第31回無機材料に関する最近の研究成果発表会 東海大学校友会館 January 27, 2014 表面ナノ構造を制御した半導体 光触媒による水の可視光完全分解 前田 和彦 東京工業大学 大学院理工学研究科 化学専攻 JSTさきがけ研究者『光エネルギーと物質変換』領域 Research background Conventional energyproduction system Fossil Fuel (Depletion…) Photocatalytic H2 production from water and solar energy Sun O2 2H2 Combustion O2 Combustion H 2O CO2, SOx, NOx (Environmental issues!!) Semiconductor photocatalyst Basic principle of water splitting on a heterogeneous photocatalyst H 2O hν Photocatalyst V (vs. NHE) (pH 0) 0 1 H2 + O2 ΔG0 = 238 kJ/ 2 mol Conduction band (C.B.) e– H+/H2 H2 Band gap +1.0 H+ hν O2/H2O +2.0 +3.0 O2 h+ Valence band (V.B.) H2O (Oxy)nitrides as water-splitting photocatalysts …Production of H2 as a renewable energy carrier H2O Sunlight Photocatalyst 1 H2 + O2 (ΔG0 = 238 kJ/mol) 2 Visible UV Maeda & Domen, J. Phys. Chem. C 2007, 111, 7851. BaNbO2N 0 .8 0 .6 Ta3N5 SrTaO2N N o rm a liz e d F (R ∞ ) 1 .0 0 .4 0 .2 0 300 LaTiO2N TaON Ta2O5 400 500 600 Wav elen g th / n m 700 800 • Wide visible light absorption • Suitable band structure • Stable under irradiation GaN–ZnO solid solution…the first “reproducible” example of achieving the visible-light-driven overall water splitting H 2O hν (< 3 eV) H2 + 1 O2 ΔG0=238 kJ/mol 2 GaN (Ga1–xZnx)(N1–xOx) ZnO (x = 0.42) Maeda et al., J. Am. Chem. Soc. 2005, 127, 8286. Maeda et al., Nature 2006, 440, 295. Maeda & Domen, Chem. Mater. (Review) 2010, 22, 612. Strategy to develop an efficient photocatalyst H+ H2 ・Construction of active sites ・Decreasing activation energy O2 Cocatalyst nanoparticle (e.g. NiO, RuO2) H2O e– hν > Eg h+ Recombination GaN:ZnO particle u u u u Crystallinity Particle size Composition etc. Development of a new cocatalyst that efficiently promotes the overall water splitting on GaN:ZnO Development of a new cocatalyst for water splitting Conventional cocatalysts NiO, RuO2, IrO2…“single” component metal-oxides H2 H+ O2 NiO, RuO2, or IrO2 H2O e– hν > Eg h+ Recombination Photocatalyst particle Effect of Cr co-loading on water splitting activity Maeda et al., J. Catal. 2006, 243, 303. λ > 300 nm Cocatalyst Activity / µmol h–1 Element (oxide) Loading amount / wt% H2 O2 None - 0 0 Cr 1 0 0 Fe 1 0 0 Co 1 2.0 Ni 1.25 Cu Cr coloading amount / wt% Activity / µmol h–1 H2 O2 1 73 36 0 1 48 24 126 57 0.125 685 336 1 2.0 0 1 585 292 Ru 1 71 27 0.1 181 84 Rh 1 50 1.6 1.5 3835 1988 Pd 1 1.0 0 0.1 205 96 Ag 1 0 0 1 11 2.3 Ir 1.5 9.3 3.1 0.1 41 17 Pt 1 0.9 0.4 1 775 357 Catalyst: 0.3 g, Reactant soln.: distilled water 370~400 mL, Reaction vessel: Inner irradiation-type, Light source: 450 W high-pressure mercury lamp Overall water splitting on Rh2–yCryO3-loaded GaN:ZnO under visible light irradiation Amount of evolved gases / mmol Evac. ▼ 2.0 H2 1.5 λ > 400 nm 1.0 Used catalyst: 3.7 mmol Evolved gases: 16.2 mmol O2 0.5 0 0 5 10 15 20 25 Reaction time / h RuO2 data 30 Catalytic cycle!! 35 Maeda et al., Nature, 2006, 440, 295. Catalyst: 0.3 g, Reactant soln.: H2SO4 aq. 370 mL (pH 4.5), Reaction vessel: Inner irradiation-type, Light source: 450 W high-pressure mercury lamp with a NaNO2 aq. filter TEM images of Rh-loaded GaN:ZnO before and after photodeposition of Cr2O3 Maeda et al., Angew. Chem., Int. Ed. 2006, 45, 7806. Maeda et al., J. Phys. Chem. C 2007, 111, 7554. Maeda et al., Chem. Eur. J. 2010, 16, 7750. Revealed by XAFS and XPS Cr2O3 (shell) Rh (core) Rh Photoreduction of Cr6+ Rh/GaN:ZnO (before Cr2O3 deposition) Cr2O3/Rh/GaN:ZnO Time course of overall water splitting on core/shell-structured Cr2O3/Rh/GaN:ZnO λ > 400 nm Amount of evolved gases / mmol Rh Cr2O3/Rh 0.8 0.8 Rh 0.8 Cr2O3/Rh + H2 0.6 0.6 0.4 0.4 0.2 0.2 0.2 0 0 0 0 1 2 3 4 Reaction time / h 0.6 O2 0 1 2 3 4 Reaction time / h 0.4 0 1 2 3 4 Reaction time / h Catalyst: 0.15 g, Reactant soln.: pure H2O 370 mL, Reaction vessel: Pyrex inner irradiationtype, Light source: 450 W high-pressure Hg lamp with a NaNO2 aq. (2 M) filter 水分解光触媒における助触媒研究 1980年~ 2006年~ (前田、堂免ら) 助触媒 (RuO2など) 助触媒 H2 H2 H+ H+ e– 光触媒 従来型 (単一の金属種) Cr2O3シェル e– 光触媒 Cr含有複合酸化物型 H2 コア H+ e– 光触媒 異種接合型 (コア/シェル型) 水分解光触媒研究の分野に助触媒開発という一大研究領域を確立 Major problem in the nanoparticulate core/shell system Photodeposition Aggregated Rh Attempts to have Rh well-dispersed • Impregnation method No positive effect!! • New method 5 nm Adsorption To increase the activity of Cr2O3/Rh/GaN:ZnO by introduction of Rh nanoparticle core with higher dispersion TEM images of GaN:ZnO modified with Rh/Cr2O3 (core/shell) nanoparticles by an adsorption method Rh Cr2O3 High-dispersion!! Sakamoto et al., Nanoscale, 2009, 1, 106. Maeda et al., Chem. Eur. J., 2010, 16, 7750. Size: 1~3 nm Size distribution of Rh nanoparticles adsorbed on the surface of GaN:ZnO Number of Particles / count 80 Average size of 200 particles 60 1.9 ± 0.6 nm 40 Photodeposition method Ave. 7.6 nm (50 particles) 20 0 0 1 2 3 4 Particle size / nm 5 6 Effect of the amount of Rh on activity Saturated adsorption 0 .5 > 400 nm λ H2 400 0 .4 300 0 .3 O2 200 0 .2 100 0 0 .1 Increase in H2 evolution site 0 0 .5 1 .0 1 .5 2 .0 2 .5 3 .0 A m o u n t o f R h lo a d e d / w t % R a te o f g a s e v o lu tio n / µm o l h -‐1 500 0 A m o u n t o f R h ad d ed / wt % Catalyst: 0.15 g, Reactant soln.: pure H2O 400 mL, Reaction vessel: Pyrex inner irradiationtype, Light source: 450 W high-pressure Hg lamp with a NaNO2 aq. (2 M) filter Comparison of activity …Rh loading amount: 0.3~0.4 wt% A m o u n t o f e v o lv e d g a s e s / µm o l 2500 Adsorption method Photodeposition method 2000 H2 1500 High-dispersion of the core component is important!! 1000 O2 H2 500 0 λ > 400 nm O2 0 1 2 3 R eac tio n tim e / h 4 5 Catalyst: 0.15 g, Reactant soln.: pure H2O 400 mL, Reaction vessel: Pyrex inner irradiationtype, Light source: 450 W high-pressure Hg lamp with a NaNO2 aq. (2 M) filter Effect of the size of Rh nanoparticles on activity Ikeda et al., J. Phys. Chem. C 2013, 117, 2467. Rate of gas evolution / µmol h -1 λ > 400 nm 600 500 400 Smaller is better! 300 200 100 0 1.5$nm 3.8$nm 6.6$nm Catalyst: 0.15 g, Reactant soln.: H2SO4 aq. 400 mL (pH 4.5), Reaction vessel: Pyrex inner irradiation-type, Light source: 450 W high-pressure Hg lamp with a NaNO2 aq. (2 M) filter Overall water splitting on a particulate photocatalyst promoted by two different types of cocatalysts H2 H+ e– C.B. H2 evolution cocatalyst GaN:ZnO particle hν > Eg V.B. h+ O2 evolution cocatalyst O2 H2O Introduction of both H2 and O2 evolution cocatalysts to improve activity! …But no successful example for constructing such a structure… A m o u n t o f e v o lv e d g a s e s / µm o l Visible light water splitting …Effect of coloading Mn3O4 160 Mn 3 O 4 + R h/C r2 O 3 (H 2 ) 140 Mn 3 O 4 + R h/C r2 O 3 (O 2 ) 120 R h/C r2 O 3 (H 2 ) 100 Mn 3 O 4 (H 2 ) Mn3O4 0.05 wt % λ > 420 nm R h/C r2 O 3 (O 2 ) Mn 3 O 4 (O 2 ) 80 60 40 20 0 0 2 4 6 8 10 R eac tio n tim e / h 12 Catalyst: 0.1 g of each, Reactant solution: distilled water 100 mL, Top-irradiation type with a 300 W Xe lamp and a cutoff filter Summary n Precise control of Rh core size in Rh/Cr2O3 nanoparticles ü Successful introduction of size-controlled Rh nanoparticles onto the surface of GaN:ZnO photocatalyst ü For application in the core component, smaller Rh works better. ü Loading another oxygen evolution cocatalyst of Mn3O4 nanoparticles further enhances the water-splitting activity. n Mechanism of H2 evolution on Rh/Cr2O3 nanoparticles ü The core hosts active sites for H2 formation, while the Cr2O3 shell functions as a selective permeable membrane. Modification of surface structure in nano-scale is highly important for enhancing water-splitting activity with visible light! Acknowledgement u Prof. K. Domen…The Univ. of Tokyo The boss u Prof. T. Teranishi, T. Ikeda, T. Yoshinaga…Kyoto Univ. & Tsukuba Univ. u Dr. M. Yoshida, N. Sakamoto, A. Xiong…(former) students of our group Collaboration on the core/shell cocatalyst project u Dr. D. Lu…Tokyo Institute of Technology TEM observations u 日本板硝子材料工学助成会, 日本学術振興会, 科学技術振興機構さきがけ Funding support
© Copyright 2024 ExpyDoc