Fatigue2014,11th International Fatigue Congress March5,2014,Melbourne Cricket Ground Melbourne, Australia Nitriding Effect on Corrosion Fatigue Strength of Low Alloy Steel in 1% HCl Aqueous Solution R.Ebara1,Y.Fukushima2, S.Nakagawa2 and R.Ueji2 1Institute of Materials Science and Technology,Fukuoka University Fukuoka, Japan, [email protected] 2 Student,Hiroshima Institute of Technology, Hiroshima,Japan 3 Department of Advanced Materials Science,Kagawa University Takamatsu,Japan Background ・Plastics extrusion machine Cl-, Low alloy Steel, Fatigue, Fretting Fatigue,Corrosion ・Nitriding:Gas nitriding,Ion nitriding can improve Wear Fatigue strength Corrosion resistance Corrosion Fatigue Strength Improvement ・NaCl aqueous solution ・K.Tokaji,K ,S.Takahashi; Corrosion Fatigue Behavior and Fracture Mechanisms in Nitrided Low Alloy Steel,Fatigue Fract Engng Struct,26(2003),pp215-221 SCM435,Gas nitriding,3%NaCl aqueous solution, Rotating bending, Corrosion pit underneath the compound layer ・ T. Makishi,H.Yara, C.Makabe; Corrosion Fatigue Behavior of Alloy Steels after Ion Nitriding Proc.of the JSME,Kyushu Branch,(1994),No948-2,pp1-4 SUS430,Ion nitriding,5%NaCl aqueous solution, Rotating bending, Corrosion pits underneath the compound layer ・ K.Shiozawa,K.Mitsutani,K, S.Nishino, The Effect of Gas Nitriding on Corrosion Fatigue Behavior of Hard Steels Proc. of the JSME,Hokuriku Shinetsu Branch,(2003),No.007-1,pp387-388 SKD61,HAP10,Gas nitriding,3%NaCl aqueous solution Rotating bending, Corrosion pit underneath white layer ・K.Shiozawa,A.Shibata,S.Nishino, Effect of Plasma Nitriding on Corrosion Fatigue Behavior of SCM435 Steel,Proc. of the JSME,Hokuriku Shinetsu Branch,(2004)No.047-1,pp7-8 SCM435,Plasma nitriding,3%NaCl aqueous solution Rotating bending, Corrosion pit at surface Axial fatigue strength? HCl aqueous solution? What kind nitridings? Screening test ・Low alloy steels ・Ultrasonic Corrosion Fatigue Tests Table1 Chemical compositions of tested steels(mass%). Table2 Mechanical properties of tested steels. Ultrasonic Corrosion Fatigue Test ・Ultrasonic fatigue testing machine Shimadzu USF2000 ・Frequency 20kHz ・R(the ratio of the minimum to maximum stress loading cycle)=-1 ・1%HCl aqueous solution ・Prevention of specimen heating Compressed air Intermittent frequency:110ms duty, 550ms pause Fig.1 Fatigue test specimen. Surface treatments Cr-Mo steel ・Gas nitriding 783Kx20hr,813Kx28hr ・Gas nitriding 803Kx30hr,833Kx40hr ・Shot peening Steel shot,100μm ・Shot peening SKH51, 55μm ・Ion nitriding 793Kx30hr DIN1.4418 ・Ion nitriding 793Kx30hr 1200 Air Stress amplitude,MPa 1000 800 1%HCl Cr−Mo Cr−Mo Ion nitriding (793Kx30hr) Cr−Mo Shot peening (Steel shot,100μm) Cr−Mo Gas nitriding (783Kx20hr,813Kx28hr) DIN1.4418 DIN1.4418 Ion nitriding (793Kx30hr) SUS630 600 400 200 0 4 10 10 5 6 7 8 10 10 10 10 Number of cycles to failure 9 10 10 Fig.2 S-N curves of Cr-Mo steel,DIN1.4418,SUS630, various surface treatedCrMo steel and ion nitrided DIN 1.4418 in air and 1%HCl aqueous solution. Fatigue strength at 109cycles in air(MPa) 550 ・Cr-Mo ・DIN1.4418 525 513 ・SUS630 Reduction of corrosion fatigue strength at 107 cycles(%) 60 ・Cr-Mo ・DIN1.4418 50 58 ・SUS630 Corrosion fatigue strength improvement,Cr-Mo steel(%) ・Ion nitriding 70 ・Shot peenimg 40 0 ・Gas nitriding 1000 Stress amplitude,MPa 800 Air 1%HCl Cr−Mo Gas nitriding (783Kx20hr,813Kx28hr) Gas nitriding (803Kx30hr,833Kx40hr) Shot peening (Steel shot,100μm) Shot peening (SKH59,55μm) Ion nitriding (793Kx30hr) 600 400 200 0 4 10 10 5 6 7 8 10 10 10 10 Number of cycles to failure 9 Fig.3 S-N curves of Cr-Mo steel and various surface treated Cr-Mo steel in air and 1%HCl aqueous solution. 10 10 Corrosion fatigue strength of Cr-Mo steel can be improved. ・Gas nitriding(803Kx30hr,823Kx40hr) 232% 70% ・ Ion nitriding 40% ・ Shot peening Experimental Fatigue test ・Electrohydraulic fatigue testing machine (Shimadzu,EHF-LB9.8kN) ・Environment Air, 1%HCl aqueous solution ・Frequency 20Hz ・R value(the ratio of minimum to maximum stress in the loading cycle) 0.05 Surface and Fracture surface ovserbation ・Optical microscope(Keyence,VHX-100) ・Scanning electron microscope(JEOL,JSM5500S) Fig.4 Fatigue test specimen. Fig.5 S-N curves of various nitrided Cr-Mo steel in air. Fig.6 S-N diagrams of various nitrided Cr-Mo steels in 1%HCl aqueous solution. Corrosion fatigue strength improvement at 107 cycles ・Ion nitriding(793Kx30hr) 55% ・Gas nitriding (773Kx18,7p3Kx38hr) Lower than 250MPa Improved Higher than 250MPa Not improved Fig.7 Residual compressive stress distribution in surface layer. Fig.8 Vickers hardness distribution in surface layer of various nitrided Cr-Mo steel. Fig.9 Corrosion pit observed at corrosion fatigue crack initiation area.1%HCl,200MPa、 a) Ion nitriding(823Kx30hr),5.04x106 cycles b)NV nitriding,4.64x106 cycles Fig.9 Surface cracks of gas nitrided(803Kx30hr,833Kx40hr) CrMo steel. 650MPa a) air,1.234x108 cycles b) 1% HCl ,5.952x106 cycles Fig 10 Fatigue fracture surface of gas nitrided(803Kx30hr,833Kx40hr) Cr-Mo steel. 700MPa a) Air,2.269x106cycles b) 1% HCl,4.846x106cycles Arrow shows corrosion pit Fig.11 Crack propagation area of gas nitrided(803Kx30hr,833Kx40hr) Cr-Mo steel. 1mm from initiation a) Air,625MPa,4.5x107 cycles b) 1% HCl,700MPa,4.8x106 cycles Concluding remarks ・It can be concluded that corrosion fatigue strength of Cr-Mo steel in 1%HCl aqueous solution can be improved by ion nitriding and gas nitriding. ・The major cause of improvement can be attributed to residual compressive stress at the surface layer. ・Further study is recommended to conduct on the effect of microstructure in the hardened layer on corrosion fatigue strength of ion and gas nitrided Cr-Mo steel. 結論 主たる結論は下記のとうりである。 ・イオン窒化 (793Kx30hr)処理鋼の1%HCl水溶液 中10⁷回の疲労強度は母材と比較し55%向上した。 ・ガス窒化(773Kx18h,793Kx38h)処理鋼において 250MPa以下では腐食疲労強度の改善効果が見ら れた。しかし、250MPa以上ではガス窒化の影響は 見られなかった。 ・イオン窒化処理鋼の腐食疲労強度改善の主因は、 イオン窒化の際に表面に発生する圧縮残留応力で ある。 ・1%HCl水溶液中では、全ての窒化処理鋼の疲労き 裂発生部に腐食ピットが観察された。
© Copyright 2025 ExpyDoc