Fatigue Crack Thresholds Significantly Affected by Thermo-Mechanical Loading Histories in An Austenitic and A Ferritic Low alloy Steel M. Okazaki1, a, M. Muzvidziwa1,b R. Iwasaki1,c and N. KASAHARA2,d 1Nagaoka University of Technology, Nagaoka, JAPAN 2*The University of Tokyo, Hongo, Tokyo, JAPAN ACKNOWLEDGEMENT: A part of this work was conducted as one of Nuclear Regulatory Agency programs in Japan. The author (M.Okazaki) expresses his special gratitude to the finalfical support by the Grant-in-Aid A by JSPS (#25249003). High cycle thermal fatigue loadings resulting from Start-up and Shut-down Thermal Stress induced by fluid temperature change Fluid Temperature Low-Cycle & Thermo-Mechanical Fatigue Loadings Time The rmal Fatigue Time Hot Fluid ã«èä ìI Ç»î¬ åÝì‡ â ìx ï™ïz Ç… ÇÊÇË îMâû óÕÇ™ î° êŽ Cold Fluid Mixing hot/cold fluids Tradition criterion: D ≅1 “High Cycle Thermal Fatigue Failure” JSME Guideline, S017 (2003) Hot Fluid 板厚内と面内の温 度分布により熱応 力が発 生 ni UF = ∑ ( ) ≤ D Ni i Hot Spot Cold Fluid Hot spot Q1:Is the UF concept applicable under complicated loading sequences, which involve LCF and HCF loadings ? “High Cycle Thermal Fatigue Failure” Time Time Strain HCF Time Strain Strain Strain LCF Time JSME Guideline, S017 (2003) Tradition criterion Time Strain Strain UF = ∑( i NL Time ni )≤ D Ni D≅1 Q2: what is(are) the effects of Post severe earthquake damage recovery process; on the high cycle thermal fatigue failure ? by, e.g., heat treatment for recovery & weld repair….. Steady Steady Earthquake High cycle NH NH ΔεH, NH, RH=0L ● Time NH /NL stress stress ΔεH, NH, RH=0L Time NH /NL ΔεL, NL, RL≠0 NL Flow of talk Validity of UF for fatigue rupture life under combined loading history. ? DH ɢɖ N R ÅÇ0 L, L, L ɢɖ L, ds /dt L R É–L T max T min Strain Fatigue crack propagation depending on loading history. N :N H L Time ɢɦ H, dɦ /dt H DL R T T Phase angle=0 ɦH max miÅD ÅD ? Fatigue crack propagation behavior depending on *thermo-mechanical history da/dN ∆K Discussions on assessment based on crack growth. Materials SUS316: Sol. C 0.07 Si 0.9 SCM 440 (JIS): AQ+tem. R.T. 300 500 Mn 1.85 E(GPa) 215 195 156 P 0.045 static 0.2 % proof (MPa) 850 703 553 SUS316(cyclic hardening) S 0.03 Ni 12.1 Cr 17.7 (Wt.%) Mo 2,31 cyclic 0.2 % proof (MPa) 709 685 495 SCM 440(cyclic softening) Strain ΔεH, NH, RH=0L Strain NH HCF LCF ΔεL, NL, RL=0 Loading sequence 3 focused on. 2 stage, 2 blocks Loading sequence 1 focused on. Loading sequence 2 focused on. HCF NL Strain Strain LCF ΔεH, NH, RH=0L NH NH /NL NH /NL 2 stage, Multi-blocks ΔεL, NL, RL=0 2 stage, Multi-blocks Experimental variables. * N LCF:N HCF. * Loading sequences. R15 Φ8 24 115 (a) Smooth specimen Lower than σw,o ΔσL,NL,RL≠0 ΔσL, dsL/dt RσL Tmax Tmin Strain NH:NL Time ΔεH, dεH/dt RεH Tmax Tm. Phase . i angle=0 Notices in high cycle fatigue loading conditions superimposed on low cycle TMF loading. LCF:in-phase type of TMF loading (50−300℃, 1/10 cpm) + HCF・High cycle fatigue loading (300℃, σa=100 MPa) ・NH/NL: experimental variable ・Stress amplitude of HCF lower than fatigue limit Loading sequence 1 focused on. LCF 300℃ Loading sequence 2 focused on. HCF Strain Strain NL ΔεH, NH, RH=0L NH NH /NL NH /NL R.T.〜300℃ ΔεL, NL, RL=0 ΔεH, NH, RH=0L Strain NH ΔεL, NL, R =0 Loading sequenceL 3 focused on. DH+DL =1 Loading sequence 2 focused on. Sequence 2&3 ▲ ▲ ◆ Strain Damage fraction by high cycle loading,DL Fatigue lives under multi-stages block loadings. NL ΔεH, NH, RH=0L N H DH+DL=1 NH /NL ◆▲ ▲ ◆ Sequence 1 Damage fraction by TMF cycles, DH Alternative assessment criterion Should be introduced ! ΔεL, NL, RL=0 Loading sequence 1 Investigation of crack behavior: -in order to explore an alternative criterion. R15 Φ8 Φ14 24 115 (a) Smooth specimen Initial notch: Depth: 50 µm Diameter:100 µm (b) Notch at the gage center ΔσL,NL,RL≠0 ΔσL, dsL/dt RσL Tmax Tmin Strain Experimental variable: NH: NL N :N H L Time ΔεH, dεH/dt RεH Tmax Tmi. Phase angle=0 . Approach based on crack behavior: Notch NL : NH = 1:200 (2400 block) Crack length (µm) ひずみ NL : NH µm 100 _m Pure LCF *Accelerated crack growth rates, after a> acr Strain acr NL NH Time Number of loading blocks → Resulting in Failure of applicability of Miner rule Even when ∆σL < ∆σwo , The TMF/HCF interaction was significant in the crack growth process after a > acr specimen with an initial notch Strain Time Smooth specimen NL:NH = 1:200 Fractograph b=100 µm b = 100 _m b=200 µm b = 200 _m b=300 µm b = 300 _m O b (μm) Rupture surface bb=400 = 400 _mµm bb=500 = 500 _mµm b=600 µm b = 600 _m b:depth Beach marks on the rupture surface b=700 µm b = 700 _m b=800 µm b = 800 _m b=900 µm b = 900 _m 14 Key point: how to estimate acr ? How to make use of these findings for life prediction ? Key Point: Prediction of a critical crack length, acr, above which an interaction between high-cycle and low cycle loadings get significant. a [μm] nL: nH=1:10 Thermo-mechanical fatigue cycle period. ∆εL=1.0% 1500 Stress Crack length 1:0 1000 High cycle fatigue cycle period acr 500 ∆σH=200 MPa 0 0 2000 4000 6000 N [block] Assumption: F Strain L(š acr)1/2 HCF loading level ÅÜ Kth Crack length nucleated by LCF cycles A more reasonable and realistic method for remaining life : based on crack propagation. ΔεH=1.0 %, ΔσL=200 MPa a [μm] 1500 1000 500 acr 0 0 2000 4000 6000 Q2: what is(are) the effects of Post severe earthquake damage recovery process; on the high cycle thermal fatigue failure ? by, e.g., heat treatment for recovery & weld repair….. NH NH ΔεH, NH, RH=0L ● Time stress stress ΔεH, NH, RH=0L Time NH /NL NH /NL High cycle High cycle Earthquake Low cycle ΔεL, NL, RL≠0 NL Low cycle Q: How should we manage ? Preparation for Thermo-mechanical history material Introduction of fatigue crack Reheat treatment at below Ac1 Fatigue crack Growth test ? Length=45 Initial EDM notch t=2 (b) Width=14 Virgin material Thermal history material Thermomechanical history material Specimen preparation Thermal history* Fatigue crack propagation test by virgin material Fatigue crack propagation test Fatigue crack propagation test Thermal history* Fatigue crack propagation test *below Ac1 temp:740℃x10 min.FC in vac. Φ14 +0.10 0.00 // 2.5 B 2 Φ1 A scale 2 : 1 (52) 20 B A 135 Experimental variable No. 1 2 3 4 5 1 3 4 Specimen type Temperture [℃ ] Load ratio Frequency [Hz] 300 -1 0.2 0.5 0.8 -1 -1 0.5 0.8 10 Virgin material 無履歴材 Thermal history 熱履歴材 Thermo-mechanical 熱機械的負荷履歴材 history Crack growth rate, da/dN (m/cycle) -7 1.E 10-07 Virgin 無履歴材 Thermal history 熱履歴材 Thermo-mechanical 熱機械的負荷履歴材 history -8 1.E 10-08 R=-1 -9 1.E 10-09 -10 1.E 10-10 1.E-11 -11 10 10 30 20 Stress intensity factor range, _ K[MPaテm] ? Crack growth rate, da/dN (m/cycle) Higher ratio = 0.5, 0.8 R=0.5,R0.8 -7 10-07 1.E Black: Virgin Black : Bare Red: Thermo-mechanical Red: Trans History history -8 1.E10-08 R=0.8 R=0.5 -9 10-09 1.E -10 10-10 1.E 10-11 1.E -11 11 _Kth 10 10 1 Stress intensity factor range _ K[MPaΓm] Stress intensity factor range, ∆K (MPa1/2) 18 1/2 ∆Kth (MPam ) Threshold stress intensity factor, ΔK th, ΔK th,eff [MPa√m] 1Cr-Mo-V 490℃ 16 A470 Class8 149℃ 14 熱機械的負荷履歴材 A470 Class8 RT. 12 2.25Cr-Mo RT 10 SA387 RT Present work 500℃ 300℃ ● Virgin 無履歴材 無履歴材 ■ Thermal 熱履歴材 ▲ Thermo-mechanical 本研究データ 8 6 Data band of 4 ∆K eff,th 2 Data band of ΔKth,eff in steel 0 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 0 -1 R ratio Stress ratio Nishikawa,1987 Okazaki, 2005 1 1 Change in ferritic phase volume fraction in the thermal and themo-mechanical history materials.. Thermal history Thermo-mechanical Thermal history Thermo-mechanical Near crack wake Apart from crack wake Virgin 24 Change in ferritic phase volume fraction in the thermal and themo-mechanical history materials.. ~4% 66 初期組織 64 熱履歴(左) 負荷⇒熱履歴(左) き裂から十分離れた位置10点平均 62 □ 組織観察領域:25×25[μm] observed area 60 ΔKth(無履歴材) 25 ~8% 58 □ 56 54 52 50 ΔKth(熱機械的負荷履歴材) □ 切欠き 負荷⇒熱 履歴領域 Original Ferritic volume fraction, Vf[%] 熱機械的負荷履歴材組織 熱履歴材組織 熱履歴 熱履歴(右) 負荷⇒熱履歴(右) 1 き裂から十分 Apart from 離れた位置 crack face 熱履歴 Thermally 領域 affected zone 負荷⇒熱履歴 Thermo領域 mechanically affected 熱履歴 領域 Thermally Thermo- 熱履歴時affected mechani-き裂先端zone cally affected zone thermomechanical treatment. 66 初期組織 Ferritic volume fraction, Vf[%] 熱機械的負荷履歴材組織 64 熱履歴(左) 負荷⇒熱履歴(左) 熱履歴材組織 熱履歴 熱履歴(右) 負荷⇒熱履歴(右) ~4% 62 60 58 ~8% 56 54 52 50 1 き裂から十分 Apart 離れた位置 from crack face 熱履歴 Thermall 領域 y affected zone 負荷⇒熱履歴 Thermo領域 mechanic -ally affected Change in mechanical property by thermo-mechanical histrory. 740℃ for 10min (a)Virgin Vickers Hardness[Hv(5)] 400 As-recieved 350 300 250 740℃ for 10min 100Hv 800℃ for 10min Thermal history: By 740℃, 10 min. 200 初期組織:一様なベイナイト 150 100 50 316 210 142 0 27 Heat treatment Virgin (a)無履歴材試験後 Residual stress in crack 圧縮残留応力場 wake (塑性ウェイク) Release of residual stress 残留応力場の消失 in crack wake Thermal history (b)無履歴材試験⇒熱履歴 Ideal crack Disappeared crack closure Thermo-mechanical (c)無履歴材試験⇒熱履歴⇒ history ΔKth(無履歴材) Prior crack tip before (熱履歴時のき裂先端) thermo-mechanical treatment. 熱機械的負荷 履歴材試験 ΔKth(熱機械的負荷履歴材) Residual stress reproduced Illustration showing how the crack wake is changed by the present thermo-mechanical history. Brief Summary (1)Non-conservative assessment by Miner rule, depending on thermo-mechanical loading histories. (2) Experimental background was found to the item (1) in crack growth process: (2-1) An critical length, acr above which the LCF/HCF are interacted singificantly. (2-2) Fracture surface (3) Fatigue crack threshold; depending on thermal and thermo-mechanical loading history. (4) Importance to get quantitative knowledge on ∆Keff,th. R15 Φ8 Φ14 24 115 Initial notch: Depth: 50 µm Diameter:100 µm (a) Length=45 Initial EDM notch Width=14 t=2 (b) Fig.2 Geometry of specimens used. (a) SUS316 specimen with a surface notch, (b) SCM 440 specimen with a through-thickness center notch. Why? n : n =1:10 Stress ratio during HCF loading period, LCF period . built-up depending on the prior LCF loadings. ∆ε =1.0% L H L Stress HCF period. Sequence 1 ∆σH=200 MPa LCF period. Strain Expectation: UF can be available when the mean stress effect is considerd. Traditional criteria to consider the stress ratio effect. σm 2 Gerber: σ a = σ wo{1− ( σ ) } B σ Goodman: σ a = σ wo{1− ( m )} σB σ Sonderberg: σ a = σ wo{1− ( m )} σY Ex: Life assessment based on a modified S-N curve (mean stress modification) Sonderberg modification σm σ a = σ wo{1− ( )} σY Sequence 1 HCF LCF Strain DH DH+DL =1 DL NH /NL Q3: what is(are) the effects of * Thermal history during in-service period, ** Weld repair, on the post high cycle thermal fatigue failure (∆Kth ) ? SCM 440 (JIS): Reheat treatment as a repair process by 740℃ x 10 min. Fatigue crack (~ Ac1) propagation test up to ∆Kth at 300℃ ∆Kth at 300℃ ??? ΔKth vs. R (SCM) [4] [3] [6] ∆Keff,th [3] P. K. Liaw, Acta metallurgica, Vol.33, No.8, pp1489-1502, 1985 [6] SURESH et al on fatigue crack propagation behavior pp57 [4]J.H.Bulloch,Theoretical and Applied Fracture Mechanics 23 (1995) pp89-101 Fatigue threshold depending on stress ratio (low alloy steel)
© Copyright 2024 ExpyDoc