡋࡓయ✚ࠊ2)㸦1㸫Ca ྵ᭷⋡)ࢆ C ࡢྵ᭷⋡ ࡋࡑࡢ㉁㔞ࢆ┿ᐦᗘ(1500kg/m3)࡛㝖ࡋࡓయ✚ࠊ࠾ࡼࡧ 3㸧 ࡇࡢ⢏Ꮚࡢ✵Ꮝࡢࢇࡀᅗ 2 ࡢ⣼✚⣽Ꮝศᕸ♧ࡍ ⣽Ꮝ┤ᚄ 50μm ௨ୗ࡛༨ࡵࡽࢀࡿࡋࡓ✵Ꮝయ✚ࠊࡢ࡛ ⾲ࡉࢀࡿࡋࠊ1㸧ࠊ2㸧ࡢ㉁㔞ࡢࢆ 1㸧ࠊ2㸧ࠊ3㸧ࡢయ ✚ࡢ࡛㝖ࡋࡓ್࡛࠶ࡿࠋ㉁㔞ẚ CaO/C ࡣ 1㸧ࠊ2㸧࡛⟬ ฟࡉࢀࡓ㉁㔞ᇶ࡙࠸࡚ィ⟬ࡋࡓ್࡛࠶ࡿࠋࡲࡓࠊ⢏Ꮚࡢ య✚ẚ Ca(OH)2:C:Pore ࡣࡇࡢ⇕ᮦ⢏ᏊࡀỈࡋ ⾲ 1 Sample 䐟 䐠 䐡 䐢 ᅗ 3 Ca(OH)2-PSM ࡢᚤศ⣽Ꮝศᕸ Ca(OH)2-PSM ࡞ࡗࡓࡋࡓሙྜࡢ್࡛࠶ࡿࠋヨసࡋࡓ Ca(OH)2-PSM ࡛ࡣࠊヨᩱղ࠾࠸࡚᭱⢏ᏊᐦᗘࠊCa(OH)2 ᭱ᢸᣢయ✚ྜ࡞ࡗࡓࠋᅗ 2,3 ࡼࡾࠊ✵Ꮝ┤ᚄ Dp = 0.001㹼60μm ⠊ᅖࡢ✵Ꮝࡘ࠸࡚ḟࡢࡇࡀศࡿࠋ1) Ca(OH)2 ᮍᢸᣢヨᩱࡢ✵Ꮝᐜ✚ࡣ⣙ 840 cm3/kg ࡛࠶ࡾࠊ Dp = 0.15 ࠾ࡼࡧ 30μm ࢆ୰ᚰࡍࡿ 2 ඖ✵Ꮝᵓ㐀ࢆ♧ࡋࠊ ࡑࡢ✵Ꮝᐜ✚ࡣࡑࢀࡒࢀ 60 cm3/kg ࠾ࡼࡧ 660 cm3/kgࠊࡘ ࡲࡾ✵Ꮝᐜ✚ࡢࡑࢀࡒࢀ⣙ 0.13 ಸ࠾ࡼࡧ 0.78 ಸ࡞ࡿࠋ 2) Ca(OH)2 ᢸᣢヨᩱ࡛ࡣࠊᢸᣢ㔞ࡢቑకࡗ࡚✵Ꮝᐜ ✚ࡣῶᑡࡍࡿࠋ࠼ࡤࠊSample-ղࡢ✵Ꮝᐜ✚ࡣ⣙ 380 cm3/kg ࡞ࡾࠊᮍᢸᣢヨᩱࡢ⣙ 0.45 ಸ࡛࠶ࡿࠋࡲࡓࠊ࠸ ࡎࢀࡶ Dp = 0.02μm ㏆࠾ࡼࡧ 30μm ㏆ࢆ୰ᚰࡍࡿ 2 ඖ✵Ꮝᵓ㐀ࢆ♧ࡋࠊࡑࡢ✵Ꮝᐜ✚ࡣࡑࢀࡒࢀ 260 cm3/kg ࠾ ࡼࡧ 56 cm3/kgࠊࡘࡲࡾ✵Ꮝᐜ✚ࡢࡑࢀࡒࢀ⣙ 0.68 ಸ࠾ ࡼࡧ 0.15 ಸ࡛࠶ࡿࠋࡇࢀࡽࡢ⤖ᯝࡣࠊCa(OH)2 ࡀᮍᢸᣢヨ ᩱࡢ Dp = 0.15μm ࠾ࡼࡧ 30μm ࢆ୰ᚰࡍࡿ✵Ꮝᢸᣢࡉ ࢀࠊDp=0.15μm ࡢ✵Ꮝࡢᾘ⁛ࠊDp=30μm ✵Ꮝࡢ⊃ᑠ ࡼࡿ᪂ࡓ࡞ Dp = 0.02μm ࢆ୰ᚰࡍࡿ✵Ꮝᙧᡂࡘ࡞ࡀ ࡗࡓࡇࢆ♧ࡋ࡚࠸ࡿࠋ࡞࠾ࠊCa(OH)2 ᢸᣢࡼࡿ✵Ꮝᚄ ࡢኚࡽ␎ࡢᢸᣢᒙཌࡳࡣ 15μm ௨ୗ࡛࠶ࡿ᥎ᐃࡉ ࢀࡿࠋ ᅗ 4 ࡣࠊSample-ղࢆࡍࡿ㉮ᰝᆺ㟁Ꮚ㢧ᚤ㙾(SEM) Ca(OH)2-PSM ࡢ≀ᛶ Bellpearl Ca(OH)2 PVA- 20% Nitric acid solution form-aldehyde (S890) [wt%] [wt%] [wt%] [wt%] 16 84 15 15 26 44 48 14 14 24 15 15 58 12 Particle density [kg/m3] 664 1243 1059 808 Pore Weight ratio volume CaO/C 3 3 [-] [10 m /kg] 0.84 0 0.38 1.92 0.53 2.18 0.7 0.54 Volume ratio of particle Ca(OH)2 : C : Pore 0 : 0.44 : 0.56 0.33 : 0.25 : 0.42 0.30 : 0.20 : 0.50 0.13 : 0.33 : 0.54 ឡ▱ᕤᴗᏛ⥲ྜᢏ⾡◊✲ᡤ◊✲ሗ࿌㸪➨ 16 愛知工業大学総合技術研究所研究報告,第 16 ྕ㸪2014 号,2014ᖺ 年 ほᐹ(a)ࠊ࢝ࣝࢩ࣒࢘(b)࠾ࡼࡧⅣ⣲ᡂศ(c)ࢆᣦᶆࡍࡿ࢚ ࢿࣝࢠ࣮ศᩓᆺ X ⥺ศᯒ(EDX)⤖ᯝࢆ♧ࡍࠋCa(OH)2-PSM ࡢ✵Ꮝෆࡣ Ca(OH)2 ࡀศᩓᢸᣢࡉࢀ࡚࠸ࡿࡇࡀࢃ ࡿࠋ 㸱㸬⧞㏉ࡋ⇕㺃ᨺ⇕ࡼࡿⓎ⇕≉ᛶ࠾ࡼࡧᙧ≧㛗ᮇᏳᛶ Ca(OH)2-PSM ࡘ࠸࡚ࠊCHP ࢆᶍᨃࡋࡓࢡ࣮ࣟࢬࢻᘧ ᛂჾࡼࡿ⧞㏉ࡋ⇕㺃ᨺ⇕ࡢⓎ⇕≉ᛶࢆᣦᶆࡍࡿ ᛂᛶࡢホ౯ࠊ࡞ࡽࡧ⧞㏉ࡋ⇕㺃ᨺ⇕ᚋࡢヨᩱࡢගᏛほ ᐹࡼࡿᙧ≧㛗ᮇᏳᐃᛶࡢホ౯ࢆ⾜࡞ࡗࡓࠋ࡞࠾ࠊ Ca(OH)2-PSM ᑐࡍࡿ௨ୗࡢ᳨ウ࡛ࡣ Sample-ղࢆᑐ㇟ ࡋ࡚⾜࡞ࡗࡓࠋ 㸱㸬㸯 ᐇ㦂 (1) ⇕㺃ᨺ⇕ࡢⓎ⇕≉ᛶࡢ ᐃ PSM ࡢỈᛂ࠾ࡅࡿⓎ⇕≉ᛶホ౯⏝࠸ࡓᐇ㦂 ⨨ࡢᴫ␎ࢆᅗ 5 ♧ࡍࠋ⨨ࡣຍ⇕⅔ෆタ⨨ࡉࢀࡓࢫࢸ ࣥࣞࢫ〇ᛂ⟶(ෆ┤ᚄ 52mmࠊ㛗ࡉ 500mm)Ⓨჾࡀ㓄 ⟶࡛᥋⥆ࡉࢀࡓᵓ㐀࡛࠶ࡿࠋࡇࡇࡣ⣔ෆࢆ⬺Ẽࡍࡿࡓࡵ ࡢ┿✵࣏ࣥࣉ࠾ࡼࡧ┿✵ᅽຊィࡀタࡉࢀ࡚࠸ࡿࠋᛂ⟶ ࡣ PSM ሸヨᩱ㒊ࡀຍ⇕⅔୰ᚰ㒊㓄⨨ࡉࢀࡿࡼ࠺ᤄ ධࡉࢀ࡚࠾ࡾࠊෆ㒊ࡣᗏ㒊ࡽࡢ㧗ࡉ 6mm ࡢ⨨ ᗘ ᐃࡢࡓࡵࡢ⇕㟁ᑐࡀᤄධࡉࢀ࡚࠸ࡿࠋⓎჾࡣⓎ ᗘㄪᩚࡢࡓࡵᡤᐃ ᗘࡢᜏ ᵴෆ⨨ࢀ࡚࠸ࡿࠋᐇ㦂 ࡛ࡣࠊ⣙ 30cm3 ࡢ PSM ࢆ⢭⛗ࠊᛂ⟶(ሸ㧗ࡉ 12mm) ሸࡋࠊ⣔ෆࢆ༑ศ┿✵⬺Ẽࡋᛂ⟶ヨᩱ㒊ࢆᡤᐃ ᗘ(750Υ)ຍ⇕⥔ᣢ(4h)ࡍࡿࡇࡼࡗ࡚ࠊ⬺Ỉࡋࡓ ⇕≧ែࡍࡿࠋࡘࡂヨᩱ㒊ࢆᡤᐃ ᗘࡲ࡛㝆ୗࡉࡏࡓ ᚋࠊⓎჾ ᗘࡢ㣬ỈẼࢆᛂ⟶ᑟධࡍࡿࡇࡼ ࡾỈᛂࢆ⾜࡞ࢃࡏࠊࡇࡢࡁࡢヨᩱ㒊 ᗘࡢ ᐃࢆ⾜ ࡞࠺ࠋ⧞㏉ࡋỈᛂᐇ㦂࡛ࡣỈᛂ⤊ᚋࠊᗘ ᛂ⟶ヨᩱ㒊ࢆᡤᐃ ᗘຍ⇕ࡋ⣔ෆࢆ༑ศ┿✵⬺Ẽࡍ ࡿࡇࡼࡾ Ca(OH)2 ࢆ CaO ࡢ⇕≧ែࡋࡓࠋ⧞ࡾ㏉ ࡋᐇ㦂ࡣ 15 ᅇ⾜ࡗࡓࠋ௨ୗᮏᐇ㦂ࡢ᮲௳ࢆ♧ࡍࠋ Ca(OH)2-PSM Sample-ղ(ᖹᆒ⢏Ꮚᚄ㸹500μm) ᛂჾึᮇ ᗘ㸹60Υ Ⓨჾ ᗘ㸹60Υ ⬺Ỉ ᗘ㸹500Υ ヨᩱሸ㔞㸹0.0140kg ࡞࠾ࠊẚ㍑ࡢࡓࡵ Ca(OH)2 ༢య(⢏ᚄ 10μm ࣥࢲ࣮)࠾ ࠸࡚ࡶୖグྠ᮲௳ࡢᐇ㦂ࢆ⾜࡞ࡗࡓࠋ (2) ヨᩱࡢගᏛほᐹ ⧞㏉ࡋỈᛂᚋࡢヨᩱࡘ࠸࡚ࡣ┠どࠊSEMࠊEDX ࡼࡿヨᩱほᐹࢆ⾜࡞ࡗࡓࠋࡲࡓࠊPSM ࠾ࡅࡿᛂࡢ ᭷↓ࡘ࠸࡚ X ⥺ᅇᢡ(XRD)ほᐹࢆ⾜࡞ࡗࡓࠋ 㸱㸬㸰 ᐇ㦂⤖ᯝ࠾ࡼࡧ⪃ᐹ ᅗ 6 ࠊ୍ࡋ࡚ࠊỈᛂ࠾ࡅࡿ⧞㏉ࡋ 2 ᅇ┠ࠊ 15 ᅇ┠ࡢ⇕ᮦᒙࡢึᮇ ᗘࡽࡢୖ᪼ ᗘ(ǻT)ࡢ ᐃ ⤖ᯝࢆ♧ࡍࠋᮏᅗࡣẚ㍑ࡢࡓࡵࠊCaO ༢యࡢỈᛂ ࠾ࡅࡿ⧞㏉ࡋ 2 ᅇ┠ࠊ6 ᅇ┠ࡢ⤖ᯝࢆే♧ࡋࡓࠋᮏᅗࡼࡾࠊ Ca(OH)2-PSM ࠊCaO ༢యࡶ ᗘࡣỈᛂ㛤ጞᚋࠊ ᭱ ᗘୖ᪼(ǻTmax)ࢆ⤒࡚ึᮇ ᗘᅇࡍࡿࡇࡀࢃ ࡿࠋࡇࡢഴྥࡣ⧞㏉ࡋᅇᩘࢃࡽࡎほᐹࡉࢀࡓࠋࡑ ࡇ࡛ࠊᅗ 7 ࡣ⧞㏉ࡋᅇᩘᅇᩘࡈࡢ ǻTmax ࡢ㛵ಀࢆ♧ ࡋࡓࠋ࡞࠾ࠊᮏᐇ㦂࡛ࡣࢥࢵࢡࡢ㛤㛢ࢆᡭື࡛⾜ࡗ࡚࠸ࡿࠋ ᐇ㦂࡛ࡣࡇࡢ㛤㛢ࢆ࡛ࡁࡿ㝈ࡾ㏿ࡸ⾜ࡗ࡚࠸ࡿࡀẖ ᅇࡶྠ୍᧯స࡛⾜࠺ࡇࡣ↓⌮ࡀ࠶ࡿࠋࡇࡢࡇࡼ ࡾ Ca(OH)2-PSM ࡢ 3ࠊ5ࠊ6 ᅇ┠࠾ࡼࡧ 11ࠊ12 ᅇ┠࡛ࡣ᭷ (a) SEM(×5000) (b) EDX-Ca(×5000) (c) EDX-C(×5000) ᅗ 4 Ca(OH)2-PSM ࡢ SEM ࠾ࡼࡧ EDX ほᐹ⤖ᯝ ព࡞Ⓨ⇕ࢆほᐹ࡛ࡁ࡞ࡗࡓࠋࡋࡋࠊࡇࢀࡽࡢᅇ࠾࠸ ࡚ࡶ༑ศ࡞Ỉᛂࢆ⾜ࢃࡏࡓᚋ┿✵ࠊ500Υ⬺Ỉࢆ⾜ ࡗࡓࡢ࡛ࡇࢀࡽࢆ⧞㏉ࡋᅇᩘຍ࠼ࡓࠋ ᅗ 6 ࡽḟࡢࡇࡀࢃࡿࠋ1㸧Ca(OH)2 ༢య࡛ࡣࠊ⧞ ㏉ࡋ 2 ᅇ┠ࠊ6 ᅇ┠࡛ࠊࡑࢀࡒࢀᛂ㛤ጞ 6min ⛬ᗘ࠾ࡼ ࡧ 12min ⛬ᗘ࡛ ǻTmax ࢆ♧ࡋࠊࡑࢀࡒࢀ⣙ 310Υ࠾ࡼࡧ 110Υ࡞ࡿࠋ2) PSM ࡛ࡣ⧞㏉ࡋ 2 ᅇ┠ࠊ15 ᅇ┠࡛ࡑࢀࡒ ࢀ 0.91min ᚋ࠾ࡼࡧ 1.7min ᚋ 260Υࡢ ǻTmax ್ࢆ♧ࡍࠋ ࡘࡂᅗ 7 ࢆぢࡿࠊ3) Ca(OH)2-PSM ࡢ ǻTmax ್ࡣᅇᩘ ࡼࡽࡎᖹᆒ 280Υࢆ♧ࡍࠋࡇࢀᑐࡋ࡚ࠊCa(OH)2 ༢య࡛ ࡣࠊ⧞㏉ࡋᅇᩘࡢቑకࡗ࡚ ǻTmax ್ࡣࡁࡃῶᑡࡋࠊ3 㹼4 ᅇ┠ࠊ5㹼6 ᅇ┠࡛ࡑࢀࡒࢀ 1 ᅇ┠ࡢ 1/2 ௨ୗ࠾ࡼࡧ 1/3 ௨ୗ࡞ࡿࡇࡀศࡿࠋ ୖグ 1㸧ࠊ2㸧ࡼࡾ CaO ༢యẚ࡚ Ca(OH)2-PSM ࡢ᭱ ᗘ฿㐩㛫ࡀ▷࠸ࡇࡀศࡿࠋࡇࢀࡣሸヨᩱࡢ⢏ Ꮚᚄࡼࡿ⪃࠼ࡽࢀࠊCaO ༢యẚ࡚⢏Ꮚᚄࡢࡁ࠸ ᅗ 5 Ⓨ⇕≉ᛶ ᐃ⨨ 350 Initial temperature : 60䉝 300 PSM: 2nd step Temperature rise ,䏓T[䉝] 64 250 PSM: 15th step 200 CaO: 2nd step CaO: 6th step 150 100 50 0 0 5 10 15 20 Time[min] ᅗ 6 ᨺ⇕㐣⛬ࡢ ᗘࡢ⤒ኚ 25 30 Ca(OH) Ca(OH)22ࢆᢸᣢࡋࡓ࣮࢝࣎ࣥከᏍయᆺᏛ⇕ᮦࡢᛶ⬟ を担持したカーボン多孔体型化学蓄熱材の性能 Highest rising temperature, 䏓T [䉝] Ca(OH)2-PSM ࡢ⢏Ꮚᵓ㐀࠾ࡼࡧỈᛂࡢⓎ⇕࠾ࡅࡿ ᭱ୖ᪼ ᗘࢆᣦᶆࡍࡿᛶ⬟ホ౯ࢆ⾜࡞ࡗࡓࠋࡑࡢ⤖ ᯝࠊᮏᐇ㦂⠊ᅖෆ࡛௨ୗࡢ⤖ㄽࢆᚓࡓࠋ 㸧 Ca(OH)2-PSM ࡣ CaO/C ࡢ㉁㔞ẚ࡛᭱ 2.18 ಸࡢ 350 䖃 䖃䖃 䕿 300 250䖃 䖃 䖃 䕿 200 150 100 䖃䖃䖃䖃 䖃 PSM 䕿 䕿 Ca(OH)2-PSM ࡛ࡣỈẼࡀᒙᗏ㒊ࡲ࡛ᐜ᫆ᑟධࡉࢀỈ ᛂࡀ㏿ࡸ㐍⾜ࡋࡓࡇࡼࡿㄝ᫂ࡉࢀࡿ㸬⧞㏉ ࡋ 2 ᅇ┠࡛ࡣ CaO ༢యẚ࡚ Ca(OH)2-PSM ࡢ ǻTmax ್ ࡀప࠸ࠋࡇࢀࡣヨᩱሸᐜ✚ࢆྠ୍ࡋࡓࡓࡵࠊ㏉ࡋ 2 ᅇ ┠࡛ࡣ CaO ༢యẚ࡚ Ca(OH)2-PSM ࡢ ǻTmax ್ࡀప࠸ࠋ ࡇࢀࡣヨᩱሸᐜ✚ࢆྠ୍ࡋࡓࡓࡵࠊྠ୍య✚ᇶ‽ࡢ Ca(OH)2 㔜㔞ࡀ CaO ༢యẚ࡚ᑡ࡞࠸ࡇ࡞ࡽࡧⓎ⏕ ࡋࡓ⇕ࡀ࣮࢝࣎ࣥᇶ㉁ࡢ ᗘୖ᪼ᾘ㈝ࡉࢀࡓࡇࡼ ࡿࠋ PSM ࠾ࡅࡿୖグ 3㸧ࡢ⤖ᯝࡣࠊPSM ࡣ✵Ꮝෆ Ca(OH)2 ࡀⷧᒙศᩓᢸᣢࡉࢀࡓᵓ㐀࡛࠶ࡿࡓࡵ Ca(OH)2 ⢏ Ꮚࡢจ㞟ࡀᢚไࡉࢀᛂᛶࡀ☜ಖࡉࢀࡓࡇࡼࡿࠋࡋࡓ ࡀࡗ࡚ࠊࡇࡢࡇᚋ㏙ࡢගᏛほᐹ⤖ᯝేࡏ⪃࠼ࡿᥦ ࡢ࣮࢝࣎ࣥከᏍయᢸᣢᆺᏛ⇕ᮦࡀ CHP ࡢ⇕ᮦ ࡋ࡚᭷ຠᶵ⬟ࡍࡿ⪃࠼ࡽࢀࡿࠋ࡞࠾ࠊCa(OH)2-PSM ࡛ 2 ᅇ┠ࠊ15 ᅇ┠ࡢ ǻTmax ฿㐩㛫ᕪ␗ࡀ⏕ࡌࡓࠋࡇࢀࡣࠊ ඛ㏙ࡢᐇ㦂࡛ࡢࢥࢵࢡࡢ㛤㛢ࡀᡭື࡛࠶ࡿࡇࡼࡿࠋࡑ ࡢ⤖ᯝ 2 ᅇ┠ẚ㍑ࡋ࡚ 15 ᅇ┠ࡢ㛤ጞ 1min ᮍ‶ ᗘୖ ᪼㐜ࢀࡀ⏕ࡌ࡚࠸ࡿࠋࡋࡋࠊࡑࡢᚋࡢ ᗘୖ᪼㏿ᗘࡣ 2 ᅇ┠ࠊ15 ᅇ┠ࡶࡰྠ୍࡛࠶ࡾࠊᛂ㏿ᗘᕪࡣ࡞࠸ ᛮࢃࢀࡿࠋ ᅗ 8 ࡣ⧞ࡾ㏉ࡋỈ㺃⬺Ỉ๓ᚋࡢ Ca(OH) 2 ༢యࠊ Ca(OH)2-PSM ほᐹ⤖ᯝ࡛࠶ࡿࠋලయⓗࡣࠊ(a)ࠊ(b)ࡣ Ca(OH) 2 ༢యࡢ⧞㏉ࡋỈ࣭⬺Ỉ๓ᚋࡢ㢧ᚤ㙾ほᐹ⤖ᯝࠊ (c)ࠊ(d)ࡣ Ca(OH)2-PSM ⢏Ꮚࡢ⧞㏉ࡋỈ࣭⬺Ỉ๓ᚋࡢ SEM ほᐹ⤖ᯝ࠾ࡼࡧ Ca(OH)2-PSM ࡢ⧞㏉ࡋỈ࣭⬺Ỉᚋ ࡢ⢏Ꮚෆ SEM ほᐹ⤖ᯝ࡛࠶ࡿࠋCa(OH)2 ༢యࡢึᮇ⢏Ꮚ(a) ⧞㏉ࡋ 6 ᅇᚋࡢ⢏Ꮚ(b)ࢆẚ㍑ࡍࡿึᮇࡢ 10μm ⢏Ꮚࡀ ᭱ 5mm ⛬ᗘࡢሢ≧⢏Ꮚ࡞ࡗ࡚࠸ࡿࡇࡀศࡿࠋࡇ ࢀࡣ⧞㏉ࡋࡼࡾ⢏Ꮚࡢจ㞟ࡀ㐍⾜ࡋࡓࡇࡼࡿ⪃ ࠼ࡽࢀࡿࠋࡘࡲࡾࠊࡇࡢሢ≧⢏Ꮚక࠺ᛂ⏺㠃✚ࡢῶ ᑡࡸ⢏Ꮚ⾲㠃㏆ഐ࡛ࡢ⣽Ꮝ㛢ሰࡀᛂᛶపୗࡘ࡞ࡀࡾࠊ ᅗ 6 ࡢ ǻTmax ࡢపୗࡋ࡚⌧ࢀࡓࡇࢆࡅ࡚࠸ࡿࠋ୍ ᪉ࡢ Ca(OH)2-PSM ⢏Ꮚ࡛ࡣࠊึᮇ (c) 15 ᅇ⧞ࡾ㏉ࡋᚋ ࡢ⢏Ꮚ(d)ࡢᙧ≧ኚࡣ࡞ࡃࠊሀ∼ᙧ≧ࢆ⥔ᣢࡋ࡚࠸ࡿࡇ ࡀㄆࡵࡽࢀࡿࠋࡲࡓࠊCa(OH)2-PSM ࡢ⢏Ꮚෆࡘ࠸࡚ࡶ ึᮇ (ᅗ 4(a))⧞㏉ࡋ 15 ᅇᚋ(ᅗ 8(e))ࡢ SEM ⤖ᯝࢆẚ㍑ ࡍࡿ୧⪅ࡢ✵Ꮝᵓ㐀࠾ࡼࡧ Ca(OH)2 ࡢศᩓᢸᣢ≧ែ ࡁ࡞ኚࡣ࡞࠸ࡇࡀࢃࡿࠋ ࡘࡂࠊCa(OH)2-PSM ࡢ⧞㏉ࡋ๓ᚋࡢ XRD ほᐹࢆ⾜ࡗ ࡓࠋࡑࡢ⤖ᯝࠊ⧞㏉ࡋ๓ࡢヨᩱ 15 ᅇ⧞㏉ࡋᚋࡢヨᩱࡢ 㛫ᅇᢡࣆ࣮ࢡࡢ⨨ࠊ㧗ࡉࠊࣆ࣮ࢡᖜࡢ┦␗ࡣㄆࡵࡽࢀ ࡞ࡗࡓࠋࡑࡇ࡛ࠊᅗ 9 ⧞㏉ࡋỈ㺃⬺Ỉ 15 ᅇᚋࡢヨᩱ ࢆࡍࡿ Ca(OH)2-PSM ࡢ XRD ⤖ᯝࢆ♧ࡍࠋẚ㍑ࡢࡓࡵ Ca(OH)2 ༢యࠊCaCO3 ༢యࡢ⤖ᯝࢆే♧ࡋࡓࠋࡇࡇ࡛ࠊ Ca(OH)2 ༢యࠊCaCO3 ༢యࡢ◚⥺ࡢኴࡉࠊ㧗ࡉࡣࡑࢀࡒࢀ ᙉᗘ࠾ࡼࡧࣆ࣮ࢡᖜࢆ♧ࡍࠋᅗࡼࡾࠊCa(OH)2-PSM ࡢ Ca(OH)2 ࣆ࣮ࢡࡣ༢యࡢࡑࢀࡰ୍⮴ࡋ࡚࠾ࡾࠊᛂ ࡀ㉳ࡇࡗ࡚࠸࡞࠸ࡇࡀࢃࡿࠋ࡞࠾ࠊCa(OH)2-PSM ࠾ ࡅࡿ 2ș㸻27㹼29°㏆ࡢ 2 ࣆ࣮ࢡࡣࡁࢃࡵ࡚ᑡ㔞ࡢ⣧≀ ࡢᏑᅾࢆ♧ࡍࡀࠊࡇࢀࡣ⧞㏉ࡋ๓ᚋࡢヨᩱ࠾࠸࡚ࡶඹ㏻ ࡋ࡚ほᐹࡉࢀࠊ⧞㏉ࡋࡼࡿ᪂ࡓ࡞ኚࡣㄆࡵࡽࢀ࡞ࡗ ࡓࠋ 65 䕿 CaO 䕿 Initial temperature: 60䉝 50 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Number of times ᅗ 7 ⧞㏉ࡋᨺ⇕ࡼࡿ᭱㧗 ᗘୖ᪼ࡢኚ (a)Ca(OH)2 ࡢึᮇヨᩱ (b) Ca(OH)2 ࡢ⧞㏉ࡋ㸴ᅇᚋ (c) Ca(OH)2-PSM ࡢ (d) Ca(OH)2-PSM ࡢ⧞㏉ࡋ ึᮇヨᩱ 15 ᅇᚋ ᅗ 8 (e) Ca(OH)2-PSM ࡢ⧞㏉ࡋ 15 ᅇᚋ(ヨᩱෆ㒊) Ca(OH)2 ༢య࠾ࡼࡧ Ca(OH)2-PSM ࡢ SEM ⤖ ゝ ᅛయ༝㔠ᒓྜ≀ࢆᑐ㇟ࡍࡿᏛ⇕ᮦ㛵ࡋ࡚ࠊ᪂ ࡓ࡞タィ〇㐀ࢥࣥࢭࣉࢺࢆ♧ࡋࡓࠋࡘࡂࠊࡇࡢࢥࣥࢭࣉ ࢺᚑࡗ࡚ヨసࡋࡓ࣮࢝࣎ࣥከᏍయ Ca(OH)2 ᢸᣢᏛ⇕ ᮦ(Ca(OH)2-PSM)ࡘ࠸࡚⧞ࡾ㏉ࡋỈ㺃⬺Ỉᛂࡼࡿ ᅗ 9 Ca(OH)2-PSM ࡢ⧞㏉ࡋ 15 ᅇᨺ⇕ᚋࡢ XRD ឡ▱ᕤᴗᏛ⥲ྜᢏ⾡◊✲ᡤ◊✲ሗ࿌㸪➨ 16 愛知工業大学総合技術研究所研究報告,第 16 ྕ㸪2014 号,2014ᖺ 年 66 㧗ᐦᗘᏛ⇕ᮦࡍࡿࡇࡀྍ⬟࡛࠶ࡿࠋ Ca(OH)2-PSM ࡢ Ca(OH)2 ࡣࠊࡋ࡚ࠊᮍᢸᣢࡢ ࣮࢝࣎ࣥከᏍయࡀ᭷ࡍࡿ✵Ꮝ┤ᚄ Dp = 0.15μm ࠾ ࡼࡧ 30μm ࢆ୰ᚰࡍࡿ✵Ꮝⷧᒙศ 㸧 ᩓᢸᣢࡉࢀࠊDp = 0.15μm ࡢ✵Ꮝࡢᾘ⁛ࠊDp = 30μm ࡢ✵Ꮝࡢ⊃ᑠࡼࡿ᪂ࡓ࡞ Dp = 0.02μm ࢆ୰ᚰࡍࡿ✵Ꮝࢆᙧᡂࡍࡿࠋ 㸧 ⧞㏉ࡋỈ㺃⬺Ỉᛂ࠾࠸࡚ࠊỈᛂࡢⓎ⇕ ࠾ࡅࡿ᭱ୖ᪼ ᗘࢆㄪࡓ⤖ᯝࠊ Ca(OH)2-PSM ࡣ 15 ᅇࡢ⧞ࡾ㏉ࡋ࠾࠸࡚ࡶ᭱ ᗘୖ್᪼ࡣ⥔ᣢࡉࢀࠊᛂᛶࡢຎࡣㄆࡵࡽࢀ ࡞࠸ࠋࡇࢀࡣࠊCa(OH)2 ࡀከᏍయෆ✵Ꮝⷧᒙᢸ ᣢࡉࢀࡓࡇࡼࡾࠊࡇࡢจ㞟ࡀᢚไࡉࢀࡓࡇ ࡼࡿࠋ ௨ୖࡼࡾࠊᥦࡢ Ca(OH)2-PSM ࡀ CHP ࡢ⇕ᮦࡋ࡚ ༑ศᶵ⬟ࡍࡿᛮࢃࢀࡿࠋ 㸧 ཧ⪃ᩥ⊩ Hirata, Y., K. Fujioka and S. Fujiki; “Preparation of Fine Particles Calcium Chloride with Expanded Graphite for Enhancement of the Driving Reaction for Chemical Heat Pumps”, J. of Chem. Eng. of Japan, 36, 827-832(2003) Ishitobi, H., K. Uruma, J. Ryu and Y. Kato; “Durability of Lithium Chloride-Modified Magnesium Hydroxide on Cyclic Operation for Chemical Heat Pump”, J. of Chem. Eng. of Japan, 45, 58-63(2012) Kato Y., Y. Sakaki and Y. Yoshizawa; “Thermal Performance Measurement of a Packed Bed Reactor of a Magnesium Oxide/Water Chemical Heat Pump”, J. of Chem. Eng. of Japan, 40, 1264-1269(2007) Kato Y., T. Saito, T. Soga, J. Ryu and Y. Yoshizawa; “Durable Reaction Material Development for Magnesiumu Oxide/Water Chemical Heat Pump”, J. of chem.. Eng. of Japan, 40, 1264-1269(2007) Kanzawa, A. and Y. Arai; “Thermal Energy Storage by the Chemical Decomposition in the CaO/Ca(OH)2 Powder”, Solar Energy, 27, 289-294(1981) Kubota M., K. Yokoyama, F. Watanabe, N. Kobayashi and M. Hasatani; “Heat Releasing and Recovering Characteristics of CaO/CaCO3 Type High Temperature Chemical Heat Pump with Packed Bed Reactor”, Kagaku Kogaku Ronbunshu, 27, 285-287(2001) Li G., T. Kanei, Y. Kato and Y. Yoshizawa; “Heat and Mass Transfer in a Packed Bed Reactor for Calcium Oxide/Carbon Dioxide Chemical Heat Pump”, J. of Chem. Eng. of Japan, 35, 886-892(2002) Ogura H., M. Miyazaki, H. Matsuda, M. Hasatani, M. Yanadori and M. Hiramatsu; “Experimental Study on Heat Transfer Enhancement of the Solid Reactant Particle Bed in a Chemical Heat Pump Using Ca(OH)2/CaO Reaction”, Kagaku Kogaku Ronbunshu, 17,916-923(1991) Ogura H., M. Miyazaki, H. Matsuda, M. Hasatani, M. Yanadori and M. Hiramatsu;“Numerical Analysis of Heat Transfer in Particle-Bed Reactor with Fins in Chemical Heat Pump Using Ca(OH)2/CaO Reaction”, Kagaku Kogaku Ronbunshu, 18, 670-677(1992)
© Copyright 2024 ExpyDoc