ultrasound elastography P1 P2 P4 P7 P9 P11 P11 ultrasound elastography 1, 2, SS 2, 1 ROM ultrasound elastography: UE SS UE Real-time Tissue Elastography SS 20 SS 30 ROM 22.6kPa SS 15 SS UE SR 20% 13-16% SR 30 SS ROM 5 strain ratio(SR) (muscle / coupler ratio) ROM 19-25 SR ROM 1.School of Exercise and Health Sciences, Edith Cowan University (Australia) 2. 1 1 2 3 muscle hardness “ ” stiffness muscle hardness 4,5 stiffness 6 − 5 7 8 Wang Ultrasound Elastography 9 UE B UE UE UE Real-time Tissue Elastography (RTE) 10 B 2 Range Of Interest: ROI 2 UE 2 ROI RTE strain ratio (SR) 7,11,12 UE 13 (SS) shear wave 3 2 SS 15% Akagi SS Nordez Akagi 14 8-12% 15 transient 2.5 SS SS 3 SS SS SS muscle tendon unit: MTU 5 16,17 SS stiffness stiffness MTU stiffness SS SS RTE RTE SS 20 ± 20.3±1.8 SS 176.9±6.0cm 72.6±4.3kg 1. 48 RTE SS 2 SS 30 15 0° 30 15 30 1 ROM 30 EMG 2 4 2. SS 18 Biodex system 3, NY, USA 90% 30° 1°/s 5 18 19 5Nm constant torque design 17 3. ROM ROM RTE SR strain ratio SS Morse ° 16 1°/s ROM 5 1.5kHz (TEAC SR LX-10 30% ) 20 Hi-vision Ascendus EZU-TECPL1 EUP-L65, 6-14MHz 22.6kPa SR muscle / coupler strain graph compression-relaxation cycle” -0.7 ROI 0.7 21 4mm 22 18mm ”the rhythmical SR 30mm 30mm EVA form 70mm 130mm 30mm 35mm 70mm 30mm 4. ROM SR bipolar 13mm S&ME; Biolog 5 2000Hz EMG 1.5kHz EMG (Root Mean Squeare: RMS) 5. SR ROM SS 30 SR 30 15 ROM 6 SS SR SS pre ROM Bonferroni SPSS 12.0 J for windows 5% 1. EMG 7.6 3.2 V 5.8 2.6 V 8.7 2.9 2.8 V 9.1 V 2. ROM 3 SS 28% 15 ROM 17% 30 13% 3 SS pre SS P<0.01 ROM 7 3. SR (strain ratio) 4 RTE SR SR 5 SS P<0.01 11 16% 15 4 RTE 5 SS 15 SS SR SR 8 SR SS ROM ROM SS SR Akagi SR ROM 23 ROM ROM stretch tolerance SS ROM 23 MTU stretch tolerance SS 24 5 ROM SS 25 SS Akagi 13,14 SR Akagi 13,14 11 16% 13,14 SS 90 26 45 ROM 16,17,28 Murayama SS SS 3 stretch tolerance MTU stiffness 27 ROM SS MTU stiffness 16,17 MTU stiffness stiffness 5,6 ROM stiffness muscle hardness 29 Purslow30 SR ROM SR 47% 2% 31 ROM 41% 10% ROM 9 5 SS 15 SR SS 15 SS SS peak torque Trajano 15 SS 18 SR SS muscle strength – length relationship MTU force deficit” SS MTU stiffness 32-34 stiffness 10 ”stretching-induced 5 SS MTU stiffness MTU stiffness 20 MTU stiffness 30% 16 SS 35 SS 19SS 90% SR SS stiffness MTU stiffness limitation 0 0 0 30 36 UE 13,14 shear wave UE 37 10 UE 22 SS UE SS SS 38 11 HITACHI 1. , .: Ultrasound Elastography . 39 , 2013 9 . 2. Inami T, Ozawa M, Mushika Y, Mizuno T, Shimizu T, Lau WY, Nosaka K.: Effects of static stretching on flexibility and muscle hardness assessed by ultrasound 11 elastography. 19th Annual Congress of the European College of Sport Science (Amsterdam The Netherlands), 2nd – 5th 2014. 1. , , .: . , in press, 2014. 1. Kubo K, Morimoto M, Komuro T, Yata H, Tsunoda N, Kanahisa H, Fukunaga T. Effect of plyometric and weight training on muscle-tendon complex and jump performance. Med Sci Sports Exerc 2007; 39: 1801-1810. 2. Marusiak J, Jaskolska A, Koszewicz M, Budrewicz S, Jaskolski A. Myometry revealed medication-induced decrease in resting skeletal muscle stiffness in Parkinson’s disease parients. Clin Biomech 2012; 27: 632-635. 3. Witvrouw E, Danneels L, Asselman P, D’Have T, Cambier D. Muscle flexibility as a risk factor for developing muscle injuries in male professional soccer players. A prospective study. Am J Sports Med 2003; 31: 41-46. 4. Horikawa M, Ebihara S, Sakai F, Akiyama M. Non-invasive measurement method for hardness in muscular tissues. Med Biol Eng Comput 1993; 31: 623-627. 5. Murayama M, Watanabe K, Kato R, Uchiyama T, Yoneda T. Association of muscle 12 hardness with muscle tension dynamics: a physiological property. Eur J Appl Physiol 2012; 112: 105-112. 6. Murayama M, Nosaka K, Yoneda T, Minamitani K. Changes in hardness of the human elbow flexor muscles after eccentric exercise. Eur J Appl Physiol 2000; 82: 361-367. 7. Yanagisawa O, Niitsu M, Kurihara T, Fukubayashi T. Evaluation of human muscle stiffness after dynamic exercise with ultrasound real-time tissue elastography: A feasibility study. Clin Radiol 2011; 66: 815-819. 8. Arokoski JP, Surakka J, Ojala T, Kolari P, Jurvelin JS. Feasibility of the use of a novel soft tissue stiffness meter. Physiol Meas 2005; 26: 215-228. 9. Wang HK, Wu YK, Lin KH, Shiang TY. Noninvasive analysis of fascicle curvature and mechanical hardness in calf muscle during contraction and relaxation. Man Ther 2008; 14: 264-269. 10. Drakonaki EE, Allen GM, Wilson DJ. Ultrasound elastography for musculoskeletal applications. Br J Radiol 2012; 85: 1435-1445. 11. Niitsu M, Michizaki A, Endo A, Takei H, Yanagisawa O. Muscle hardness measurement by using ultrasound elastography: a feasibility study. Acta Radiol 2011; 52: 99-105. 12. Chino K, Akagi R, Dohi M, Fukashiro S, Takahashi H. Reliability and validity of quantifying absolute muscle hardness using ultrasound elastography. PLoS ONE 2012; 7: e45764. 13 13. Akagi R, Takahashi H. Acute effect of static stretching on hardness of the gastrocnemius muscle. Med Sci Sports Exerc 2013; 45: 1348-1354. 14. Akagi R, Takahashi H. Effect of a 5-week static stretching program on hardness of the gastrocnemius muscle. Scand J Med Sci Sports 2013; Epub a head of print. 15. Nordez A, Gennisson JL, Casari P, Catheline S, Cornu C. Characterization of muscle belly elastic properties during passive stretching using transient elastography. J Biomech 2008; 41: 2305-2311. 16. Morse CI, Degens H, Seynnes OR, Maganaris CN, Jones DA. The acute effect of stretching on the passive stiffness of the human gastrocnemius muscle tendon unit. J Physiol 2008; 586: 97-106. 17. Nakamura M, Ikezoe T, Takeno Y, Ichihashi N. Acute and prolonged effect of static stretching on the passive stiffness of the human gastrocnemius muscle tendon unit in vivo. J Orthop Res 2011; 29: 1759-1763. 18. Trajano GS, Seitz L, Nosaka K, Blazevich AJ. Contribution of central vs. peripheral factors to the force loss induced by passive stretch of the human plantar flexors. J Appl Physiol 2013; 115: 212-218. 19. Magnusson SP. Passive properties of human skeletal muscle during stretch maneuvers. A review. Scand J Med Sci Sports 1998; 8: 65-77. 20. Kawakami Y, Muraoka T, Ito S, Kanehisa H, Fukunaga T. In vivo muscle fibre behavior 14 during cournter-movement exercise in humans reveals a significant role for tendon elasticity. J Physiol 2002; 540: 635-646. 21. Akagi R, Chino K, Dohi M, Takahashi H. Relationships between muscle size and stiffness of the medial gastrocnemius at different ankle joint angles in young men. Acta Radiol 2012; 53: 307-311. 22. , , .: . 2014; in press. 23. Weppler CH, Manuson SP. Increasing muscle extensibility: a matter of increasing length or modifying sensation?. Phys Ther 2010; 90: 438-449. 24. Magnusson SP, Simonsen EB, Aagard P, Sorensen H, Kjaer M. A mechanism for altered flexibility in human skeletal muscle. J Physiol 1996; 497: 291-298. 25. Mizuno T, Matsumoto M, Umemura Y. Viscoelasticity of the muscle-tendon unit is returned more rapidly than range of motion after stretching. Scand J Med Sci Sports 2013; 23: 23-30. 26. Magnusson SP, Aagard P, Simonesen E, Bojsen-Moller F. A biomechanical evaluation of cyclic and static stretch in human skeletal muscle. Int J Sports med 1998; 19: 310-316. 27. Magnusson SP, Aagard P, Simonesen E, Bojsen-Moller F. Passive tensile stress and energy of the human hamstring muscles in vivo. Scand J Med Sci Sports 2000; 10: 351-359. 15 28. Kay AD, Blazevich AJ. Moderate-duration static stretch reduces active and passive plantar flexor moment but not Achilles tendon stiffness or active muscle length. J Appl Physiol 2009; 106: 1249-1256. 29. Gajdosik RL. Passive extensibility of skeletal muscle: review of the literature with clinical implications. Clin Biomech 2001; 16: 87-101. 30. Purslow PP. Strain-induced reorientation of an intramuscular connective tissue network: implications for passive muscle elasticity. J Biomech 1989; 22: 21-31. 31. Johs RJ, Wright V. The relative importance of various tissues in joint stiffness. J Appl Physiol 1962; 17: 824-828. 32. Cramer JT, Beck TW, Housh TJ, Massey LL, marek SM, Danglemeier S, Purkayastha S, Vulbertson JY, Fitz KA, Egan AD. Acute effects of static stretching on characteristics of the isokinetic agle-torque relathionship, surface electromyography, and mechanomyography. J Sports Sci 2007; 25: 687-698. 33. Fowles JR, Sale DG, MacDougall JD. Reduced strength after passive stretch of the human plantarflexors. J Appl Physiol 2000; 89: 1179-1188. 34. Herda TJ, Cramer JT, Ryan ED, McHugh MP, Stout JR. Acute effects of static versus dynamic stretching on isokinetic peak torque, electromyography, and mechanomyography of the biceps femoris muscle. J Strength Cond Res 2008; 22: 809-817. 35. Mizuno T, Matsumoto M, Umemura Y. Decrements in stiffness are restored within 10 min. 16 Int J Sports Med 2013; 34: 484-490. 36. Kawakami Y, Ichinose Y, Fukunaga T. Architectural and functional features of human triceps surae muscles during contraction. J Appl Physiol 1998; 85: 398-404. 37. Gennisson JL, Deffieux T, Mace E, Montaldo G, Fink M, Tranter M. Viscoelastic and anisotropic mechanical properties of in vivo muscle tissue assessed by supersonic shear imaging. Ultrasound Med Biol 2010; 36: 789-801. 38. Kubo K, Kanehisa H, Fukunaga T. Effect of stretching training on the viscoelastic properties of human tendon structures in vivo. J Appl Physiol 2002; 92: 595-601. 17
© Copyright 2024 ExpyDoc