ߴ࣍ݩͷ߹ʹ͓͚Δ࣍ݩͷਪఆ๏ͱۙతੑ࣭ ਡ๚౦ژཧՊେɾڞ௨ڭҭηϯλʔ ౡେɾཧɾ໊༪ڭत ᓎҪɹ࿕ ౻ӽɹ߁ॕ ຊใࠂͰ, ଟมྔճؼੳ, ผੳ, ਖ਼४૬ؔੳʹ͓͚Δ࣍ݩͷਪఆʹ͍ͭͯߟ͢ Δ. ͜ΕΒͷ࣍ݩͷਪఆ, ଟมྔճͰؼճྻߦؼͷϥϯΫ, ผੳͰ༗༻ͳ ผؔͷݸ, ਖ਼४૬ؔੳͰθϩͰͳ͍ਖ਼४૬ؔͷݸΛѲ͢ΔͷʹΘΕΔ. ࣍ݩΛਪఆ͢Δํ๏ͱͯ͠, AIC ن४ Cp ن४Λ༻͍Δํ๏͕ఏҊ͞Ε͍ͯΔ. ྫ͑, ඪຊ n, มͷ p, ܈ͷ ݸq + 1 ͷผੳͰ࣍ͷͰܗ༩͑ΒΕΔ. q Aj = n log (1 + i ) − 2(p − j)(q − j), j = 0, . . . , q − 1, Aq = 0, i=j+1 Cj = n q i − 2(p − j)(q − j), j = 0, . . . , q − 1, Cq = 0 i=j+1 ͜͜Ͱ, 1 > · · · > q > 0 ܈ฏํੵߦྻ Se ͱؒ܈ฏํੵߦྻ Sh ͔ΒͳΔߦ ྻ Sh S−1 e ͷθϩͰͳ͍ݻ༗Ͱ͋Δ. ͜ͷͱ͖, Aj ·ͨ Cj ͷ͕࠷খͱͳΔ j Λ࣍ͱݩ jA = arg minj Aj , ˆjC = arg minj Cj ͱͯ͠༩͑ΒΕΔ. ࡢͷ࿈ ͯ͠ਪఆ͢Δ. ͭ·Γ, ˆ ߹େձʹ͓͍ͯ, ߨԋऀͷҰਓͰ͋Δ౻ӽ, ଟมྔճؼੳ, ผੳ, ਖ਼४૬ؔੳʹ͓ ͚Δ࣍ݩͷਪఆʹؔͯ͠, AIC ن४ͱ Cp ن४ʹΑΔਪఆ๏ͷߴ࣍ݩੑ࣭ʹ͍ͭͯൃදͨ͠. ͱ͘ʹ, มͷͱඪຊͷൺ͕Ұఆʹ͖ۙͮͳ͕Βେ͖͘ͳΔͱ͖, ͋ΔछͷԾఆͷ ͱͰҰகੑΛͭ͜ͱΛࣔͨ͠. ͜͜Ͱ, ·ͣ BIC ن४ʹؔͯ͠ߟ͢Δ. ͜Ε࣍ͷΑ͏ʹ༩͑ΒΕΔ. Bj = n log q (1 + i ) − (log n)(p − j)(q − j), j = 0, . . . , q − 1, Bq = 0 i=j+1 jB = arg minj Bj ͷߴ࣍ݩੑ࣭ʹ͍ͭͯௐͨ. ݻ༗ i ʹରԠ͢ ͜ͷͱ͖, ࣍ݩͷਪఆྔ ˆ Δूஂݻ༗Λ ωi Ͱද͢ͱ, ͜ΕΒඪຊ n มͷ p ʹґଘ͢Δ. ͜͜Ͱਅͷ࣍ ݩΛ j0 (≤ q) ͱͯ࣍͠ͷ 2 ͭͷ߹Λߟ͑Δ. (i) ωi = O(n), i = 1, . . . , j0 , (ii) ωi = O(np), i = 1, . . . , j0 มͷͱඪຊͷൺ͕Ұఆʹ͖ۙͮͳ͕Βେ͖͘ͳΔͱ͖, (i) ͷ߹Ͱ BIC ن४ ҰகੑΛͨͳ͍͕, (ii) ͷ߹Ͱ BIC ن४ҰகੑΛͭ͜ͱΛࣔ͢. Ұํ, AIC Cp , (i), (ii) ͷ߹ʹ͓͍ͯ͋ΔछͷԾఆͷԼͰҰகੑΛͭ͜ͱ͕ࣔ͞Ε͍ͯΔ. ͜ΕΒͷ݁Ռ, มͷେ͖͘ͳΔ͕, ඪຊΑΓখ͍͞߹ͷ݁ՌͰ͋Δ. ຊใࠂͰ , มͷ͕ඪຊΑΓେ͖͍߹ʹ͍ͭͯߟ͢Δ. ͜ͷͱ͖, ڞࢄߦྻͷ௨ৗͷਪ ఆྔͷ͕ྻߦٯଘࡏ͠ͳ͘ͳΔ. ରԠࡦͷҰͭͱͯ͠, ڞࢄߦྻΛϦοδͰܕਪఆͨ͠ ͱͰͷ AIC Cp Λ༻͍Δํ๏͕͋Δ. ·ͨ Moore-Penrose ͷҰൠԽྻߦٯΛ༻͍Δํ๏ ߟ͑ΒΕΔ. ଞͷํ๏ͱͯ͠, ଟมྔճؼϞσϧͰఏҊ͞Εͨ Bunea, She and Wegkamp (2011) ʹΑΔ RSC Λద༻͢Δ͜ͱߟ͑ΒΕΔ. ͜ΕΒͷํ๏ʹ͍ͭͯͷߴ࣍ݩੑ࣭ʹͭ ͍ͯཧతత݁Ռʹ͍ͭͯใࠂ͢Δ. ࢀߟจݙ 1. Bunea, F., She, Y. and Wegkamp, M. H. (2011). Optimal selection of reduced rank estimators of high-dimensional matrices. Ann. Statist., 39, 1282–1309.
© Copyright 2024 ExpyDoc