Laboratorystudiesofnewphotochemicalprocessesof NOxandHOxinthemiddleandupperatmosphere 中層・高層大気におけるNOxおよびHOxの 新しい光化学過程の実験的研究 TomokiNakayama 中山智喜 NagoyaUniversity 2006 41425597 報告番号 甲第6839 号 主論文 題 目 LaboratorystudiesofnewphotochemicalprocessesofNOxandHOxinthe middleandupperatmosphere (中層・高層大気におけるNOxおよびHOxの新しい光化学過程の実験的研究) Contents Abstract ChapterlGeneralintroduction 1 l.1Importanceofozoneinthemiddleatmosphere 2 l.2 4 l.3 ChemistryofNOxinthemiddleatmosphere l.2.1NOxcyclesfbrozoneloss 4 l.2.2 5 ProductionanddestructionprocessesofNOx ChemistryofHOxinthemiddleatmosphere l.3・1HOxcyclesforozoneloss l.3.2 ProductionanddestructionprocessesofHOx l.4 ChemistryofNOintheupperatmosphere l.5 0(1s)airglowintheupperatmosphere ReftrencesfbrChapterl Chapter2 Experimenta1 2.10ve,ViewofthedetectiontechniquesofN(4s)andO(1s)atoms 2.1.1DetectionteclmiquesofN(4s)atoms 2.1.2 2.2 2.3 DetectionteclmiquesofO(1s)atoms VUV-LIFspectroscopy 6 6 7 9 10 21 23 23 23 23 24 2.2.1DetectionteclmiquesofN(4s)atoms 24 2.2.2 PrincipleofVUVlaserlightgeneration 25 2.2.3 PrincipleoftheDopplerpronlemeasurement 26 Experimentalsetup 2.3.1Reactionchamberandflowsysteni 26 27 2.3.2 Photolysislasers 27 2.3.3 TunableVUVlaserfordetectionofN(4s)atoms 27 2.3.4 TunableVUVlaserfbrdetectionofO(1s)atoms 28 2.3.5 Detectionsystemanddataacquisition 29 RefbrellCeSfbrChapter2 37 Chapter3 N(4s)fbrmationintheUVphotolysisofN20and itsimpIicationsfbrstratosphericozonechemistry 39 3.1Introduction 39 3.2 Experimenta1 40 3.3 Results 41 3.3.1 Chemicaltitrationmethod 41 3.3.2 Photolyticcalibrationmethod 43 Discussion 3.4 44 3.4.1DissociationprocessofN20toproduceN(4s)+NO 44 3.4.2 45 Atmosphericimplications 54 RefbrencesforChapter3 KineticsoftheatmosphericreactionsofN(4s)atoms Chapter4 55 WithNOandNO2 4.1Introduction 55 4.2 Experimenta1 57 4.3 Resultsanddiscussion 58 4.3.1N(4s)productionfo1lowing193nmlaserirradiationofNO 58 4.3.2 N(4s)productionfo1lowing193nmlaserirradiationofNO2 60 43.3 ReactionkineticsofN(4s)+NOandN(4s)+NO2 61 70 ReferencesfbrChapter4 Chapter5 TranslationalrelaxationofsuprathermalN(4s)atoms intheupperatmosphere 72 5.1Introduction 72 5.2 Experimenta1 73 5.3 Experimentalresults 73 5.4 Modelcalculationsforhardspherecollisionradii 75 80 ReferencesforChqpter5 11 PhotochemicalreactionprocessesofO()s)and Chapter6 theirimplicationsfbrOHproductionandairglow 81 6.1Introduction 81 6.2 Experimenta1 83 6.3 Resultsanddiscussion 84 6.3.1QuantumyieldsforO(ls)fbrmation丘omO3Photolysis 84 around200nm 6.3.2 DopplerproBleofO(ls)producedfromthephotolysisofO3 85 at193nm 6.3.3 QuantumyieldsforO(一s)formationfromN20andH202 86 Photolysisat193nm 6.3.4 6.4 ReactionkineticsofO(ls)withatmosphericmolecules 90 Atmosphericimplications 6.4.10Hproductioninthestratosphereandmesosphere 6.4.2 Dayglowemissioninthemesosphereandlowerthermosphere 90 92 108 ReftrencesforChapter6 Chapter7 87 Summaryandfutureperspective Acknowledgments iii 112 Abstract Photochemicalreactions a radicalplay offree determinlng crucialrolein chemicalcompositionoftheatmosphere.Oddnitrogenradicals(NOx=N+NO+ NO2)andoddhydrogenradicals(HOx=H+OH+HO2)areimportantinthemiddle catalytic andupperatmosphere・ForexamPle,the cycleincludingNOxis amqor removalprocessofozoneinthelowerandmiddlestratosphere,andthecatalyticcycle includingHOxbecomesdominantO3Sinkintheupperstratosphereandmesosphere・ Therefbre,itisimportantforareliableassessmentoftheozonetrendtounderstandthe photochemicalprocessesofNOxandHOx・Inthisstudy,thelaboratorystudieson severalnewimportantPrOCeSSeSOfNOxandHOxinthemiddleandupperatmosphere havebeenperformeduslnglaserspectroscopicteclmiques・ A new teclmiquefor high-SenSitive detection ofthe electronic ground state nitrogenatom,N(4s),andtheelectronica11yexcitedoxygenatom,0(ls),hasbeen developedinthis were study.TheN(4s)atoms detectedbyvacuum ultraviolet laser-inducedfluorescence(VUV-LIF)teclmiqueat120.07nmwhichisresonantwith theelectronictransitionN3s4plr2←2p4s3/2・Thesubsequentnuorescencefromthe excited stateis directly observed by a solar-blind photomultiplier・Tunable Sum generatedbytwo-Photonresonancefour-WaVe radiationaround120・07nmwas O(1s)atoms frequencymixinginHgvapor・The VUV weredetectedbyVUV-LIF teclmiqueat121・76nmwhichisresonantWiththeelectronictransitionO(3sIpl← 2pIso).TunableVUV resonancefour-WaVe radiationaround121・76nmwasgeneratedbytwo-Photon difftrence丘equency mixlngln agaS mixture ofKr/Ar・The VUV-LIFtechniqueutilizedinthisstudyhasaminimumsensltlVltyOf2×109and3× 108atomscm,3fordetectionsofN(4s)andO(1s),reSPeCtively. InChapter3,theformationofN(4s)fromtheUVphotolysisofNitrousoxide P20)andimpactonNOxfbrmationinthestratospherehasbeendescribed・N20is knowntobeaprecursorofNOxinthestratosphere・Mostofstratosphericremovalof N20transportedthroughplanetary boundarylayerand the丘eetroposphereto stratosphereisphotolysisbythesolarUVradiationaround200nm,Whileasmall fractionofN20reactswithO(1D)atoms.StratosphericNOxproductionisthoughtto beduetothereactionofN20withO(1D).IfthephotodissociationchallnelofN20to 1V the produceN(4s)+NOexistwithasigni丘cantyield,itcouldbeanewsourceofNQxin thestratosphere・lnthepresentstudy,thequantumyieldforN(4s)fbrmation丘om N20photolysishasbeendeterminedtobe(2・1±0・9)×10,3at193nm・Asensitivity analysistoassesstheimpactoftheN(4s)andNOformation&omN20photolysison stratosphericchemistryhasbeenperfbrmeduslngaOne-dimensionalphotochemical m。del.WhenconsideringtheN(4s)+NOchannelasanadditionalphotolyticsinkof N20,the steady stateNOx to∼3%around25kmin up concentrationincreases comparisonwiththatignoringtheN(4s)+NOchannel・ InChapter4,thereactionkineticsofN(4s)atomswithNOxhavebeendescribed・ The actas reactiol-OfN(4s)withNOisthoughto a upper sinkofNOxinthe stratosphere,meSOSPhereandthermosphere・Theexperimentalteclmiqueoflasernush photolysISandtheVUV-LIFdetectionwasappliedforthenrsttimetothekinetic st。dies。fthereactionsinvoIvingN(4s).TheN(4s)atomswereproducedfo1lowing 193nmArFlaserirradiationofNOandNO2・ThephotoexcitationprocessesofNO andNO2givingrisetotheN(4s)fbrmationhavebeendiscussedindetail・Basedon themeasurementsofDopplerpronlesofN(4s)atomsandphotolysislaserpower dependence ofthe N(4s)LIFintensity,the One-Photon predissociativelyfo1lowlng NO N(4s)formation丘om absorption,While thatfrom occurs NO2includes two-Photonprocesses・TherateconstantsforthereactionsofN(4s)withNOandNO2 at295±2Khavebeendeterminedtobe(3.8±0.2)×10-11and(7・3±0・9)×10-12 cm3molecules-1s-1,reSPeCtively・Thoseresultsarecomparedwiththeliteraturedata・ InChapter5,thecollisionalrelaxationprocessesofsuprathermalN(4s)atoms, which are relevant to the thermosphere,have NOformationin been described・ Althoughithadbeenproposedthataslgni丘cantamountoflower-thermosphericNO m。1ec。1es camefr。m the reaction suprathermalN(4s)atoms of with O2,nO experimentalevidenceofthereactionwasavailable・ThereactionbarrieroftheN(4s) reactionwithO2WaSrePOrtedtobe∼0・24eV・Inthisstudy,thecompetitiveprocesses oftheinelasticcollisionstoproduceNOandtheelasticco11isionstothermalizethe translationalenergyofN(4s)have・beeninvestigatedfbrthereactionofsuprathermal N(4s)reactionwithO2atinitialcenter-OflmasscollisionenergyofaboutO・24-0・6eV・ ThesuprathermalN(4s)atomswhichhaveanaveragetranslationalenergyofO・92± 0.095eVinthelaboratoryflamewereproducedby193nmphotolysISOfNO2inbath gasofO2・Dopplerpro丘1esoftheN(4s)atomswererecordedbyVUV-LIFdetection V ofN(4s),丘omwhichtheaveragekineticenergyoftheN(4s)atomswereobtainedasa function ofthermalization time.No clearevidence oftheNOproductionhas been Observed,Whichwi11beexplainedbyarelativelylargevalueofthethermalizationcross SeCtioncomparedwiththeinelasticcollisioncrosssection.Monte-Carlocalculations employlnganelastichard-SPhereco11isionmodelhavebeenperformedtoestimatethe hard-SPherecollisionradiiandthermalizationcrosssection・Thethennalizationcross SeCtion,Whichreproducedtheexperimentalresults,Were(3・8±0・4),(2・8±0.4),(1.8± 0.2),and(2.3±0.2)inunitsoflO15cm2forN(4s)+N2,02,HeandAr,reSPeCtively. Thethermalizationcrosssectionswi11makeitpossibletoperformmoreprecisemodel CalculationsforNOfbrmationprocessesinthethermosphere. InChapter6,thephotolyticformationofO(1s)丘omtheUVphotolysisofO3 around200nmanditssubsequentreactionswithsmallmoleculesrelevanttomiddle andupperatmosphericchemistryhavebeenstudied,andimpactonHOxformationin thestratosphereandmesospherethroughO(1s)+H20reactionhasbeendescribed. The quantum yield fbr O(1s)fbrmation五・Om O3Photolysis at295Khas been determinedtobe(2.5±1.1)×10-3,(1.4±0.4)×10-4and(5±3)×10-5,at193,215and 220nm,reSPeCtively.TherateconstantSforthereactionsofO(ls)withO2,CO2,H20, 03andHClat295±2Khavebeendeterminedtobe(2.85±0.31)×10,13,(3.09±0.29) ×10.)3,(6.38±0.38)×10.10,(4.63±0.45)×10.10and(5.47±0.27)×10.10 cm3molecules-1s-1,reSPeCtively・Basedonthepresentlaboratorydataweobtained, impactoftheO(1s)fbrmationfromO3PhotolysisontheOHradicalformationinthe StratOSPhereandmesospherehasbeeninvestigated・Ithasbeenconcludedthat,the reactionofH20withO(1s)produced丘omO3Photolysisaround200nmprovidesanew source ofOHin the stratosphere and mesosphere,Whichis up to∼2・5%ofthe conventiona10HproductionbyO(lD)+H20reactionat30kmaltitudeinmid-1atitude. ImplicationsofthepresentresultsfortheterrestrialairglowofO(ls)at557・7nmhave alsobeendiscussed.Ithasbeensuggestedthattheimpactofthedirectformationof O(ls)fromO3Photolysisonthevolumeemissionrateislesssigni丘cantthanthe fbrmationthroughthepreviouslyproposedBarthmechanism. TheresultsinthisthesisshowthatthephotolyticformationofN(4s)andNO fromN20canactasanewsourceofstratosphericNOx,andthatthereactionofH20 withO(ls)whichisformed丘omO3PhotolysiscanaCtaSaneWSOurCeOfstratospheric andmesosphericHOx.ThesenewNOxandHOxsourcesshouldbetakenintoaccount Vl fbrdetailunderstandingofthechemicalprocessesinthemiddleandupperatmosphere・ The results PreSent also StudylS demonstrate a VUV-LIF that the technlque both POWerfu1tooltoinvestlgate the moleculesandthekineticsinvoIvingN(4s)andO(ls)atoms. vii which developedin photodissociation the ofsmall Chapterl GeneralIntroduction TheEarth,satmosphereiscommonlydescribedasaseriesoflayersde血edby their thermalcharacteristic・Thelowestlayer,Called the troposphere,eXhibits generallydecreaslngtemPeratureSwithincreaslngaltitudesuptoaminimumcalledthe tropopause・Thetropopauselocatesnear12kmattheequatorandnear8kninpolar the reglOn・Above temperatures located tropopause,the withincreaslngaltitudesupto amaximum high near50km・Atfurther begins,eXhibitingincreaslng stratosphere atthelevelofstratopause altitudes,the begins,eXhibiting mesosphere decreaslngtemPeratureagalnuPtOaminimumatthelevelofmesopausenear85kn. ThereglOnlocatedabovethemesopauseiscalledthermosphere・Thetemperatures thereincreaseveryrapidlywithaltitude・Thealtituderangebetween12andlOOkm, Whichalmostcorrespondstothestratosphereandthemesosphere,isgenerallycalled ′′middle atmosphere′′・The altitude abovelOO km,Which corresponds to the thermosphere,1Sgenera11ycalled′′upperatmosphere′′・Mostofthechemistrylnthe middleandupperatmospheresisdrivenbysolarlight・Thephotochemicalprocesses OffreeradicalsplayacrucialroleindetermlnlngChemicalcompositionofthemiddle andupperatmosphere. Inthemiddleatmosphere,OZOne(03)isthemostimportantChemicalconstituent, becauseitisthe onlyatmospheric speciewhichefficiently absorbsultraviolet solar radiation・Theozoneconcentrationsinthemiddleatmospherearecontrolledmainly by catalytic reactionsinvoIving the odd nitrogens,NOx(=N+NO+NO2),Odd hydrogens,HOx(=H+OH+HO2),andoddchlorines,ClOx(=Cl+ClO).The CatalyticcycleincludingNOxisam毎orremovalprocessofozoneinthelowerand middlestratosphere,andthecatalyticcycleincludingHOxbecomesdominantinthe upper stratosphereand mesosphere[1]・Therefbre,detailedunderstanding ofthe PrOductionanddestructionprocessesofNOxandHOxinthemiddleatmosphereis important. In the upper atmosphere,nitric oxide PO)is one ofthe COnStituents・Emissionat5・3トLm丘omNOisanilnPOrtantCOOlingmechanisminthe mostimportant NO thermosphere[2]・The thermosphere middle molecules canbetransportedintothemiddleatmosphere atmospheric high-1atitude,lower the producedin whereitcouplesinto chemistry・Theunderstandingoftheproductionandremoval PrOCeSSeSOfNOinthethermosphereiscruCial・Ithasbeenrecognizedfbrmanyyears thatobservations ofthe alrglowemissionrates should provide apowerfu1toolfbr remotelysenslngthestateoftheupperatmosphere・Themostfrequentlyobserved the emissionis O(ls)greenline atomic emission at557.7nm.This emissi。n Particularlyprovidestheinformationaboutthevariabilityofsolaractivityandatomic OXygen the COnCentrationin upper atmosphere・The understanding ofthe O()s) PrOductionprocessesisalsoimportant・ ThisthesisfocusesonthephotochemicalprocessesrelatedtoNOxandHOxin themiddleandupperatmosphere・Thelaboratorystudiesonsomenewprocessesof NOxandHOxinthemiddleandupperatmospherehavebeenperformeduslnglaser SPeCtrOSCOPICteClmiques・Inthischapter,theimportanceofozoneandchemistryof NOx and HOxrelated to ozoneinthe middle atmosphereis described.Then,the importanceofNOal-dO(ls)airglowemissionintheupperatmosphereisdescribedin detail. 1・1Importanceofozoneinthemiddleatmosphere Ozoneiscentralinhighlycoupledchemical,radiative,anddynamicalprocesses OfEarth,smiddleatmosphere,aSShowninFigurel・1・OzoneisproducedbyO2 Photolysis and destroyed by photochemicalreactionsinvoIving radicals whose COnCentrationdependsontheozoneabundanceasdescribedbelowindetail.Ozone andotherconstituentsaretranSPOrtedbywindsthatarerelatedtothetemperature distributionanddrivenbyabsorptionintheatmosphereofvertica11ypropagatingwaves. Ozoneabsorbssolarultraviolet(UV)radiationbetween240and320nmwhichwould Otherwise tranSmitted to the Earth,s surface・Such radiationislethalto simple unimolecuarorganismsandtothesurfacecellsofhigherplantsandanimals・Heating Ofthemiddleatmospherefo1lowlngtheabsorptionbyozoneofsolarUV,Visibleand Earth-emittedinfrared(IR)radiationcontributestocharacteristictemperaturepronleof themiddleatmosphere・Stratosphericairisstaticallystablebecauseoftheincreasein temperaturewithaltitude・Ozoneabsorptionalsoprovidesaslgni丘cantenergySOurCe fordrivingthecirculationofthemesosphereandforclngtidesintheuppermesosphere 2 andthermosphere. ThemixlngratioofozoneistypICallylOO-500ppbvattropopause,3ppmvat20 km,8-10ppmvat35km,and2ppmvatstratopause[1,3].AlthoughtheimportanCeOf atmospheric intensified has ozone been dramatically COnCernthatavariety thanSixty more recognizedfor been years・Interesthas overthelastthirty has years,reSearCh stimulatedby detectablechangeSinthe ofhumaninnuencesmightleadto abundanCeOfozoneinthemiddleatmosphere・Itisnowapparentthatstratospheric OZOne have COnCentrations been declining over decades two past dramatic and depletionsofozoneovertheAntarcticeachyear. In1930,Chapman[4]nrst destruction to thatlead reactions proposed a state steady thefundamentalozone-formingand concentration the ofO3in middle atmosphere・Thereactionskn0wnaStheChapmanmechanismare 02+hv→20 (1.1) 0十02+M→03+M (1.2) O3+hv→02+0 (1.3) 0+03→202. (1.4) Becausereactions(1.2)and(1.3)rapidlyinterconvertOandO3,itisusefu1tothinkof thesumofOandO3aSaSinglespecies,Oddoxygen(Ox=0+03).Oddoxygenis PrOducedonlyinreaction(1・1)andislostinreaction(1.4).Ozoneisthedominant fbrmofoddoxygenbelow∼60km. Untilabout1964,itwasthoughtthattheChapmanmechanism,OXygen-0nly reactions,COuld explain ozone atmospheric However,improved abundanCeS・ laboratorymeasurementsoftherateconstantofreaction(1.4)indicatethatthereaction is considerably slower than thought.Then previously the丘eld measurements indicatedthattheactualamountofozoneinthestratospllereWaSaboutafactorof21ess thallthat what destruction was predicted pathway(S)are bythe needed ChapmanmeChanism.Thus,additionalozone beyond reaction(1.4).Bates Nicolet[5] and introducedtheideaofcatalyticoddoxygenlossprocessinvoIvinghydrogenradicals. Crutzen[6]andJolmston[7]revealedtheroleofcatalyticoddoxygenlossprocess invoIvingnitrogenoxides・StolarskiandCicerone[8],MorinaandRowland[9]and RowlandandMorina[10]elucidatedtheef托ctofchlorine-COntainingcompoundson OZO11eChemistry. The ozone destruction that processes 3 must be added to the Chapman mechanismtakethefbrmofacatalytlCCyCleinvoIvingNOx,HOx,ClOx: Ⅹ+03→Ⅹ0+02 Ⅹ0+0→Ⅹ+02 Net:03+0→02+02, WhereXisfreeradicalcatalyst・XcanbeH,OH,NO,OrCl・Theabovecycleis CatalytlCinthatXisnotconsumedintheprocess・Thenetresultofthecycleisthe COnVerSionoftwooddoxygenspecies(03andO)totwoevenspecies(202).Odd OXygenisneededtoproduceO3・Therelativeimportanceofthecyclecorresponding toaparticularXspeciesdependsontheconcentrationofXandtherateconstantsofthe reactionsinthecycle・Formostofsuchcycles,reaCtion(1.5)occursrapidlysothatthe rate-determiningstepisreaction(1.6)[1]. Figure・1・2showstherelativecontributionoftheHOx,NOx,ClOxcyclesaswell asoftheoxygen-OnlyChapmanreactionstooddoxygendestruction・Itisapparent thatthecatalyticcyclesinvoIvingNOxmakeamqorcontributiontodestructionofodd OXygeninthemiddlestratosphere,WhilethecatalyticcyclesinvoIvingHOxbecome moreimportantintheupperstratosphereandmesosphere・ChemistryoftheNOxand HOxinthemiddleatmosphereisdescribedindetailinthefo1lowingsections(Section l.2andl.3). 1・2ChemistryofNOxinthemiddleatmosphere l.2.1NOxcyclesIbrozoneloss ThecatalyticcycleinvoIvingNOxmakesam毎orcontributiontodestructionof Oddoxygeninthemiddlestratosphere(25-35km): Cyclel NO+03→NO2+02 NO2+0→NO+02 Net:03+0→202. Inthelowerstratosphere,reaCtion(1.8)isreplacedbythephotodissociationofNO2: NO2+hv→NO+02 (1.9) Thereaction(1・9)nulli丘estheozoneremoval・Inthelowerstratospherewhereozone ismoreprevalent,anOtherNOxcycleis Cycle2 NO+03→NO2+02 NO2+03→NO3+02 NO3+llV→NO+02 4 Net:203→302. during MostatmosphericNO3formedbyreaction(1・10)isremovedbyphotolysis daytime.TheproductsofphotodecompositionareNO2+0(inwhichcasethereisno netlossofoddoxygen),andNO+02(inwhichcaseoddoxygenisconsumed)・The nitrateradicalcanalsoreactwithNO2tOPrOducedinitrogenpentaoxide,N205: (1.12) NO3+NO2+M→N205+M N205CandecomposebacktoNO3andNO2eitherphotolyticallyorthermally・Since itsformationdoesnotrepresentapermanentlossofNOx・N205isareservoirspecies 払rNOx. ThechemistrylnVOIvingNOxiscloselyintertwinedwiththatofClOxandHOx, forexample,byfo1lowlngreaCtions: NO+ClO→NO2+CI (1.13) NO+HO2→NO2+OH (1.14) NO2+ClO+M→C10NO2+M (1.15) NO2+HO2+M→HO2NO2+M (1.16) NO2+OH+M→HNO3+M. (1.17) BecauseClOandHO2aretheanalogsofNO2intheiroddoxygendestructioncycles, theoccurrenceofreaction(1.13)or(1.14)enhancestheimportanceofNOxdestruCtion cyclebutdiminishestheC10xandHOxcatalyticcycles・Nitricacid(HNO3),Chlorine nitrate(ClONO2),andpemitricacid(HO2NO2)producedinthereactions(1・15-17), saveastemporaryreservoirsforNOx,ClOxandHOxtakingthemoutoftheirozone destruCtioncycles[3]. 1.2.2ProductionanddestructionprocessesofNOx TheprincipalnaturalsourceofNOxinthestratosphereisnitrousoxideP20) producedattheearth,ssurfacebybiologlCalprocesses・MostoftheN20tranSPOrted tothestratospherethroughtheplanetaryboundarylayerandthefreetroposphere・ Figurel.3ashowsanUVabsorptionspectrumofN20[11]・Figurel・4showssolar photonfluxataltitudesof50,30,andOkm,reSPeCtively,aSafunctionofwavelengthat solarzenithangle(SZA)of500.Thewavelengthregionbetween185and220nmisin so-Called=stratosphericwindownwherenon-negligiblesolarPhotonscanpenetrateinto thestratosphericaltitudesduetothegapofShumann-RungebandofO2andtheHartley 5 bandofO3aSShowninFigurel・4・Approximately90%ofN20inthestratosphereis destroyedbyphotolysISarOund200nmasshowninFigurel.5, N20+hv→N2+0(lD), Where thelong (入<341nm) (1.18a) the wavelengthlimitgiveninparenthesesindicates thermochemical thresholdforchannel(1・18a)・Theremainder,∼10%ofN20inthestratosphere,reaCtS withO(lD): N20+0(lD)→2NO (1.19a) (1.19b) →N2+02・ Reaction(1.19a)isknowntobethemainsourceofNOxinthestratosphere.About 58%oftheN20+0(】D)reactionproceedsviacharmel(1.19a),theremaining42%by Channel(1.19b)[11]. Although (1.18a)with has N20photolysis an almost been quantum unit to considered proceed through channel yield[12],Channels(1.18b-d)are also energeticallypossible. (入<248nm) (1.18b) →N2+0(3p) (入<742nm) (1.18c) →N2+0(ls) (入<211nm). (1.18d) N20+hv→N(4s)+NO Ifchannel(1.18b)occurredwithasignincantyield,itcouldbeadirectsourceofNOxin thestratosphereasshowninFig.1.5.Inthisthesis,thephotolyticformationofN(4s) from the UV photolysis ofN20through on channel(1.18b)anditsimpact NOx formationinthestratospherehavebeendescribedinChapter3. ThereactionofN(4s)withNOisconsideredasthedestructionprocessofNOx intheupperstratosphereandmesosphere: N(4s)+NO→N2+0. (1.20) TheN(4s)atomsaremainlyproducedbyphotodissociationofNOinthemiddle atmosphere.Inthisthesis,thereactionkineticsoftheN(4s)withNOandNO2have beendescribedinChapter4. 1.3ChemistryofHOxinthemiddleatmosphere l.3.1Ⅲ0ⅩCyCleslbrozoneloss. OH Chemistry Partitionlng and either HO2Play as direct Withil-Other a stratospheric criticalrolein reactants with odd chemicalfamilies・The 6 oxygen and or catalytic mesospheric through controlof cycleinvoIving ozone the HOx COntributes slgni丘cantlyto destructionofoddoxygenintheupperstratosphere and mesosphere. Aboveabout40km,them句OrCatalytlCCyClesinvoIvingOHare Cycle3 OH+0→H+02 H+02+M→HO2+M HO2+0→OH+02 Net:20→202, and Cycle4 OH+0→H+02 H+03一}OH+02 Net:0+03→202. Between30and40km,Cycle5becomesimportant: Cycle5 0H+03→HO2+02 HO2+0→OH+02 Net:03+0→202. Below there about30km,Where are veryfew oxygen atoms,Cycle6becomes dominant: Cycle6 OH+03→HO2+02 HO2+03→OH+202 Net:203→202. TherelativeimportanceofthecycleschangesastheconcentrationsofkeyreactantS(H, OH,andHO2)andthetemperaturechange.InteractionofHOxwithNOxandC10xis importantasdescribedintheprevioussectionfbrthecaseofNOx.Inadditiontothe COuPlingbetweenHOxandNOxbyreactions(1.14),(1.16),and(1.17),thecoupling betweenHOxandClOxoccurredbyreactions(1.27)and(1.28)[3]: OH+HCl→H20+CI HO2+ClO→HOCl+02. 1.3.2ProductionanddestructionprocessesofHOx ThesourceofHOxinthemiddleatmosphereislargelywatervapor.Above 60km,HOxproductionisdominatedbythephotolysISOfH20atLyman-αradiation: H20+hv→OH+H. (1.29) Below60km,theoxidationofH20byO(lD)isthoughttobethemainsourceofHOx: 7 0(1D)+H20→20H. (1.30) TheoxidationofmethanebyO(1D)hassomecontributionsasasourceofHOxinthe lowerstratosphere.Inturn,theremovalofHOxinthestratosphereandmesosphere OCCurSbyterminationreactionsleadingtotheformationofwatervapororhydrogen PerOXide[13,14]: OH+HO2→H20+02 (1.31) HO2+HO2→H202+02 (1.32) H+HO2→H2+02. (1.33) Production by ofOHin reaction(1.30)isinitiated the photolysis ofO3at wavelengthshorterthanabout320nmtoproduceO()D)asshowninFigurel.6.Most oftheO(1D)atomsisquenchedtogroundstateatomicoxygen,0(3p),bycollisionswith N20rO2,butasmallfractionofO(lD)reactswithH20toproduceOH.Ozone moleculehashugeabsorptlOnCrOSS-SeCtionsintheUVbetween200and300nm.The UVabsorptionspectrumreportedbyMalicetetal・[15]isshowninFigurel・3b・There are various ozone pathwaysfor thermochemicalthreshold wavelengths[16].The have dissociatiollChannels photolysis,aSlistedin been believed to be Tablel.1along fo1lowlng dominantin the tWO their with SPln-allowed photolysIS OfO3 between230and300nmwithreportedquantumyieldsofca.0.9andO.1[17]: 0,+hv→0(】D)+02(alAg) (1.34a) →0(3p)+02(Ⅹ3∑g ). (1.34b) Thespinfbrbiddenchannel(1.34c)occursintheUVregionabove300nmaswellas Charulel(1.34a)and(1.34b): 03+hv→0(lD)+02(Ⅹ3∑g ). (1.34c) ProductionoftheO(1D)atomsabove310nmhasbeenattributedtobothchannel (1.34a)andviainternallyexcitedO3andspin-forbiddendissociationchammel(1・34c) [18,19].Ataround200nm,Whichcorrespondsto"stratosphericwindow"region,the twoo(ls)productionchannelsareenergeticallypossibleaslistedinTablel.1: 03+hv→0(1s)+02(X3∑g-) →0(1s)+02(alAg). (1.34d) (1.34e) Thede-eXCitationofO()s)byN2andO2isveryslowwiththeroomtemperaturerate coefncientsof<5×10-17and4.0×10・13inunitsofcm3molecule-1s-l,Whilethatof O(lD)isveryfastwiththeroomtemperatureratecoemcientsof2.6×10.‖and4.0× 10-11inunitsofcm3molecule-1s 1.ThereactionratesofO(lD)andO(ls)withH20do 8 notdifftrmuchfromeachother・Therefbre,theformationofO(1s)fr01nChannels (1・34dandl・34e)canbeasourceofOHradicalsasshowninFig.1.6.Inthisthesis, thephotolyticformationofO(ls)fromtheUVphotolysisofO3arOund200nmandits SubsequentreactionswithsmallmoleculesrelevanttOmiddleandupperatmospheric Chemistryhavealsobeenreported・ImpactonHOxfbrmationinthestratosphereand mesospherethroughO(1s)+H20reactionhasbeenreportedinChapter6. 1・4ChemistryofNOintheupperatmosphere SinceBarth[20]discoveredalargeamOuntOfNOintheupperatmosphere,the roleofNOinthephotochemistryandthermalbudgetofthelowerthermospherehave beenrecognized・Theescaplng5・3-PmNOradiationcontributesslgni丘cantlytocool thethermOSPhere[2]・TheexothermicreactionsinvoIvingoddnitrogenspeciesare kn0wnaSSOurCeSOfthermosphericheating[2].ThedownWardnowofNOfromthe lower thermosphere to the upper stratosphere may cause$1gni丘cantloss ofO3, especiallyinthepolarnightregions[21]・ThermosphericNOhasapeakconcentration typICallyaroundllOkm・SatelliteobservationsshowsthatthepeakNOdensitiesof ∼108moleculescm-3atlO5±2・5kminthelatituderange380N-580S[22]. Thesourcesofthermosphericnitricoxidearethechemicalreactions(1.35)and (1・36)asshowninFigurel.7: N(2D)+02→NO+O N(4s)+02→NO+0, Whiletherecombinationprocess, N(4s)+NO→N2+0, is the mainloss (1.20) mechanism・Reaction(1.35)is thought to dominate the NO PrOductioninthelowerthermosphere,Whilereaction(1.36),Whoseratecoefncientis VerytemPeraturedependent,becomesincreaslnglyimportantathigheraltitudewhere thetemperatureislarger・Thecontributionofreaction(1.36)toNOproductionwas thoughttobesmallbecausethereactionratefor(1・36)issmallatthetemperatures encounteredinthelowerthermOSPhere・Atmosphericmodelsincludingthereaction (1・35)and(1・36)underestimatetheobservedNOdensityinthelowerthermosphere aroundlO5km[22,23]. Asanadditionalsource,ithasbeensuggestedthatsuprathermal(or′′fast′′or ・・hot・′)N(4s)atomcanreactwithO2tOformNOinthethermosphereatanenergy 9 dependrate,Whichisconsiderablyfasterthanthatatthermalequilibriumfbrgas temperature[24](Fig・1・7): (1・37) 払飢N(4s)+02→NO+0. ThemodelcalculationshaveextensivelybeenperformedtoevaluatethetranSlational energydistributionsofN(4s)andthefbrmationefnciencyofNOthroughreaction (1.37)inthethermosphere[24,25,26,27,28]・ Inthethermosphere,nitrogenatoms,N(4s),N(2D),andN(2p),arePrOducedby aseriesofphotochemicalprocessesinvoIvingthebreakingoftheN2bond[28,29]・ The direct photodissociation by solar photons between80andlOO nm and by photoelectronimpactprovidem呵OrSOurCeSOfnitrogenatoms‥ N2+hv→fastN(4s)+N(4s,2D) (1・38) N2+e*→fastN(4s)+N(4s,2D,2p)+e. (1・39) TheN(4s)atomcarriesexcessenergyandformahotpopulationinthethermOSPhere・ OtherreactionsinvoIvingpositiveions ormetastable atoms also contributetothe productionofsuprathermalN(4s)atoms[28,29]・ ThesuprathermalN(4s)atomsfbrmedbytheseprocessessubsequentlyco11ide withambientmolecules(N2andO2)inadditiontoreaction(1・37)・Thethermalization crosssectionsofN(4s)withambientgasesarecrucialtoevaluatetheNOformationin thethermosphere・However,nOlaboratorystudyofthedirectmeasurementsforthe thermalizationcrosssectionofsuprathermalN(4s)atomswithambientgaseshasbeen perfbrmed・InthisthesIS,thelaboratoryexperiments aboutcollisionalrelaxation processesofsuprathermalN(4s)atomshavebeendescribedinChqpter5・ 1.50(1s)airglowintheupperatmosphere Inrecentyears,agreatdealofaeronomicresearChhasfbcusedonalrglow emissions,WhicharestudieduslnggrOund-based,rOCketandsatellitetechniques・The mostfrequentlyobservedemissionistheatomicO(ls)greenlineemissionat557・7nm・ Thisemissionparticularlyprovidestheinfbrmationaboutthevariabilityofsolaractivity andatomicoxygenconcentrationintheuppermesosphereandthermosphere・ TheBarthmechanismisknowntobethedominantexcitationprocessofthe nightglowemissionpeakaroundlOOkm[30,31],thatis, 0(3p)+0(3p)+M→02*+M O2*+0(3p)→02(Ⅹ3∑ g)+0(1s), 10 whereO;iselectronica11yexcitedstate(S)ofoxygenmolecule・Theproductionrateof O(】s)duetotheBarthmechanismisproportionaltothesquareofthedensityofatomic oxygen・Consequently,anyChangeintheatomicoxygenconcentrationwoulddirectly afftcttheO(ls)557.7-nmemission.Therefbre,thenightglowobservationshavebeen usedtoinvestlgatethetranSPOrtPrOCeSSeSOfatomicoxygeninthelowerthermosphere [32andrefbrencestherein]・ Recently,thewindimaginginterfbrometer(WINDII)onUpperAtmosphere ResearCh Satellite(UARS)[33]has dataofdayglowemission extensive provided thoughoutthe80to300kmaltitude・The557・7nmdayglowemissionshowstwo peaksinitsemissionrate,namely,OnearOund150-175kmandtheotheraround90-100 km.Intheemissionpeakaround150-175km,threeimportantprocessescontributeto theproductionofthisemission: 02++e→0(ls)+0(3p) (1・42) N2(A3∑。+)+0(3p)→N2+0(1s) (1・43) 0(3p)+e*→0(1s)+e. (1・44) Them。delcalc。1ati。nSSh。WthattherelativecontributionstotheproductionofO(ls) duetoabovesourceschangewithaltitude[34]・ TheproductionprocessesofO(ls)relatedtotheemissionpeakaround90-100 km during recombination daytlme process are Shownin ofatomic Figurel・8・In oxygen(Barth this reglOn,the mechanism)is three-body considered as the importantprocessforO(ls)production・However,theWINDIIdatashowedthatthe volumeemissionrate(VER)(numberofphotonsemittedperunitsvolumepersecond) ofthegreenlineemissionwaslargerbyafactorofthreeormoreinthedaytimethanat night[35,36,37].Theobservationindicatesthatfurtherexcitationprocessesshouldbe invoIvedinadditiontotheBarthmechanism.Shepherdandco-WOrkers[35,36,37] haveproposedthatphotodissociationofO2bythesolarradiationbetw占enlOOand130 nm,eSPeCiallyatLyman-β(102・6nm),isaprimarysourceofO(1s)fbrtheemission peakaround90-100kminthedaytime・Inthisthesis,theimpactofthe formationofO(ls)fromtheUVphotolysisofO30nthegreenlinedayglowemission hasbeendescribedinChapter6. 11 direct H20 N20 CFC Emission ヽ ノ芦 Figurel・1・Representation ofthe couples processesinthemiddleatmosphere[3]・ 12 chemical,radiative,and dynamical / 0.2 0.4 0.6 0.8 1.O FractionaIcontribution Figurel・2・FractionoftheoddoxygenlossrateduetotheChapmanmechanismand HOx,NOx,andC10xcycles(basedonamid-1atitudediurnalaveragecalculation)[1]・ 13 l OU (Tむ一⊃U苫∈N∈U)uO葛軍SS。」Uu。喜。Sq< 1 O■ 19 1 0- 20 1 0- 21 1 0- 22 1 0■ 17 1 0■ 18 1 0- 19 1 0■ lb 20 200 250 300 WaveIength(nm) Figurel.3.Absorptionspectrumofa)N20andb)03intheultravioletregionat298K, inwhichthecross-SeCtiondataofN20andO3WeretakenfromSanderetal.【11]and Malicet[15],reSPeCtively. 14 (T2uTSNI∈USuO}○量×⊃正」苫S Figurel・4・Solarphotonfluxesataltitudeof50,30,andOkm,reSPeCtivelyabove earthsurfacesasafunctionofwavelengthforUSstandardatmosphereatsolarzenith angle(SZA)of500・ 15 Figurel・5・SchematicsofthefateprocessesofN20inthestratosphere・The・ratios ofeachsinkarealsopresented・ 16 Figurel・6・SchematicsofthereactionpathwaysinvoIvingOHproductioninthe middleatmosphere(SeeteXt)・ 17 Figurel・7・SchematicsofthereactionpathwaysinvoIvingNOproductioninthelower thermosphere(SeeteXt)・ 18 +hv? ■ ■ ■ t = = ■ ▲ 557.7nm em)SSLOn Figurel.8.SchematicsofthereactionpathwaysinvoIvingO(1s)productioninthe lowerthermosphere(SeeteXt)・ 19 Tablel.1.Thermochemicalthresholdwavelengthsfbrphotodissociationpathwaysof O3,inunitsofnm. 02(X3=g-)02(al△g)02(b)=g+)02(A3=u+)02(B3=u-)20(3p) 0(3p)1180 460 230 0(lD) 410 260 167 0(ls) 234 179 129 20 RcferencesfbrChapterl [1]Wayne,R.P.,Chemist7yQ[Atmo甲heres,thirdedn・,OxfbrdUniversityPress,NewYork, 2000. [2]Roble,R.G.,Rid]ey,E・C・,Dickinson,R・E・,JGeqpJp・Res・,92,8745(1987)・ [3]Brasseur,G.P.,Orlando,J・J・,Tyndall,G・S・,Atmo3PhericChemLsiTyandGlobalChange, OxfbrdUniversityPress,NewYork,1999・ 【4]Chapman,S.,Aゐm・Rqy肋teo7d・Soc・,3,103(1930)・ [5]Bate,D.R.,Nicolet,M・,JGeqp7p・Res・,55,301(1950)・ [6]Crutzen,P.J.,Q.JR・肋teorol・Soc・,96,320(1970)・ [7]Johnston,H.S・,Stience,173,517(1971)・ [8]Stolarski,R.,Douglass,皐・R・,JCan・Chem・,52,1610(1974)・ [9]Molilla,M.J.,Rowland,F・S・,Ndture,249,810(1974)・ [10]Rowland,F.S.,Molina,M・J・,Re-1Geqpわび・勘acePjD}S・,13,1(1975)・ [11]Sander,S.P.,Friedl,R・R・,Goldel一,D・M・,Kurylo,M・J・,Huie,R・E・,Orkin,V・L・, Moortgat,G・K・,Ravishankara,A・R・,Kolb,C・E・;Molina,M・J・,Finlayson-Pitts,B・J・, ChemicalKinelicsandPhotochemicalDataPruseinAtmo軍hericStudies,Evaluation No.14,JPLPublicationO2-25,2003・ 【12]Okabe,H.,PhotochemistTyQrSmallmolecules,Wiley-Interscience,NewYork,1978・ [13]Brasseul・,G.,Solomon,S・,Aerononv}Qf'lhemiddleatmosphere,D・ReidelPublishing Company,Dordrecht,Holland,1986・ [14]Conaway,R.R.,Summers,M・E・,Stevens,M・H・,Cardon,J・G・,Preusse,P・,0ffbmann,D・, Ge甲/叩.月e∫.エe払,27,2613(2000)・ [15]Malicet,J.,Daumont,DっCharbonnier,J・,Parisse,C・,Chakir,A・,Brion,J・,JAtmos・Chem・ 1995,2ノ,263. 【16]Atkinson,R.,Baulch,D.L・,Cox,R・A・,HampsonJnR・F・,Ken.,J・A・,Rossi,M・J・,Troe,J・, Jタわげ.C力e批点げ加叫27,1329(1997)■ [17]Matsumi,Y,Kawasaki,M・,Chem・Rev,103,4767(2003)・ [18]Tbkahashi,K.,Kashigami,M・,Matsumi,Y,Kawasaki,M・,OrrEwing,A・,JChem・P卸s・, 105,5290(1996). [19]Denzer,W.,Hancock,G・,PinotdeMoira,J・C・,Tyley,P・L・,Chem・P砂∫・,231,109(1998)・ [20]Ba11h,C.A.,JGeqp7p・Res・,69,3301(1964)・ [21]Solomon,S.,R.RGarcia,Planet・勘ace・Sti・,32,399,(1984)・ [22]KrishnaKumar,C.,Swaminathan,P・K・,Anderson,D・E・,%e,J・H・,Gul-SOn,M・R・, Abrams,M.C.,JGeqpjvLS.Res.,100,16,839(1995)・ [23]Suskind,D.E.,Strickland,Meier,R・R・,旬eed,T・,Fparvier,JGeqpわ岱・Res・,100,19,687 (1995). [24】SololⅥ011,SリアJα〃eJ・勒αCe助f・,31,135,(1983)・ 【25]Lie-Sevelldsen,0.,Rees,M・,Stamnes,K,Whipple,E・C・,Pla71et・勘aceSti・,39,929, 2l (199り. 【26]G6rard,J.C.,Bisika)0,D・V・,Shematovich,ⅤⅠ・,DuffJ・W・,JGeqpjw・Res・,102,285, (1997). [27]Swaminathan,P.K.,Strobel,D・F・,Kupperman,D・G・,KrishnaKumar,C・,Acton,L・, DeM往iistre,R.,Yee,J.H.,Paxton,L・,Anderson,D・E・,Strickland,D・J・,Du托J・W・,J Ge甲砂∫.月e∫.,103,11579(1998)・ [28]Balakrishnan,N.,Sergueeva,E・,Kharchenko,Ⅴ,Dalgarn0,A・,JGeqpJw・Res・,105, 18549(2000). [29]Schematovich,VI.,Bisikalo,D・V・,Girard,J・C・,Ann・Geqpj叩・,10,792(1992)・ [30]Barth,C.A.,Ann.PjD}S・,5,329(1964)・ [31]McDade,1.C.,Murtagh,D.P.,Greer,R・G・H・,Dickinson,P・H・G,Witt,G・,Stegman,J・, Llewellyn,E.J.,Thomas,L.,Jenkins,D・B・,Planet・勘aceSti・34,789(1986)・ [32]Zha11g,S.P.,Roble,R.G・,Shephered,G・G・,JGeqp7p・Res・,106,21,381(2001)・ [33]Shepherd,G.G.,etal.,JGeqpj叩・Res・,98,10,725(1993)・ [34]Tyagi,S.,Singh,Ⅴ,Ann・Geqp句げ・,16,1599(1998)・ [35]Singh,V,McDade,Ⅰ.C.,ShepherdG・G・,Solheim,B・H・,Ward,W・E・,Ann・Geqp7picae・, 14,637(1996). [36]Shepherd,G.G.,Siddiqi,N・J・,Wiens,R・H・,Zhang,S・,A血勒ace・Res・,20,2127(1997)・ [37]Sharma,R.M-.,Shepherd,G・G・,JGeqpj叩・Res・,109,AO3303, doi:10.1029/2003JAOlO183(2004). 22 Chapter2 Experimental 2.10verviewofthedetectiontechniquesofN(4s)andO(1s)atoms 2.1.1I)etectiontechniquesofN(4s)atoms TherearethreeelectronicstatesforthegroundstateconngurationsofNatom: N(4s,/2),N(2D5/2,3/2),andN(2plr2,3佗)withtheirrespectiveenergiesofO,2・38and3・58 ev.Inthepreviousexperimentalstudies,maSSSPeCtrOmetryteChnique[e・g・1,2,3] andresonantnuorescenceteclmique[e.g.4,5,6]around120nmwereusedfbrdetection ofthe electronic groundstateN(4s)atoms.The experimentalsetupreportedby BrunningandClyne[3]isshowninFigure2・1a・Intheirstudy,theN(4s)atoms generatedinamicrowavedischargeofN2WeremOnitoreduslngaquadrupolemass spectrometerwithachannelmultiplier・TheexperimentalsetupreportedbyAnderson andco-WOrkers[5,7]isshowninFigure2.1b.Intheirstudy,theresonantfluorescence 丘omtheN(2p23s4pl′2,3/2,5′2→2p34s2/3)transitionsarOund120nmwasdetectedusing anatOmicnitrogenlampandaphotomultiplier,inwhich,theN(4s)atomswere generatedinamicrowavedischargeofN2・Theresonanceabsorptiondetectionsof N(4s)atomsatl19.9nmwithanatOmicnitrogenlampwerealsoemployed[8,9]・ Recently,Adamsetal・[10]demonstratedthetwo-PhotonLIFdetectionofN(4s)at207 11mWhichisresonanttothetwo-PhotonN(2p23p4s,/2←2p34s2/3)transition,inwhich theN(4s)atomswereproducedbythephotolysisofN20at207nm・ Inthisthesis,aneWteClmiqueforhigh-SenSitivedetectiontechniqueofN(4s) uslngVUV-LIF spectroscopy at120・07nmwhichisresonantto the one-Photon N(2p23s4p3/2←2p34s2/3)tranSitionhasbeendeveloped・ 2.1.2DetectiontechniquesofO(1s)atoms Therearethreeelectronicstatesforthegroundstatecon丘gurationsofOatom: 0(3po,l,,),0(lD2),andO(lso)withtheirrespectiveenergiesofO-0・028,1・97and4・19 ev.IncontrasttothenrstelectronicexcitedO(1D)atohl[11,12],thereislittle infbrmatiol-aboutthephotochemicalpropertiesofO(ls)atom.Oneofthepossible reasollSforthissituationisadifncultytodetectO(ls)atomssensitively.Inprevious 23 laboratorystudiesonthephotochemicalreactionsinvoIvingO(ls)atoms,detectionof thevisibleemissionat557・7nmcorrespondingtothels-1Dtransitionwasusedfor InOnitoringO(】s)atoms[e.g.13,14,15].Duetotheorbitallyfbrbiddennatureofthe ls.1Dtransition,thesensitivityoftheO()s)emissiondetectionmethodsh。uldbe relativelylow・TheexperimentalsetupreportedbyYoungetal.[13,16]isshownin Figure2・2・Intheirstudies,theO(1s)atomsgeneratedinthenushphotolysisofN20 at147nm(XelamP)weremonitoredusingtheO(1s→lD)emissionat557.7nm. Inthepresentstudy,aneWteClmiquefbrhigh-SenSitivedetectiontechniqueof O(ls)usingVUV-LIFspectroscopyat121・76nmwhichisresonanttotheone-Photon O(2p33sllp)←2p41so)tranSitionhasbeendeveloped・Thereby,Photochemical reactionsinvoIvingO(1s)atomhavebeenexamined. 2・2VUV-LIFspectroscopy 2.2.1PrincipleofLIFmethod TheLIFteclmique,nrStPrOVidedbyZareandco-WOrkers[17],isapowerfu1 toolfordetectionoftraceamountsofatomsormolecules.ThebasicideaofLIFisas fo1lows・Light丘omatunablelaserimplngeSOnthesampletobeinvestigated.As the凸-equenCyOfthelaserchanges,atOmS(molecules)withintheirradiatedportionof thesamplewillbeexitedtonuorescencewheneverthespectralenvelopeofthelaser OVerlapsanabsorptionlineoftheatom・Theemissionisdetectedbyaphotomultiplier, Which′′view′′theexcitationzone・Thefluorescenceintensityisrecordedasafunction Oflaserwavelengthtoproducewhatweca11anuorescenceexcitationspectrum.The intensitiesarethenconvertedtorelativepopulationsofthevariousinternalstates,With theinformationofvibrationalandrotationalintensltyfactors. Inorderforatomtobedetectablebylaser-inducedfluorescence,thereare three m往IOr requlrement factors.First,the that oneis obvious atomfluoresces. Moreover,itispreferablethatthequantumyieldfornuorescenceprocessisunityso thattheconversionoffluorescenceintensitiestopopulationsisnotcomplicatedbyother internalstates・Second,the band system was spectroscopICa11y analyzed so that quantummemberscouldbeasslgnedandintensityfactors,SuChaslinestrengthfbrthe transitiol一,COuld be obtained・Third,the atoms band systemis availabletunablelaserlight・Recentdevelopmentofthetechniquestogeneratetunable VUVlaserlightishelpfu1forthisrequlrement. 24 accessiblewith 2.2.2PrincipIeofVUVlaserlightgeneration Inthepastfbwyears,Photochemicalprocesseshavebeeninvestigatedinour laboratoryusingthecoherentVUVradiationtodetectatomsandradicalssuchasH(2s), S(lD),S(3pj),0(1D),0(3pj),Cl(2n),ClO,and teclmology tunable developed coherent a newlight VUV sourceinthe wavelength by丘・equenCylnlXlngln generated radiation CO【18,19,20].Therecentlaser reglOn,Whichis the gases and vapors. SincetheearliestexperimentsbyWardandNew[21],therehasbeenmucheffbrtto developnewmixingschemesaboutthirdharmOnicgeneration(THG)andtwo-Photon resonantfour-WaVemlXlngPrOCeSSforextendingthelaser-basedlightrangetotheVUV and even to the near X-ray fbur-WaVe CategOries,namely mlXlnglS reglOn.Thefour-WaVe two Classi丘edinto dif托rent Sum丘equencymixing(SFM)andfour-WaVe frequencymixing(DFM).ThewavenumbersofthegeneratedVUVlight(0)vuv)for theSFMandDFMcanbewritteninfo1lowlngform: (2.1) Ovuv=2(Ol±の2, the Where(Dlis wavenumber nrstlaserlight(0)11aser),Which ofthe two-Photonresonancelevelofthe non-1inearmedium,and tunablelaserlight(0)21aser),Whose variations tuned are o2isthatofthe capable to the second ofobtainingfrequency tunabilitylnOvuv.Whilekeeplngtheresonanceconditionbytunlngthewavenumber Oftheollaserlight,Varylngthewavenumberoftheo)21aserlightmakesitpossibleto generate thefrequency tunable VUVlight.Theoretically,the generated power VUVradiation,Pvuv,forthefbur-WaVemlXlnglSglVenby (2.2) 且.tv∝Ⅳ2ズ昌)月2ろダ匝l△た,∂), WherePlandP2aretheinputpowersofo)1ando)21asers,Nistheatomicdensityof non-1inearconversionmedium,X(3)isthethirdordernon-1inearsusceptibilityperatom. Fisthephasematchingfactordependingonbl△kandb=bl/b2.Here,b)andb2are the confbcalparameterS Ofthelaser beams,and△kis the wave vector mismatch betweenthegeneratedradiationanddrivingpolarization[22]: △た=んuv-(2んl±ち). THG (2.3) andfour-WaVemixingininertgases(forexample,Xe,Kr,Ar)have beenwellstudieduslngagaSCellorsupersonicrategasjetforbroadlytunableVUV radiationinthewavelengthrange(入=110-200nm)[23,24,25].Inaddition,metallic 25 of VaPOrS(forexample,Sr[26],Mg[27],Zn[28],Hg[29,30])aregoodcandidatesfor generatlngVUVandnearX-raylights・Inthisthesis,theSFMintheHgvaporandthe DFMintheKrgaswereusedtogenerateVUVlightarOund120・1and121.8n皿, respectively. 2・2・3PrincipleoftheDoppIerprofilemeasurement TheDopplerpromemeasurementsofthephotofragmentshavebeenwidely usedtoinvestigatechemicalreactionsandphotodissociationprocesses[e.g.31,32]. AnalysISOftheDopplerpronleprovidestheinfbrmationaboutthekineticenergyof atoms・Theshiftinfrequencyofradiation(△v)emittedbyanatommoving with Velocity(v)atangleO=Obetweenthedirectionofthemotionofatomsandlineofsight OftheobserverisglVenby Vo △v= (2.4) l+V/c' Wherecisthevelocityoflight,Voisresonancecenterfrequencyofatomictransition. The丘equencyshiRsofatomsawayfromlinecenteroftheexcitationtransitionofthe LIF process depend the on velocity components ofatoms along the propagation directionoftheprobelaser[33]・ThethermalDopplershapesfo1lowaBoltzman distributionofvelocities・TheDopplershi氏(△vT)fbrgiventemperature(T)canbe Calculatedby 工1。211′2, 慧1n2) △vT=苧( C \ m (2.5) WherekBistheBoltzmanconstant,misthemassoftheatom. TheobservedDopplerpro丘1eisalsobroadenedbytheVUVprobelaserline Width・AssumlngtheGaussianshapeforprobelaser,theVUVprobelaserlinewidth (△vlaser)canbeestimatefromtheobservedDopplerslli氏(△v。bs)ofthethermalized atoms: (△v。bs)2=(AvT)2+(Av.aser)2. 2・3 (2.6) Experimentalsetup Inthepresentstudy,theformationofN(4s)inthephotolysisofN20,NO,and NO2at193nmandthereactionskineticsinvoIvingN(4s)havebeeninvestigatedusing 26 vuv-LIF detection technique ofN(4s)atoms・The fbrmatiol-OfO(ls)inthe photolysisofO3at193,215,and2201一皿andreactionkineticsinvoIvingO(ls)have alsobeeninvestigatedusingVUV-LIFdetectiontechniqueofO(1s)atoms・Figure2・3 and2.4showschematicdiagramSOfourexperimentalarrangementsfbrdetectingN(4s) andO(ls),reSPeCtively.TheexperimentalarrangementSincludeareactionchamber,gaS inletsystem,PhotolysISandprobelasersystem,andadataacquisitionsystem・The microwave(MW)dischargeandtitrationsystemarealsodepictedinFig・2・3・ 2.3.1 Reactionchamberandflowsystem Thereactionchamberwasmadeofstainlesssteelwiththesize80×80×80 mm,andwascontinuouslyevacuatedbyarotarypump(AIcatelmode12021,330Liter/ min.)throughaliquidN2traP・Thetotalgaspressureinthereactionchamberwas measuredbyacapacitancemanometer(MKS,Baratoron122AA)・Samplegaseswere suppliedintothechamberthroughpoly-tetrafluoroethylenetubing・Thenowratesof samplegaseswereregulatedbyneedlevalvesormassflowcontrollers(MFC)(STEC, SEC-400MK3). 2.3.2 Photolysislasers ThephotolysISradiationat193nmwasobtained丘omanArFexcimerlaser (LambdaPhysik,COMPexlO2)・Thetunablephotolysisradiationbetween215and`220 nmwasobtainedbyanNd:YAGlaserpumPedopticalparametricoscillator(OPO)1aser (Continuuln,Powerlite8010andPantherOPO)andasubsequentfrequencydoublingina β-BaB20.(BBO)crystal・TheOPOlaserwavelengthwascalibratedbyintroducinga partoftheOPOsigna11ightintoawavemeter(Burleigh,WA-4500)・Dichroicmirrors wereusedtoseparatethefundamentalandUVoutputs・TypicalpulseenergiesofdleUV photolysISradiationwerelO,0・7,andl・OmJat193,215,and220nm,reSPeCtively・ 2.3.3 TunableVUVlaserfbrdetectionofN(4s)atoms FordetectionofN(4s)atomsbytheVUV-LIFmethod,theatomiclineofthe N(2p23s4pl/2←2p34s2/3)transitionat120・07nmwasused・TheprobeVUVlaser radiation was generated bytwo-Photonresonantfbur-WaVe SumfrequencymlXlng (ovuv=2ol+0)2)inHgvapor[29]・Energyleveldiagramoftherelevantatomic levelsofHgwasshowninFigure2・5a・Twodyelasers(LambdaPhysik,Scanmate2E 27 andFL3002E)weresimultaneouslypumpedbyasingleXeClexcimerlaser(Lambda Physik,COMPex201)・OnedyelaseroperatingwithRhodaminlOldyeinMeOH soIvent generated4-5mJ/pulse around625n皿・The visible output was 鮎quency-doubledil-aK=2PO4(KD'p)crystaltoobtain312・76nmwhichistwo-Photon resonantWithHgelectronictranSition(6s7sIso←6s21so)・Theoutputofotherdyelaser operatingwithCoumarin307dyeinMeOHsoIventproduced2-4mJpulse-1ar0und517 nm.ThetwolaserbeamSWereCarefu11yoverlappeduslngadichroicmirrorandfocused intotheHgvaporcellwithafusedsilicalens(f=250nm)・TheRydbergtransitionsof Hg(6s115pllpl←6s2Iso)andHg(6sl15p13pl←6s21sb)wereusedforthegeneration oftheVUVradiationaround120.1nm. Figure2・5bshowsaschematicdiagramoftheHgvaporcellusedinthisstudy togeneratevuvlaserlightaround120・1nm・AthinLIFwindowwasusedto separatetheHgvaporcellandreactionchamber・Inordertopreventthedepositionof Hgvaporonthewindows,WaternOWSWerePreParedbetweenaheaterandwindows・ ThetemperatureintheHgvaporcellwascontrolledaround450-470Ktoobtain enoughVUVprobelaserpowerforexperiments,Whichcorrespondstotheequilibrium Hgvaporpressureof8-14Torr[34]・KrwasaddedintheHgvaporcellforphase matchingandtheoptlmumPartialpressurewas6-8Torr・Experimentally,Krwas addedintotheHgce11pr10rtOheatlngandsometimesre丘11edaftercoolingthece11 down.ThegeneratedVUVlaserlightwasintroducedintoareactionchamberthrougha LiFwindow.A丘actionoftheincidentVUVlightpassedthroughthereactionchamber wasrenectedbyathinLiFplateheldintheendofthereactionchamberandledintoaNO photoionlzationcell・TherelativeintensityofVUVlaserlightwasmonitoredby measurlngthephotoionizationcurrent・TypicalNOgaspressurewas2-3Torr・The vuvlaserline width was estimatedto be O.40cm-1fu11-Width-at-half-maXimum (FWHM)withaGaussianshape,WhichwasestimatedfromtheDopplerprofileof thermalizedN(4s)atomsproducedfrom193-nmlaserirradiationofNO2inthepresence of3.6Torrofheliumatadelaytimeof5psbetweenthephotolysisandprobelaser pulses.TheN(4s)detectionlimitoftheVUV-LIFsystemwasestimatedtobe2×109 atomscm-3. 2.3.4 恥nableVUVlaserlbrdetectionofO(ls)atoms FordetectionofO(ls)atomsbyVUV-LIFmethod,theatomiclineofthe 28 0(2p33s】lpl←2p41so)transitionat121.76nmwasused.TheprobeVUVlaser radiationwasgeneratedbytwo-Photonresonantfbur-WaVedifftrencefrequencymixlng (ovuv=20)1-02)inagasmixtureofKr/Ar[25]・Energyleveldiagramofrelevant atomiclevels ofKr was Figure2.6a.Two shownin dyelasers(Lambda Physik, Scarmlate2EandFL3002E)weresimultaneOuSlypumpedbyasingleXeClexcimerlaser (LambdaPhysik,COMPex201).Theoutput丘omonedyelaseroperatingwithBis-MSB dyeinl,4-dioxaneSOlutionwas丘equency-doubledbyaBBOcrystaltogenerateUVlaser at212.56nm,Whichwastwo-PhotonresonantwithKr5p[1/2]0.Theoutput丘omthe solutionwasaround840nm・ otherdyelaseroperatingwithStyryl-9MdyeinDMSO O.4and4mJfortheUVandnear-IRlaserpulses, Thetypicalpulseenergieswere respectively・Thelaserbeamswerecarefu11yoverlappeduslngadicl-rOicmirrorand focusedintotheKr/Arcontainingcellwithafusedsilicalens(f=200mm)・ Figure2・6b shows a schematic diagramOfthe丘equency conversion cell includingKr/ArgasmixturetogenerateVUVlaserlight・AthinLIFwindowwas usedtoseparatethecellandreactionchamber・Arwasaddedfbrphasematchingand the optimum partialpressures ofKr Ar and were15-20andlOO-120Torr, respectively.TheVUVlaserlinewidthwasestimatedtobeO・48cm-1(FWHM)witha GaussianShape,Whichwasestimated丘omtheDopplerpro丘1eofthermalizedO()s) atomsproduced丘om193-rmlaserirradiationofO3inthepresenceof2Torrofhelium atadelaytimeof3トSbetweenthephotolysisandprobelaserpulses・TheO(1s) detectionlimitoftheVUV-LIFsystemwasestimatedtobe3×108atomscm-3・ 2.3.5 Detectionsystemanddataacquisition TherepetitionrateofthephotolysISandprobelasersystemwaslOHz・The timedelaybetweenthephotolysISandprobelaserpulseswascontrolledbyadigitaldelay generator(StanfordResearChSystems,DG535),andcheckedontheoscilloscopeusing twofast-reSPOnSeSilicon-Photodiodedetectors(HamamatSuPhotonlcs,S1722-02)・The jitterofthedelaytimewaslessthan10ns・TheVUV-LIFsignalsfromN(4s)andO(1s) atomsweredetectedusingasolarーblindphotomultipliertube(PMT)(EMR,542J-09-17), whichhadanMgF2WindowandKBrphoto-Cathodethatwassensitiveonlybetweenl18 and150run.Abandpass丘1ter(ActonResearCh,mOde1122-VN,九=122nm,A入=12 1Ⅶ1)wasinstalled.TheobservationdirectionoftheLIFwaspelPendiculartobothVUV probeandphotolysISlaserlight,andperpendiculartOtheelectricvectoroftheVUV 29 probelaser・Theoutputofthephotomultiplierwaspre-amPli五edandaveragedoverlO laserpulsesbyagatedintegrator(StanfordResearchSystems,SR-250),andthenstored on a personalcomputer・The outputfrom the NOionization pre-amPlinedandaveragedoverlOlaserpulsesbyanothergated-integrator,andstored Onthepersonalcomputer・ 30 cellwas also (a) COLDTRAPS (b) Figure2・1・SchematicdiagramsoftheN(4s)detectionsystemusing(a)themass spectrometry[3]and(b)theresonantfluorescenceteclmique[5,7]・ 31 ToPump l〃00d,s Horn Figure2.2・SchematicdiagramOftheO(1s)detectionsystemusingaO(ls→lD) emissionat557.7nm[13,16]. 32 Figure2・3・SchematicdiagramofourexperimentalapparatusfordetectingN(4s) atomswiththeVUV-LIFtechnique・MFC,maSSflowcontroller;PMT,Photomultiplier tube;KD*p,KH2PO4CryStal・ 33 Figure2.4.SchematicdiagramofourexperimentalapparatusfbrdetectingO(ls) atoms with the VUV-LIF teclmique・OPO,OPticalparametric photomultipliertube;BBO,β-BaB204CryStal・ 34 oscillator;PMT, (a) (L.∈Um≡)岳」心⊂むuO10左 0 (b) 300mm 100mm LiFWindow QuartzWindow K「gasl EIectricHeater 山vu, ■■■ ■lll■- ◆- † WaterfLow COOler 巳 ロ ′ Hgreservoi r」 ロ 6 I l 6 Reaction Chamber Lens (f=250mm) Figure2・5・ThegenerationschemeofVUVlaserradiationbytwo-Photonresonant fbur-WaVe Sumfrequency mixinginHgvapor・(a)EnergyleveldiagramOfthe relevantatomiclevelsinHgforVUVgenerationaround120・111m・(b)Schematic diagramofHgvaporcell(SeeteXt)・ 35 (a) ㌻∈UE≡)岳」心⊂心uO10エd ハU (b) :70mm: r←・>:く l >: l LiFWindow QuanzWindow 仙∨ 竿十 † : 200mm ■■■■■■■l■ 国 KrandArgases」 Lens Reaction (f=200mm) Chamber Figure2・6・ThegenerationschemeofVUVlaserradiationbytwo-Photonresonant four-WaVedi脆rentfrequencymixlnglnagaSmixtureofKr/Ar・(a)Energylevel diagramoftherelevantatomiclevelsinKrforVUVgenerationaround121・8nm・(b) SchematicdiagramofKrcell(SeeteXt)・ 36 RefbrencesfbrChapter2 [1]PhillipsL.F.,Schi托H・Ⅰ・,JChem・PbLg・,36,1509(1962)・ [2]Clyne,M.A.A.,McDermid,l・S・,JChem・Soc・Fbra勿L7Tans・1,71,2189(1975)・ [3]Brunning,J・,Clyne,M・A・A・,JChem・Soc・Fbra勿L7Tans・t2,80,1001(1984)・ [4]Husain,D.,Slater,N・K・H・,JChem・Soc・Fbra如′几76,606(1980)・ [5]Wennberg,P・0・,Andersol一,J・G・,Weisel-Stein,D・K・,JGeqp砂s・Res・,99,]8839(1994)・ 【6]Fernandez,A.,Goumri,A・,Font帥,A・,JPj叩-Chem・,AlO2,168(1998)・ [7]Brune,W.H.,Schwab,J・J・,Anderson,J・G・,JPJp・Chem・,87,4503(1983)・ [8]Davidson,D.F.;Hanson,R・K・1nLJChem・Kinet・,22,843(1990)・ [9]Koshi,M・,Yoshimura,M・,Fukuda,K・,Matsui,H・,Saito,K・,Vhtanabe,M・,Imamura,A・, Chen,C.,JChem.P7p.,93,8703(1990)・ [10]Adams,S・F・,DeJosephJr・C・A・,Carter,C・C・,Miller,TA・,Wi11iamson,J・M・,JPj"・ C如〃7.,AlO5,5977(2001). [11]Okabe,H.PhotochemisITyQfsmallmolecules,Wiley-Interscience,NewYork,1978・ [12]Sal-der,S・P・,Friedl,R・R・,Golden,D・M・,Kurylo,M・J・,Huie,R・E・,Orkin,VL・, Moollgat,G・K・,Ravishankara,A・R・,Kolb,C・E・,Molina,M・J・,Finlaysol一-Pitts,B・J・, ChemicalKineticsandPhotochemicalDatajbruseinAtmo4,hericSiudies,Evaluation No.14,JPLPublicatiollO2-25,2003・ [13]Young,R.A.,Black,G,SlangerT・G・,JChem・P′岬・,50,309(1969)・ 【14]Rindley,B・A・,Atkinson,R・A・,Welge,K・H・,JChem・Pj叩・,58,3878(1973)・ 【15]Capetanakis,F・R,Sondermann,F・,HoseちS・,Stuhl,F・,JChem・Phys・,98,7883(1993)・ [16]Youl-g,R.A.,Black,G・,SlangerT・G・,JChem・P7p・,50,303(1969)・ [17]Zare,R.N.,Dagdian,RJ・,Science,185,739(1974)・ [18]Matsumi,Y,JburnalQrthe即ectroscqpicalSocieO}QfJ卸an,45,209(1997)・ [19]Takahashi,K・,Tbkeuchi,Y,Matsumi,Y,Chem・P7"・Lett・,410,196(2005)・ [20]7bketani,F・,Thkahashi,K・,Matsumi,Y,Wallil-gtOn,T・J・,JPj"・Chem・,AlO5,3935 (2005). [21]Ward,J.F.,New,GH・C・,Phys・Rev,185,57(1969)・ [22]Hilbe11G・,Brink,D・J・,Lago,A・,Wallel-Stein,R・,Pj"・RevA,38,6231(1988)・ [23]Hiber,G.,Lago,A.,Wallel-Stein,R・,J嗜t・Soc・Am・B,4,1753(1987)・ [24]Agullion,F・,Lebehot,A・,Rousseau,J・,Campargue,R・,JChem・Pj叩・,86,5246(1987)・ [25]Marangos,J・P・,Shel一,N,Ma,H,Hutchinson,M・H・R・,Conl-erade,J・P・,Jqw・Soc・Am・B, 7,1254(1990). [26]Scheinberger,H.,Puell,H・,Vidal,R・C・,PjDLS・RevA,18,2585(1987)・ [27]Zkao,L.,Nie,Y,Zhal-g,J・,Li・,Q・,%ng,J・,Cbt・Comm・,58,281(1986)・ [28]Janroz,W.,LaRocque,RE・,Stoicheff;B・P・,坤t・Lett・,7,617(1982)・ [29]Hibril-g,R.,A.,Wallensteil一,R・,1EEEJQuanlumElecITVn・,QE-19,1759(1983)・ 37 [30]Tbmkins,F.C.,Mahon,R・,qブt・Letl・,7,304(1982)・ [31]Houston,P.L.,JPb}S・Chem・,91,5388(1987)・ [32]Matsumi,Y,Das,P.K.,Kawasaki,M・,JChem・P如・,92,1696(1990)・ [33]Zare,R.N.,Herschback,D・R・,Proc・LEEE,51,173(1963)・ 【34]Smith,A.V.,Alfbrd,W・J・,Jqフt・Sbc・Am・B,4,1765(1987)・ 38 Chapter3 N(4s)fbrmationintheUVphotolysisofN20 anditsimplicationsfbrstratosphericozonechemistry 3.1Introduction N20isanimportantatmosphericminorconstituentasthemainsourceofNOx in the stratosphere,Since NOx the species play a slgnincant rOlein themiddle atmosphericchemistry・MostoftheN20tranSPOrtedthroughtheplanetaryboundary layerandthe丘eetropospheretothestratosphereisphotolyzedatUVwavelengthsto O(lD)+N2,Whileasma11丘actionofN20reactswithO(lD)atoms: N20+hv→N2+0(]D) (入<341nm), N20+0(lD)→2NO →N2+02. TheN20photolysisaround200n皿isconsideredtoproceedthroughchannel(3.1a) Withanalmostunityquantumyield[1]andtheotherenergeticallyavailablechannels areveryminor: N20+hv→N(4s)+NO(X2口)(入<248nm) (3.1b) →N2+0(3p) (入<742nm) (3.1c) →N2+0(ls) (入<211nm)・ (3.1d) Felderetal・[2]studiedthedissociationdynamicsofN20at193nmbyphoto丘agments translationalspectroscopyandreportedthatchannel(3.1b)was unimportantasthe time-0用ightsignalintensltyatm/e=30waslessthanthedetectionlimit.Greenblatt andRavishankara[3]reportedtheupperlimitvalueofthequantumyieldforcharmel (3・1b)inthe193nmphotolysisofN20tobe8×10.3throughthechemiluminescent detectionofNOproducts・Recently,Adamsetal.[4]detectedtheN(4s)fbrmationin the207nmphotolysIS OfN20bymeansoftwo-PhotonabsorptionLIFteclmique (TALIF)usingthesamefbcusedlaserbeamat207nm.Theyhavenotmeasuredthe quantumyieldforN(4s)formation・ItisdifBculttoestimatethequantumyield丘om theexperimentsuslngaOne-COlorfocusedlaserbeamfbrbothphotolysISandprobe・ AlthoughtheoxidationofN20byO(1D),Channel(3.2a),isthoughttobethe dominantglobalsourceofNOinthestratosphere,thephotodissociationreactionisa 39 mqjorremovalprocessofstratosphericN20andtheO(lD)reactionisminor.Asimple calculationcanpredictthataquantumyieldofl%fbrchannel(3.1b)inN20photolysis wouldrepresentanapproximateincreaseof15%intheactivenitrogenproductionrate intheupperstratosphere.Therefore,aPreCisedeterminationofthecharmel(3・1b) quantumyieldisessentialforevaluatlngthestratosphericNOproductionrate・ Inthis Chapter,1aboratorystudies ontheN(4s)atomfbrmationfromthe PhotolysISOfN20at193nmhasbeencarriedoutuslngateChniqueofVUV-LIF・The quantumyieldforN(4s)fbrmationwasdeterminedtobe(2.1±0.9)×10,3.The atmosphericsignincanceofchannel(3・1b)asanewsourceofNOinthestratosphereis alsodiscussed. 3.2Experimental ThedetailsoftheapparatususedinthepresentstudyareshowninChapter2 andhereonlyadescriptionrelatedtothischapterisgivenhere.TheN(4s)atoms PrOducedfromN20photolysISat193nmwereprobedbytheVUV-LIFmethodat 120.07nm,WhichisresonantWiththeelectronictransitionofN(2p23s4pl′2←2p34s2n). TheCl(2pl/2)atomsproducedfromHCIphotolysisat193nmweredetectedbythe VUV-LIF teclmique associated at120.14nm,Whichis with electric transition of Cl(3p44s2D3r2←3p52p./2).ThetunableVUVlaserradiationaround120.14nmwas alsoobtainedwiththesameexperimentalsetupfortheVUVlasersystemwiththeHg VaPOrCellandthenuorescencedetectionsystem・ N20(>99.9%,TakachihoCo.)oragasmixtureofHCl(>99.9%,Sumitomo Seika)andAr(>99.999%,NihonSanso)(12.3%ofHClinAr)wassuppliedintothe reaction chamberthrough mixture of HCl/Ar aneedle valve.Thetypicalpressure ofN20and a gas were500-900and160-430mTorr,reSPeCtively.While scarmingtheVUVlaserwavelengthforN(4s)and Cl(2pl/2)atomdetections,the reactantspressurewaskepttobeconstant・Itshouldbenotedthathighsensitivityof theVUV-LIFtechniquemakeitpossibletodetectN(4s)atomsatlowgaspressuresand shollpump-PrObedelaytime(≦150ns),andthatchemica1lossesthroughsecondary reactions,forexample,N+N20,N+NOandN+02,Canbesafblyignored・ InthetitrationexperilnentStOCalibratetheabsolutesensitivityoftheVUV-LIF system,N(4s)atomsweregeneratedbytheMW(2450MHz)dischargeofpureN2gaS (>99.9%)inanowtube(Pylex,13.7mmi.d.)asshowninFig.2・3.Acoaxialnow 40 tubewasconnectedbetweentheN2dischargenowtubeandtheVUV-LIFchamber・ NO/Argasmixture(0・0268%ofNOinAr)wasintroducJedthroughtheinneriniection tube(Pylex,3.8mmi.d.),Whichcanmovealongtheouternowtube・Allexperiments WerePerformedatroomtemperature・ 3.3Results Figure3・1showsthenuorescenceexcitationspectrafbrN(4s)atomsproduced inthe193nmphotolysisofN20・Theatomiclinepro丘1esoftheN(4pl′2←4s2/3) transitionweredirectlyobservedbytheVUV-LIFmethodarOund120・07nm・The dependenceoftheLIFsignalintensityfortheN(4s)atomsonthephotolysislaserpulse isshowninFigure3・2・WealsocheckedthatnoN(4s)atomssignalwasdetected without193nmphotolysislight・Theseresultsindicatethatmultiphotonabsorption processesat193nmordissociationofparentmoleculesbytheprobelaserbeams(Ovuv, o)ando)2)aresafblyignoredinthiswork・ThequantumyieldforN(4s)formation fromN20at193nmphotolysiswasdeterminedbycalibratlngthesensitivityofthe VUV-LIFsystem・Thetwomethodswereusedtoestimatetheabsolutesensitivityof thedptectionsystemforN(4s)bytheVUV-LIFmethod・Oneisthetitrationteclmique fortheN(4s)atomconcentrationusingchemicalreactionwithNO・Theotheristhe comparisonbetweentheLIFintensitiesoftheN(4s)atomsproducedintheN20 photolysisat193nmandCl(2pl/2)atomsproducedintheHCIphotolysisat193nm・ TheCl(2pl′2)quantumyield丘omthephotolysisofHClat193nmhasalreadybeen reported[5]・ 3.3.1ChemicaItitrationmethod TheconventionaltitrationteclmiquefbrNatomswasusedtocalibratethe vuv-LIFsystemfordetectingN(4s)atoms[6]・TheN(4s)atomsweregeneratedina MWdischargeofpureN2gaSandwerethenintroducedintotheVUV-LIFchamber throughthecoaxialflowtube・WhilemonitoringtheVUV-LIFsignalofN(4s)atoms at120.07nm,NOmoleculesdilutedwithArwereirjectedintotheflowsystem・The N(4s)atomswereconsumedbythefo1lowingreaction: N(4s)+NO→N2+O k3.3298=3・0×10-11cm3molecule-1s-l,(3・3) wherek3.3298showsistherateconstant(3.3)at298K[7]・BymonitoringtheLIF slgnalintensitiesasafunctionofthenumberdensltyOfNOmoleculesadded,the 41 sensitivltyOftheVUV-LIFsystemforNatomdetectionwascalibrated・AtypICal titrationplotisshowninFigure3・3,inwhichthemassflowrateofNO/Armixturewas variedbetweenO.6and2.3sccmwhilethetotalflowratewaskeptcollStant(19sccm)・ Whena11theNatomsproducedbytheMWdischargeareconsumedbyreaction(3・3), theNO concentration corresponds to theinitialN atom concentration・Thus,the atomsdetectedbytheVUV-LIFmethodwasobtained・ absoluteconcentrationofN TheinnerNOinjectiontubeismovablesothatthereactiontimecanbevariedby changlng thelocation ofthe addition NO ofthe check molecules・To the wall reactivityofN(4s),thetitrationexperimentswerecarriedoutunderdiffbrentresidence time conditions(0.2-0.5s)by oftheNOirdection・No changingthelocation was ofN(4s)atoms signi重cantinnuencefromthewall-loss observed,Whichis consistentwiththeverylowwallreactivityreportedbyWennbergetal・[8]・ Fluorescence excitation spectrafor N(4s)atoms producedin the N20 photolysISat193nmandtheMWdischargeofN2WeremeaSuredtodeterminethe quantumyieldforN(4s)formationintheN20photolysis・TheN(4s)production quantumyieldfromthephotolysisofN20isdennedbythenumberdensityofN(4s) atomsproducedfromthephotolysisdividedbythenumberdensityofN20molecules exitedbythephotolysislaserlight・ThefbrmationyieldofN(4s)atoms,◎N,丘omthe photolysISOfN20at193nmisexpressedasfo1lows‥ ◎N= (Aph/AMW)ト]MW ×匙 GN2。P20]I。.,F;h AphandAMWaretheareasoftheresonanCePeaksofthefluorescenceexcitationspectra ofN(4s)atomsproducedinthephotolysisofN20at193nmandintheMWdischarge ofN2,reSPeCtively,undersameconditionsfortheNatomdetection・P]MWisthe concentrationofNatomproducedintheMWdischargeofN2,Whichcalibratedbythe titrationtechnique・GN20isthephotoabsorptioncrosssectionofN20at193nm,8・95× 10.20cm2molecule.1【7].P20]istheconcentrationofN20inthechamber・hI,isthe photondensityoftheincidentphotolysislaserlight,Whichwasmeasuredtobe8・4× 1016photonscm-2.Intensityvariationofthephotolysislaserlightwassma11(<5%) throughoutthe arethe measurements・栴一andFhw detection efncienciesofthe fluorescencemonitorlnginthephotolysisandMWdischargeexperiments,reSPeCtively, wheretheexcitationvolumebytheprobelaserinthechamber,theoverlapreglOnOfthe 42 193nmphotolysISlaserwiththeprobelaser,andthesolidanglefromtheemitting reglOnOntOthephotocathodeofthePMTaretakeintoaccount・ThelengtllOfthe volumeexcitedbytheprobelaserintheviewlngZOneOfthePMTwas15mm,While thatofthevolumewheretheprobelaserbeamoverlappedwiththephotolysislaserwas 6mm.Therefore,thevalueofF(MW)/F(ph)wasestimatedtobe2・5・Threesetsof experimentswereperformedforthechemicaltitrationmethod・Consequently,¢NWaS determinedtobe(2.25±0・71)×10-3・ThequotederrorincludesthelG-Statisticaland estimated systematic uncertaintiesfor the VUV-LIF detection and N the atom concentrationcalibration. 3.3.2Photolyticcalibrationmethod Figure3.4showsthefluorescenceexcitationspectrumforCl(2pl/2)atoms producedinthe193nmphotolysISOfHCl・Bycomparlngtherelativeintensitiesof LIFsignalsofN(4s)fromN20andCl(2pl/2)fromHCIphotolysis,theN(4s)quantum yieldcanbeestimated・Experimentally,meaSurementSOfspectraforNandClatom werealternativelyperformedbychanglngboththereactantsandlaserwavelengths・ ThequantumyieldforN(4s)fbrmation,◎N,丘omthephotolysisofN20at193 nmisobtainedbythefbllowlngequation: &立地辿ら他◎。1 ◎N=AcIINON20[N20]fN?N (3.5) ANandAclaretheareasofresonancepeaksinthefluorescenceexcitationspectraof N(4s)atomsinthephotolysisofN20andCl(2pl/2)atomsinthephotolysisofHCl, respectively・1handlclaretherelativeprobelaserintensitiesforNandClatom detectionwhichobtainedasaphotoionizationcurrentfromtheNOcontainingce11・ ThephotoionizationefncienciesofNOmoleculeusedat120・07and120・14nmarealso takenintoaccount[9,10].GHClisthephotoabsorptioncrosssectionofHClat193nm, 8.69×10-20cm2molecule.1[7].【HCl]istheconcentrationofHClmoleculesinthe chamber.fhandftlaretheosci11atorstrengthvaluesfortheN(2p23s4pl′2←2p34s3佗) andCl(3p44s2D,/2←3p52pl′2)opticalexcitation・Thevaluesoffhand丘1aretaken fr。mthedatabaseofNdtiona11hstituteQ[StanLk7rdand乃chnologyPIST)[11]・q)N andq)clindicatethedetectionefncienciesoftheresonancenuorescencefbrNandCl atoms,reSPeCtively・AsforCl(2pl/2)atomdetection,theexitedCl(2D3/2)state 43 fluorescesat120.14andl18.88nm,Whichareresonanttothe2D3r2→2pl/2and2D3r2→ 2p3/2tranSition,reSPeCtively・ThedetectionefncienciesofthePMTsystemamongthe wavelengthsat120・07,120・14andl18・88nmfbrtheN(4pln→4s3/2),Cl(2D3/2→2p)n) andC](2D3/2→2p,/2)emissionlines,reSPeCtively,areaSSumedtobeconstantsince thosewavelengthareveryclosetoeachother・ThequantumyieldofCl(2pl′2)atomsin thephotolysisofHClat193nmphotolysis,◎cI,isreportedtobeO・408[6]・Inthis experiment,thecollisionalrelaxationandthechemicalreactionofCl(2pl′2)couldbe lgnOred・ThepressuresofHClandArbufftrgaswere20and160mTorrandthetime delaybetweenthephotolysISandprobelaserpulseswas130ns,andtherelaxationrate ofCl(2pl/2)bycollisionwithHClandArare7・8×10-12and≦1・0×10-14cm3molecule・1 sets s.1,reSPeCtively[12,13]Twenty-three ofexperiments were performed fbr photolyticcalibrationmethod・Consequently,◎N=(1・70±1・21)×10-3wasobtained・ ThequotederrorincludesthelG-Statisticalandestimatedsystematicuncertainties・ The the results obtainedfrom two dif托rent experiments ofthe chemical titrationandphotolyticcalibrationmethodsareingoodagreementwitheachother withintheexperimentaluncertainties・ThequantumyieldvalueforN(4s)formationin the193rmphotolysisofN20isdeterminedtobe(pN=(2・1±0・9)×10-3bycombining thetwoexperimentsresultsformtwomethods,inwhichthem年一Orityoftheerror丘om eachofthetwomethodsaresystematicuncertainties・ 3.4Discussion 3.4.1DissociationprocessofN20toproduceN(4s)+NO InthephotolysisofN20around200nm,therearefourenergeticallyavailable dissociationpathways: N20+hu → N2(Xl∑+g)+0(1D) (3・1a) → N(4s)+NO(Ⅹ2口) (3・1b) → N2(Ⅹl=+g)+0(3p) (3・1c) → N2(Ⅹl∑+g)+0(1s). (3・1d) Inthisw。rk,WedeterminedthequantumyieldforN(4s)productioninthephotolysisof N20at193nm.Ourresultof◎N=(2・1±0・9)×10-3issmallerthantheupper-1imit value presented by Greenblatt and Ravishankara[3]・They estimated the productionyield(Channe13・1b)byobservingthechemiluminescenceofNO2thatwas formedbythereactionofO3andNOfragmentsproduced丘omN20photolysis・A 44 NO quitesma11quantumyieldvaluecanbeexplainedbyaspin-fbrbiddennaturefbrchannel (3.1b). Figure3・5showsthecorrelationdiagramfbrthereactionsofO+N2andNO+ N,inwhichCssymmetryisassumedfbrthereactionintermediate[14]・N20has16 valenceelectronsandbelongstoCのVSymmetrygrOuPWhenitisinitselectronicground statexl∑+(4G25G26G217t47G227t4configuration)・Thelowestelectronica11yexited slngletstatesaretheAl=-,theBl△,andtheClrIstates・UponbendingtheCs symmetrygroupappliesgivingrisetothellA′(】=+)andthellA′・(1= )states・The口 and△statessplitintoA,andA,lcomponents・ThetheoreticalcalculationsbyHopper showthatdissociationaround200nmoccursviathe21A・state,andthatthenearbyl lA,・statecanalsobeinvoIvedinthedissociationprocess・Whilethe21A・stateispart ofaRenner-Tellerpalr,thecomponentofthispairhasalinearequilibriumgeometry anditsenergyincreasesrapidlyasthemoleculebends・Teuleetal・[15]studiedthe photodissociationofN20around203nmbyatechniqueofphotofragmentimaglng,and showedthatthepara11eltransitiontothe21A,stateisdominant・ Previous studies showedthatchannel(3.1a)is dominantwithalmostunity quantumyieldinthe193n皿PhotolysisofN20[1],Whichisrationalizedbythefact thatboththe2)A,andllA・′statesadiabaticallycorrelatetothephotoproductsofO(1D) +N2(Channe13・1a)・Inthepresentstudy,theN(4s)atomformation(Channe13・1b)is observeddirectlybytheVUV-LIFmethodandthequantumyieldisdeterminedtobe (2.1±0.9)×10-3.TheadiabaticcorrelationdiagramshowninFig・3・5suggeststhat theintersystemcrosslngfromtheexitedsingletstatetothetripletstateordirect photoexcitationtothetripletstatescanaccountfortheN(4s)formation・Aweak spln-Orbitinteractionbetweentheslngletandtripletexcitedstatesorasma11tranSition probability丘omthegroundtothetripletstatesmayresultsintheverysmallquantum yieldfbrN(4s)fbrmationinN20photolysisat193nm・ 3.4.2Atmosphericimplications We haveinvestigatedthe atmosphericimportanceofchannel(3・1b)・The stratosphericsinkofN20ismainlyduetoUVphotolysISintheatmosphericwindow region.TheremainingsinkofN20isreactionwithO(1D)whichisproducedbythe OZOnePhotolysIS: N20+0(1D)→2NO k3.2a=6・7×10-11cm3molecule-1s-1(3・2a) 45 k3.2b=4.9×10-11cm3molecule-Js →N2+02 ).(3.2b) About60%oftheN20+0(】D)reactionproceedsviareaction(3・2a)andabout40%via reaction(3.2b).Reaction(3.2a)isanimportantsourceofstratosphericNO・The photolysisofN20proceedingsviaphotodissociationchannelN(4s)+NOcanalso PrOVideastratosphericNOsource・ ThecurrentNASA/JPLevaluationsforstratosphericmodelingrecommendthat thequantum yieldforphotodissociationofN20around200nmisunity,andthe productsareN2andO(lD)(channe13・1a),inspiteofreferringthattheyieldofN(4s) andNO(2rI)islessthanl%・However,theN(4s)andNO(2rI)formation(Chame1 3.1b)canbeanon-negligibledirect軍OurCeOfstratosphericNOx・ThestratosphericO3 abundanCeanditsverticalpro丘1eareslgni丘cantlyafftctedbyNOx,becauseNOxcan catalytically destroy stratospheric O3・In this study,We Ofchannel(3・1b)in atmospherici甲POrtanCe haveinvestigated the photolysis the using ofN20,by one-dimensionaldynamical-Photochemicalmodel・Allchemicalschemesofthemodel arethesamewiththatintheGarcia-Solomontwo-dimensional(GS-2D)model[16,17]. The were modelcalculations performedincluding40chemicalspeciesand120 chemicalreactionswiththechemicalkineticsandphotochemicaldatapresentedbythe recentJPLrecommendations[7].Weincludedchannel(3・1b)quantumyieldvalueof 2.1×10-3inthemodelontheassumptlOnthatitisindependentofthetemperatureand wavelengthattheatmosphericwindowreg10n・ Figure3・6shows the result ofthe photochemicalmodelcalculationsfor latitudeof40degreeinMarch,Whichindicatesthechangeinthediurnallyaveraged concentrationsofNOx,HOx,ClOxandO3COnCentrationscalculatedwithorwithout chaJmel(3.1b)in the photolysis ofN20・The steady-State NOx concentration calculatedbythemodelincludingcharmel(3・1b)increasesupto∼3%around25kmin comparisonwiththatignoringchannel(3・1b),WhiletheHOxandClOxabundances decrease.Thealtitude-dependentchangeintheNOxconcentrationshouldreflectthe altitude-dependent solarflux attheatmosphericwindowwavelengthreg10n・The concentrationsofHOxandC10xmaybeattributabletothefo1lowlngreaCtions‥ OH+NO2+M→HNO3+M (3.6) ClO+NO2+M→ClONO2+M (3.7) OH+HCl→Cl+H20. (3.8) TheconcentrationchangesofHOxandClOxarelargerinthelowerstratosphereas 46 a showninFig.3・6,becausethecontributionofthree-bodyreactions(3・6)and(3・7) becomesrnOreSignincantatlowerstratosphericaltitudes・Reaction(3・8)convertsthe chlorinereservoirHClintoactiveClOx・ThedecreaseoftheHOxconcentrationmay resultinthedecreaseofC10xthroughreaction(3.8).ThechemicalreactionsofNOx, HOxandClOxfamiliesplayacrucialroleindeterminlngthestratosphericO3abundanCe, andthustheconcentrationchangesofthesespeciesalterO3abundance・Inclusionof channel(3.1b)inthemodelafftctstheproductionrateofNOx,Whichisfbllowedbythe decreaseofO3abundancethroughtheenl1anCementOftheNOxcatalyzedO3destruction rate,aSShowninFig.3・6・ 47 1 (slモコ.qJe)倉su望u〓賢愚s山コ 0 -1 △v(Cm 1) Figure3.1.FluorescenceexcitationspectraofN(4s)producedfromthephotolysisof N20at19311m・The horizontalscaleindicates the wavenumber resonanCelinecenterofthe4pl/2←4s3/2tranSitionforNatomat120・07nm・The delaytlmebetweenthephotolysISandprobelaserpulseswas130ns・Thepressureof N20was700mTorr. 48 shi氏丘om the (s}モ⊃・q立身su茎=空芳(s寸)Z 1 0 PhotolysisLaserPower(arb・units) Figure3.2.LIFsignalintensityforN(4s)versusthephotolysislaserpower・The photolysislaserpowerwaschangedwhilemonitoringtheN(4s)LIFsignalat12q・07 nm.Thetimedelaybetweenthephotolysisandprobelaserpulseswas150nsandthe pressureofN20inthereactionce11was800mTorr・Solidlineistheresultsoflinear weighted丘tanalysISOftheexperimentaldata・ 49 (s}モ⊃・q立合su茎=eu君(s寸)Z Figure3・3・PlotsofthetitrationfortheNatomsproducedbythemicrowavedischarge ofN2.ThehorizontalaxisistheNOconcentrationaddeddownStreamOfthedischarge・ TheverticalaxisistheLIFintensityofN(4s).Thesolidlineindicatestheresultsof thelst-Orderleastsquare丘tting・ 50 1 (s}モコ・qJe)倉su盟u〓芦屋s]コ 0 0.5 ー0.5 △v(Cm 1) Figure3・4・FluorescenceexcitationspectrumofCl(2pl/2)atomsproduced丘omthe 193nmphotolysisofHCl・Thehorizontalscaleindicatesthewavenumbershiftfrom theresonancelinecenterofthe2D3/2←2pl/2tranSitionforClatomat120・07nm・The delaytimebetweenthephotolysisandprobelaserpulseswas130ns・Thepartial pressureofHCIwas50mTorr・ 51 8 >む、誌」2山uO焉}.5×山 2n 2D 2口 4s 11A′ン1・・ /21A′..・・ 1∑;1s ■ ■●●●●●●●●●●●●●● ● ● ● ▲ 」.・・∵13A′′ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ...・・・・●●● ● ● NO ● ● J・● ノ 1∑;1D ●● ●● ● ● ● ヽ ヽ ● ● ヽ l ● ● ● ● ● ● ● ● ● Jノ ● ● ● ● ● ● ● ● ● ● 1∑;3町 ●■ N2 0 Xl∑+(11A′) 0 N20 Figure3.5.AnadiabaticcorrelationdiagramforN20P-NO,N20,N2-0)system assumingaCssymmetry,WhichistakenfromHopper[14]・Theenergylevelsare drawntOSCale. 52 N (∈呈むP⊃茎< ー3 -2 0 -1 1 2 ChangeinConcentration(%) Figure3・6・CalculatedpercentagechangeSinNOx,HOx,ClOx,andO3COnCentrations withtheN(4s)+NOdissociationchannel&omthosecalculatedwithouttheN(4s)+NO channelforlatitudeof400ihMarChasafunctionofaltitude. 53 3 RcfbrcncesfbrChapter3 [1]Okabe,H.,Photochemist7yQrSmall肋Iecules,Jol-nWi)ey&Sons,NewYork,1978・ [2]Felder,P.,Haas,B.-M・,Huber,J・R・,Chem・P7p・Lelt・,186,177(1991)・ [3]Greenblatt,G.D.,Ravishankara,A・R・,JGeqpj叩・Res・,95,3539(1990)・ [4]Adams,S.F.,DeJosephJr・C・A・,Carter,C・C・,Miller,T・A・,Williamson,J・M・,JPjDLS・ C力e肌,AlO5,5977(2001). [5]Zhang,J.,Dulligall,M・,Witting,C・,JChem・PjDLS・,107,1403(1994)・ [6]Boisse-Laporte,C.,Chave-Normand,C・,Marec,J・,PlasmaSourcesSti・乃chnol・,6,70 (1997). [7]Sal-del・,S.P.,Friedl,R.R・,Golden,D・M・,Kurylo,M・J・,Huie,R・E・,Orkin,V・L・, Moortgat,G・K・,Ravishankara,A・R・,Kolb,C・E・,Molina,M・J・,Finlayson-Pitts,B・J・, ChemicalKineticsandPho10ChemicalDalajbruseinAlmo?PhericStudies,Evaluation No.14,JPLPublicatiollO2-25,2003・ 【8]Wennberg,P.0.,Anderson,J・G・,Weisenstein,D・K・,JGeqp7ws・Res・,99,18,839(1994)・ 【9]Ono,Y.,Li1一,S.H.,Prest,tl・F・,Ng,C・Y・,JChem・P砂∫・,73,4855(1980)・ [10]El・man,P.,Karawqiczyk,A・,Rachlew-Ka)11-e,E・,Str6mholm,C・,JChem・P7p・,102, 3064(1995) 【11]Ma11in,W.C.,etal.,mSTAtomic勘ectraDatabaseh,erSion2・Q),NationalInstituteof StandardsandTechnology,Gaithersburg,MD(http://physics・nist・gOV/asd),1999・ [12]Sotllichenko,S.A.,Bokun,V・Ch・,Nadkhin,A・I・,Chem・PJp・Lett・,153,560(1988)・ [13]Hitstlda,K.,Takahashi,K・,Matsumi,Y・,Wallington,T・J・,JP7vLS・Chem・,AlO5,5131 (200り. [14]Hopper,D.G.,JChem・P7p・,80,4290(1984)・ [15]Teule,J.M.,Groel-enboom,G・C・,Neyer,D・W・,Chandler,D・W・,Janssen,M・H・M・, C加憫」甥叩.エe比,320,177(2000)・ [16]Solomon,S・,R・Portmann,W・,Garcia,R・R・,Tl-OmaSOn,L・W・,Poole,L・R・,McCormick, M.P.,JGe呼砂∫.月e∫.,101,6713(1996)・ 【17]Taniguchi,N.,Hayashida,S・,Takahashi,K・,Matsumi,Y・,Atoms・Chem・P7叩・,3,1293 (2003). 54 Chapter4 KineticsoftheatmosphericreactionsofN(4s)atoms WithNOandNO2 4.1Introduction PhotochemicalprocessesinvoIvingtheN(4s)atomandNOxmoleculesplaya crucialruleintheterrestrialandplanetaryatmOSPheres[1,2,3,4]・Forinstance,the reactionofN(4s)withnitricoxide: (4・1) N(4s)+NO→N2+0(3p), hasbeenthoughttoactasasinkofoddnitrogeninthemiddleandupperterrestrial atmosphere[1,2].Possible signi丘cance ofthe reaction(4・1)in Martian the and VenusianatmOSPherehasalsobeensuggested[2]・ThereactionofN(4s)withnitrogen dioxide: (4・2) N(4s)+NO2→N20+0(3p), playsalessslgni丘cantroleasasinkofoddnitrogeninthemiddleterrestrialatmosphere becauseofthesmallconcentrationofNO2[5].AsmallamOuntOfN20maybeformed byreaction(4.2)intheMartianatmOSPhere[4]・FortheN+NO2reaCtion,Other channelsfbrmlng2NO,N2+02,andN2+0+0,areenergeticallypossible・However, thosechannelsaresuggestedtobeofminorimportanceasrelatedtoproducts[5]・ Althoughanumberofkineticstudiesofthereactions(4・1)and(4・2)havebeen reportedatroomtemperature,aSlistedinTable4・1,agreementamOngthemisrelatively poor・Inpreviouskineticstudies,SeVeralteclmiquessuchasmicrowavedischargeof N2[5,6,7,8,9,10,11,12,13,14],VUVflashphotolysis ofN20[10,15],andpulsed radiolysisofN2[16],WereemPloyedtogeneratetheN(4s)atoms・ForN(4s)detection, mass spectrometry techniques were usedin severalstudies[6,7,8,9,13,14]・With nitrogenatomlamps,reSOnanCenuOreSCenCedetection[5,10,11,12,15]andresonanCe absorptiondetection[16]oftheN(4s)atomswerealsoused・Inthepresentstudy,itis demonstratedthatthelasernashphotolysisNUV-LIFdetectionteclmiqueisapowerfu1 toolforthestudyofthekineticsofthereactions(4・1)and(4・2),inwhichtheN(4s) formationfollowlng19311mArFlaserirradiationofNOandNO2hasbeenutilizedasa photolyticsourceofN(4s)atoms. 55 TheN(4s)fbrmationfbllowing193nmArFlaserirradiationofNOunder shock-heated by reported conditions(1400-3500K)was severalgroups[17,18],in whichtheN(4s)atomsweremonitoredbyatomicresonanceabsorptionspectroscopyat l19.9nm: (4.3) NO+hv(193nm)→N(4s)+0(3p). Threed。。bletstatesofNOA2∑+(v・=3),B2n(v,=7),andC2rl(vl=3)1ienearthe dissociationlimitofNO,aSShowninFigure4.1.TheysuggestedthatNatomsare producedbydirectexcitationofvibrationallyexcitedstatesofNO(X2n,V≧1)tothe D2∑+state,fbllowlngCOnVerSionfromtheD2=+statetothepredissociatingC2rIstate・ Inthepresentstudy,thenrstobservationoftheN(4s)formationfo1lowing193nm irradiationofNOat295Khasbeenreported・PhotoexcitationprocessesofNOgiving risetotheN(4s)atomformationat295Khavebeendiscussed・ Photoexcitation processes the ofNO2in UV reglOnhave beenthoroughly investigatedatよnumberofwavelengthsotherthan193nm[19]・At193nm,thereare onlyalimitednumberofexperimentalstudiesonthephotoexcitationprocesses・The fo1lowlngtWOChannelsarethoughttobedominantasphotodissociationpathwaysat 193nm, (4.4a) NO2+hv(193nm)→NO(X2n)+0(3p) (4.4b) →NO(Ⅹ2口)+0(lD), and the branching ratiofor O(1D)and O(3p)productions was estimated be to [0(1D)]/([0(lD)]+[0(3p)])=0.55±0・03[20]・GraddandSlanger[21]observedthe vibrationallyexcitedNO(X2n,V=4-10)inthephotodissociationofNO2at193nm・ Gongetal.[22]reportedthatthenascentvibrationalstatepopulationsofNO(X2Il, v=1-7)inthephotodissociationofNO2at193nmhaveamaximumatv=5・Tsqjiet al.[23]studiedthedecompositionofNO2inN2atmOSPhereat193nmbyArFlaser irradiation,and observed alowerNO yield than that predictedfrom simple NO2 photolysis(reactions4・4aand4・4b)atalowNO2COnCentrationof200ppm・They suggestedthatthelowerNOyieldwasattributabletothephotolyticlossofvibrationally excitedNOwhichwasprimarilyproduced丘omNO2Photolysisat193nm・TheN(4s) andO2PrOductionsareenergeticallypossibleintheUVreglOnbelow272nm‥ (4.4c) NO2+hv→N(4s)+02. Matsumietal.[24]detectedlaser-inducednuorescencefromthevibrationally excitedO2mOleculesaround220-300runfo1lowlngtheirradiationoffocusedvisible 56 1aserlight(470-580nm)onNO2gaS,andsuggestedthatthevibrationallyexcitedO2 were molecules directly producedfrom a multiphoton absorptlOn PrOCeSS OfNO2. However,furtherexperimentalstudiesrevealedthattheO2mOleculeswereproduced from the reaction of O*+NO2Where O*was generatedfrom the multiphoton dissociationofNO2[25,26].Therehasbeennoexperimentalobservationofchannel (4.4c)withtheirradiationofArFlaser.Inthepresentstudy,the丘rstexperimental observationoftheN(4s)production丘omNO2Withhigh-POWerArFlaserirradiationat 193nmhasbeenreported.ThephotoexcitationprocessesofNO2glVlngrisetothe N(4s)fbrmationhavebeendiscussed. 4・2Experimental ThedetailsoftheapparatususedinthepresentstudyareShowninChapter2 andhereonlyadescriptionrelatedtothischapterwi11begiven.NOgas(>99%,Nihon Sanso)purchasedwasusedaRerpuri丘cationbypassingitthroughacoldtrapthatwas immersedinamethan01/1iquidN2Slushbathat175K.Heliumgas(>99.99%,Iwatani Gas)wasusedwithoutfurtherpuri丘cationinthekineticexperiments.Muchattention WaSPaidtothehandlingofNO2gaSreagentinthisstudy,Sincepuri丘edNO2gaSiseasy todegradetoNOmixtureandthereactionrateconstantofNOwithN(4s)hasbeen reportedtobeabout5timeslargerthanthatofNO2(Table4.1).TheNO2gaSWaS Synthesizedbymixingthepuri丘edNOgaswithexcessO2(>99.99%,NihonSanSO)ina glassvessel(2L),andstoredinthevesselformorethanseveraldayspriortouseinthe experiments.ThetotalpressureoftheNO2/02VeSSelwasabout700Torrwiththe mixingratio[NO2]:[02]彩1:3.FortheNO2Photolysisandkineticsexperiments,the gasmixtureofNO2/02WaSSuPPliedtothereactioncelldirectlyfromthevesselthrough amassflowcontroller.N204equilibrateswithNO2gaS.Theequilibriumbetween NO2andN204inthereactantgaSWhichwasnowedintothereactioncellwasestimated tobeattainedwithinlO 6s[19]beforethelaserirradiation.Whenthepartialpressure ofNO2islxlO16moleculecm-3,thepartialpressureofN204isaboutl/4000fNO2at 298kusingtheequilibriumconstantPreSentedbyNASA/JPL[27]. TheconcentrationofNO2inthereactionchamberwasdetermineddirectlyby absorptlOn meaSurementS・The collimated output ofa tungstenlamp was throughthereactionchamberandfbcusedontotheentranceslitofaspectrographwitha 2048-elementdiodearraydetector(OceansOptics,HR2000,f=101mm).AlO-Llm 57 passed entranceslitwasusedfbrabsorptionmeasurementsataresolutionof∼0・7nm・The absorptlOnfbaturesoftheNO2SPeCtrumreCOrdedbetween300and650nmareingood agreement with previous wavelength measurements[28,29,30]・The the of spectrometerwascalibratedat404・66and435・84nmuslnganHgpenraylamP・The concentratiollOfNO2WaSdetern1inedbyabsorpt10nmeaSurementSarOund413・7nmon thebasisofthereportedabsorptiohcross-S占ction[28,29,30].ThecontributionofN204, ifpresent,isminirrlizedatthiswavelength,aSdescribedbyGierczaketal・【30]・The uncertaintyassociatedwiththemeasurementsofNO2COnCentrationwasestimatedtobe ∼10%.Allexperimentswereperformedat295±2K・ 4.3.Resultsanddiscussion 4.3.1N(4s)productionfbllowing193nmlaserirradiationofNO Figure4・2ashows atypICalnuorescenceexcitationspectrumofthenascent N(4s)atomsproducedfo1lowing1931皿1aserirradiationofNO,Whichwasobtainedby scannlngtheprobelaserwavelengthacrossthe2p23s4pl/2-2p34s3r2tranSitionat120・07 nm・Thespectrumwastakenat80nsdelaytimewith145mTorrofNO,andnobu脆r gaswasadded・Itshouldbenotedthatthedissociationlimitofrovibrationallycold NOgivingrisetotheN(4s)+0(3p)channelis52397土2cm.1[31],Whichisslightly largerthanthephotonenergyoftheArFlaserradiation(193.3nm)of51730cm.l.To revealthephotodissociationprocessesofNOproducingtheN(4s)atom,Photolysislaser LIFsignalwasmeasured・AsshowninFigure4・3a,We powerdependenceofthe found thatthe LIFintenslty dependent WaSlinearly onthe photolysislaserpower・ WhenweturnedtheArFexcimerlaseroff;noobviousLIFsignalwasobserved.This indicatesthattheN(4s)productionfromtheNOphotodissociationat120nmwas negligibleunderourexperimentalconditions・TheseresultssuggestthattheN(4s) fbrmationobservedinthisstudywasattributabletotheone-Photonexcitationprocessof NO: (4.3) NO+hv(193nm)→NぐS)+0(3p). Tochecktheinterftrenceinthemeasurementsbecauseofimpurities,WereCOrdedthe nuorescenceexcitationspectraofthenascentN(4s)atomsproducedfrompuri丘edand nonpuri丘edNO・No slgni丘cantchangeWaS Observedinthe slgnalintensitiesand spectralshapesofN(4s). ThreedoubletstatesofNOA2∑+(v=3),B2Il(V=7),andC2口(V=3)1ienear 58 thedissociationlimitofNO・DavidsonandHanSOn[17]andKoshietal.[18]reported theN(4s)fbrmationfb)lowing193nmlaserirradiationofNOundertheshock-heated N(4s)atomformation conditions.The vibrationally excited states was attributed X2口(v≧1)tothe ofNO to direct excitation D2∑+state[17].In of our experimentswhichwereperformedatroomtemperature,itisun1ikelythatthedirect photoexcitationfromtheNOX2n(v=1)totheD2∑+(V=0)stateissignificantly responsibleforN(4s)fbrmation,becausethepopulationofvibrationa11yexcitedNO X2rI(v=1)isnegligiblysmallatroomtemperature. ShibuyaandStuhl[32,33,34]investigatedtheexcited-StateSdynamicsofNO throughthemeasurementsofemissionspectraandfluorescencelifetimesfo1lowlng193 nmlaserirradiation.TheyobservedthenuorescencefromB2H(V=7),C2n(V=0), andA2∑(v=3)states.The193-nmlaserlightcanberesonantWiththeabsorptionof theNOB2n(v=7)←X2口(v=0)andA2∑(V=3)←X2口(v=0)tranSitions.Fromthe availablespectroscopicdata【35],NOX2rI(V=0)isexpectedtobeexcitedtothe B2n(v=7)stateviatheabsorptionlinesR11(30.5-32.5),Pl.(27.5-29.5),Qll(28.5-31.5), R22(28.5-30.5),P22(25.5-27.5)andQ22(26.5-29.5).TheA2∑(v=3)statecanalsobe preparedviatheabsorptionofX2Il(v=0,J∼50.5).TheBoltzmannpopulationofthe X2口(V=0,J∼50.5)stateismuchsmallerthanthatofX2Il(V=0,J∼28.5)at295K. ShibuyaandStuhl[32,33,34]suggestedthattherotationallevelsofJ=21.5-34.5forthe F)COmPOnentandJ=20.5-33.5forthe為componentoftheB2口(V=7)statewere preparedfo1lowing193nmexcitationatroomtemperature,andthattheC2n(v=0),and A2∑(v=3)stateswereproducedbythecollisionalrelaxation丘omtheB2口(v=7)state. They alsoindicated that the phot?eXCitedlevels of、the B2口(v=7)stateare predissociativeandthatthenuorescencequantumyieldisaboutO・15and<6×10-3for J=20.5-29.5andJ>29.5,reSPeCtively.Therefore,itislikelythattheN(4s)atom formationobservedinthe193nmlaserirradiationofNOinthisstudyisduetothe photoexcitationtothehighrotationallevelsoftheB2n(V=7)state,Whichisfo1lowed bythepredissociationtoN(4s)+0(3p). TheDopplerpromeofthenascentN(4s)atomsproducedfromthe193nm irradiationofNO(Fig.4.2a)isslightlywiderthanthatofthethermalizedN(4s)atoms (brokencurveinFig・4・2b).Thekineticenergyreleaseinchannel(3)isestimatedto be∼1000cm.1fromtheDopplerpro創eofthenascentN(4s)atoms.Thisisconsistent Withthefactthatthehighrotationa11evels(FIJ=2l.5-34.5,F2J=20.5-33.5)inthe 59 B2n(v=7)statelieabovethedissociationlimitby500-1100cm.l. 4.3.2 N(4s)productionfbIlowing193nmlaserirradiationofNO2 Figure4.2bshowsatypicalexamPleofthenuorescenceexcitationspectrumOf thenascentN(4s)atomsproducedfromthe193nmlaserirradiationofNO2,inwhich gaspressureinthechamberwas34mTorrand82mTorrforNO2andO2,reSPeCtively, Withoutbuffbrgas.Thespectrumwastakenat80nsdelaytime.TheFWHMofthe spectrumwasestimatedtobel.38cm.1withaGaussianshape(Fig.4.2b).Assuming theMaxwell-BoltzmannVelocitydistribution,the averagetranSlationalenergyofthe nascentN(4s)atomsinthelaboratory(LAB)&amewascalculatedtobe∼7500cm.1 (∼21kcalmol 1). Figure4.3b shows a photolysislaser power dependence ofthe LIF signal intensityofN(4s)atomsproducedfromthe193nmlaserirradiationofNO2.A quadraticphotolysislaserpowerdependenceoftheN(4s)LIFsignalintensitysuggests thattheN(4s)formationisattributabletothesequentialtwo-Photondissociationprocess OrthesimultaneOuSabsorptionoftwophotonsbyNO2. For the sequentialtwo-Photon dissociation that the process,itislikely vibrationallyexcitedNO(X2n,V)isproduced丘omthephotolysisofNO2at193nm, andthenNO(X2口,V)isphotolyzedtoproducetheN(4s)atom: NO2+hv(193nm)→NO(X2口,V)+0 (4.4) NO(X2口,V)+hv(193nm)→N(4s)+0. (4.5) GraddandSlanger[36]observedthevibrationallyexcitedNOX2n(V=4-10)inthe Photodissociation et ofNO2at193nm・Gong al・【22]reported that the nascent vibrationalstatepopulationsofNOX2Il(v=1-7)inthephotodissociationofNO2at193 nmhaveamaximumatv=5.TheaveragetranslationalenergyofN(4s)estimatedin thepresentstudy(∼21kcal/molinthelaboratoryframe)isconsistentwiththesequential two-PhotondissociationprocessinwhichNO(X2口,V=7)isformedthroughcharmel (4.4). ForthesimultaneOuStWO-Photonabsorptionmechanism,itinvoIvesthedirect formationofN(4s)fromanelectronica11yexcitedstate(S)ofNO2,Wherethefo1lowing Channelsareavailablethermochemically: NO2+2hv(193nm)→N(4s)+20 (4.6) NO2+2hv(193nm)→NO*+0→N(4s)+0+0 (4.7) 60 (4.8) NO2+2hv(193nm)→N(4s)+02. HaakandStuhl[37]observedtheNOemissionsfromitsseveralexcitedstates(A2∑+, D2∑+,andE2∑+,andsoon)fbllowingthemultiphotonabsorptionofNO2at193nm. Further studies are required to the elucidate mechanism oftheN(4s)fbrmation fbllowlng193nmirradiationofNO2・ 4.3.3ReactionkineticsofN(4s)+NOandN(4s)+NO2 TheN(4s)fbrmationfo1lowing193nmirradiationofNOandNO2WaSaPPlied tothekineticstudiesofthereactiong(4.1)and(4.2).ThepulsedArFlaserlightwas usedtoirradiated150-570mTorrofNOinthepresenceofl.8TorrofHediluentand thechemicallossofN(4s)wasmeasuredtodeterminetheratecoefncientsfortheN(4s) +NOreactionat295±2K・Figure4・4showsatypICalexampleofthetemporal pronleoftheN(4s)LIFintensityfbllowingpulsedArFlaserirradiationofamixtureof 415mTorrofNOandl.8TorrofHediluent,inwhichtheVUVlaserwavelengthwas 丘xedattheresonanCeCenterOftheN(2p23s4pl/2-2p34s3/2)transition(120.07nm). Thetime-reSOIvedVUV-LIF…SignalofN(4s)atomsexhibitsaninitialjumpdueto photolyticformationofN(4s),followedbyaslowdecayduetoitschemicalremovalin c。IlisionswithNOmolecules.ForthekineticstudyoftheN(4s)+NO2reaCtion,the timepro創esoftheN(4s)LIFweremeasuredundertheconditionsofNO260-570 mTorr,02200-1700mTorr,andHe3・OTorr・Asdescribedintheprevioussection,the translationallyhotN(4s)atomsareproducedfo1lowing193nmirradiationofNOand NO2.ThetranslationallyhotN(4s)atomsarethermalizedwithin2psunderour experimentalconditionsincollisionswithhelium,Whichwascon丘rmedbymeasurlng theDopplerpro丘1esofN(4s)atoms・Thechemica1lossofN(4s)byreactionwithO2 cansafblybeignoredunderourexperimentalconditions([02]=200-1700mTorr,delay timeO-20ps)becauseofitssma11rateconstantof8・5×10-17cm3molecule-1s-1at298K [27].F。rboththereactionsystems(4.1)and(4.2),Single-eXPOnentialdecaywa去 observedfortemporalpromesofN(4s)astypicallyshowninFig.4.4: P(4s)]t=P(4s)]。×eXP(-k,t). Thepseudo-nrSt-Orderrateconstantk一foraparticularreaCtantPreSSureWaSderivedbya nonlinearleast-SquareS丘tanalysIS・TheresultantdependencesofthekTvaluesonthe n。mberdensitiesofNOandNO2fortlleN(4s)+NOandN(4s)+NO2reaCtions, respectively,areShowninFigure4・5・Linearleast-SquareSBtanalysISOfthedatain 61 (4・9) Fig.4.5yieldedthebimolecularrateconstantSOfkNO=(3・8±0・2)×10-‖andkNO2= (7.3±0.9)×10-12cm3molecule-1s-1at295±2K・Thequoteduncertaintiesoftherate constantSinclude2GStatisticaluncertaintiesandestimatedsystematicerrors. TherateconstantSfbrreactions(4.1)and(4.2)at295±2Kdeterminedinthe presentstudyarelistedinTable4・1withavailableliteraturedata・ThekNOValue determinedinthis Wennberg et studylSinexce11entagreementwiththelatestdatareportedby al.【5]within the quoted uncertainties・Our resultis good alsoin agreementwiththatofCheahandClyne[11]andoneofthevaluesreportedbyLeeetal・ [10].ThelatestNASA/JPLrecommendedkNOValueat298K[27]issmallerthanboth thevaluesrecentlyreportedbyWennbergetal・[5]andobtainedinthepresentstudy・ ForthereactionofN(4s)+NO,thegroundpotentialenergysurface(PES)3A′′andthe nrstexcited PES3A・weretheoretica11ylnVeStigatedby meanS Ofcomplete active spacesecond-Orderperturbation(CASPT2)method,andthevariationaltransitionstate theoryprovidedthetemperature-dependentratecoefncients[38]・Itwasshownthat the3A・PESwasmainlyresponsiblefortheN(4s)+NOreactionoverthetemperature rangeOf200-5000KandtheirkNOValueat300Kwas4・68×10-11cm3molecule-1s-1・ ThetheoreticalvalueislargerthanOureXPerimentalandpreviousdeterminations・ ThekNO2ValuesreportedpreviouslyrangefromO・14to3・8×10-1)cm3 molecule-1s-1aslistedinTable4.1.ThekNO2Valuedeterminedinthisstudyislarger thantheresultofClyneandOno[12],andissma11erthanthatpresentedbyWennberg etal.[5].TheexperimentalteclmiqueoflaserflashphotolysiscombinedwithVUV laser_inducedfluorescencedetectionhasbeenutilizedforthe丘rsttimeinthisstudy, whileClyneandOno[12]andWennbergetal・[5]usedthetechniqueofdischargeflow andresonancenuorescencedetectionwithanitrogenlamp.ClyneandMcDermid[9] andClyneandOno[12]reportedthatthemeasuredrateconstantkNO2decreaseasthe ratioof[NO2]/P(4s)]oincreaseatlowerratiosofPO2]/P(4s)]0(<80)・Theyargued that the change Ofthe observed rate constant WaS due to catalyticinterftrences invoIvingbothH(2s)+NO2andO(3p)+NO2reaCtions,inwhichH(2s)andO(3p) atomscanbeproducedasimpuritiesinthemicrowavedischargeprocessandO(3p) atomscanalsobeproducedthroughreaction(4・2)・Inthepresentstudy,N(4s)atoms wereproducedfromthe193nmpulsedlaserirradiationofNO2,andtheratioof PO2]/P(4s)]owas(5-20)×105asestimatedbyconsideringtheN(4s)detection sensitivity(2×109atomscm-3). 62 Itshouldbenotedthat,1ngeneral,theliteraturedataoftheratecoefncientsfor N(4s)reactionswith simple molecules are more scattered than those ofother atmosphericreactionsinvoIvingatomssuchasO(lD)andCl(2n)atoms・Thismightbe attributabletotherelativelylowreactivityofN(4s)towardthesimplemoleculesandthe lackofapplicable newly experimentaltechnique・The presented teclmique investigationoftheN(4s)reactionswithNOandNO2Willbeapplicabletoexamine someotherN(4s)reactionsasafunctionoftemperatureandpressure・Thepulsedlaser photolysis′VUV-LIFtechniquehasbeenutilizedasapowerfultooltostudythekinetics anddynamicsofatmosphericreactionsinvoIvingO(1D)andCl(2pj)atoms[39,40]・ 63 fbr (T∈0寸○こ岳」¢u¢一票uむlOd 4 1 lnternucleardistance(Å) Figure4.1.PotentialenergycurvesofNOnearthedissociationlimitintotheN(4s)+ 0(3p)products[41]. 64 (.q立身su叫7ニ山コ(s寸)Z 0 Figure4.2.FluorescenceexcitationspectraofN(4s)producedfromthe193nmlaser irradiationof(a)NOand(b)NO2,reSPeCtively,Whichwererecordedbyscanningthe probelaserwavelengthacrosstheresonancecenterofthe4pl/2-4s3/2tranSitionfbrthe N(4s)atomat120・07nm・ThesolidcurvesindicateGaussianShapesthat丘tthe observedspectrum・Spectrum(a)wasmeasuredatan80nsdelaytimebetweenthe photolysisandprobelaserpulsesatthepressureofNO145mTorr・Spectrum(b)was measuredatan80nsdelaytimeatthepressuresofNO234mTorrandO282mTorr・ ThebrokencurveshowsthenuorescenceexcitationspectrumofthermalizedN(4s),in whichtheN(4s)atomwasproduced丘om193nmirradiationofNO2inthepresenceof 3.6TorrofHe.ThedelaytlmeWaS5トLS・ 65 (.q」且倉su叫言二山コ(s寸)Z 10 1 PhotoIysislaserpower(arb,) Figure4・3・PlotsofthephotolysislaserpowerdependenceoftheLIFintensityof N(4s)producedfbllowing193nmlaserirradiationof(a)NOand(b)NO2,reSPeCtively・ ThephotolysislaserpowerwasvariedwhilemonitoringtheN(4s)LIFsignalat120・07 nm・Theprobelaserpowerwaskeptconstantduringthemeasurements・Solidlines indicatetheresultsofleast-SquareS丘tanalysisinordertodeterminetheordernoflaser powerdependenceoftheLIFsignals・Thevaluesobtainedfornare(a)0・9土0・1and (b)1.7土0.2,reSPeCtively,Whicharedescribedinthe丘gure・Thequoteduncertainties indicatethe2GerrOrSOfthe丘t. 66 (ム立身su茎こコ(s寸)Z 0 DeIaytime(10,6s) Figure4・4・AtypicalexampleofthetemporaldecaycurveOfN(4s)LIFintensity fbllowlngthe193-nmPulsedlaserirradiationofthegasmixturecontalnlng415mTorr ofNOandl.8TorrofHediluentat295±2K・Thesolidcurveisa丘rst-Orderdecay 丘ttothedatainthetimedomainafter2ドS. 67 5 (TUむSの○こむl空よ村試占 0 2 【N00rN02](1016moleculescm 3) Figure4.5.Plotofpseudo-nrSt-Orderdecayrates(k')versustheconcentrationofthe reactants(a)NOand(b)NO2.Resultsoftheleast-SquareS丘tanalysisofthedataare drawnbystraightlines,Whichyieldtheratecoefncients(3.8±0.2)×10.)1and(7.3± 0.9)×10.12cm3molecule-1s,1at295±2KforN(4s)reactionswithNOandNO2, respectively. 68 Table4・1・Summaryofthepresentandpreviousstudiesonthereactionkineticsof N(4s)withNOandNO2atrOOmtemPerature. Reactant Ratecoefficienta Methode Ref§. 1.7士0.8b DF/MS He汀On(1961)[6] 2.2士0.6 DF/MS PhilipsandSchiff(1962)[7] 2.2土0.2 DF/MS ClymeandMcDermid(1975)[9] 2.7土0.4C DF/RF Leeetal.(1978)[10] 4.0土0.2C FP/RF Leeetal.(1978)[10] l.9土0.2 PR/RA Sugawaraetal.(1980)[16] 3.4土0.3C DF/RF CheahandClyne(1980)[11] 4.5土0.2 FP/RF HusainandSlater(1980)[15] 2.77土0.04C DF/Rf ClyneandOno(1982)[12] 2.03士0.17C DF/MS BrummingandClyne(1984)[13] 2.4土0.2 DF/MS Jeoungetal.(1991)【14] 3.6士0.4d DF/RF Wennbergetal.(1994)[5] NASA/JPL(2003)[27] 3.0 3.8士0.2d LPNUV-LIF Thiswork 1.85士0.22C DF/MS PhilipsandSchiff(1965)[8] O.14士0.02 DF/MS ClyneandMcDermid(1975)[9] 3.8士0.1 FP/RF HusainandSlater(1980)[15] 0.301土0.033C DF/Rf ClyneandOno(1982)[12] l.2士0.1d DF/RF Wennbergetal.(1994)[5] NASA/JPL(2003)[27] l.2 0.73土0.09d LP/VUV-LIF Thiswork a.InunitsoflO-11cm3molecule-1s-1. b. Theerrorlimitsareestimatesof3G. c. TheerrorlimitsareestimatesoflG. d. Theerrorlimitsareestimatesof2G. e・Experimentaltechniques・DF‥dischargenow,MS:maSSSPeCtrOmetry・KS: kineticspectroscopy,RF:reSOnanCenuOreSCenCe,FP:naShphotolysIS,PR:Pulsed radiolysIS,RA:reSOnanCe absorption,LP:1aser ultravioletlaser-inducednuorescence. 69 photolysis,VUV-LIF:VaCuum RcfbrcncesfbrChapter4 [1]Siskind,D.E;Rusch,D.W.,JGeqpjw一.Res.,97,3209(1992). [2]Gerard,J.-C.,Planet.勘aceSti.,40,337(1992). [3]Nelvison,C・D・;Solomon,S.;GarCia,R.R.GeQP句LS.Res.Lett.1997,24,803. [4]Yung,YL;DeMore,W・B・,PhotochemLstTyqfPlanetaTyAlmophere,OxfbrdUlliversity Press,NewYork,1999. 【5]Wennberg,P・0・,Anderson,J・G・,Weisenstein,D・K・,JGeqpjp.Res.,99,18839(1994). [6]Herron,J.T.,JChem.PjDLS.,35,‖38(196]). 【7]PhiJips,L.F.,Schi托H.I.,JChem.Pj叩.,36,1509(1962). [8]Philips,L.F.,Schiff;H.I.,JChem.P匂岱.,42,3171(]965). [9]Clyne,M・A・A・,McDellnid,I・S.,JChem.hraみ升ans.1,71,2189(1975). [10]Lee,J・H・,Michael,J・Ⅴ,Payne,W・A.,Steif;L.J.,JChem.Pj叩.,69,3069(1978). [11]Cheah,C・T,Clyne,M・A・A・,JChem.Sbc.,FbradD)升ans.2,76,1543(1980). 【12]C)yne,M.A.A.,Ono,Y,Chem.PJり岱.,69,381(1982). 【13]Brunning,J・,Clyne,M・A・A・,JChem・Sbc.,Ebrad如n・anS.2,80,1001(1984). 【14]Jeoung,S・C・,Choo,K.Y,Benson,S.W.,JP句岱.Chem.,95,7282(1991). 【15]Husain,D・,Slater,N・K・H・,JChem.Sbc.hraみ77・anS.2,76,606(1980). [16]Sugawara,K・,Ishikawa,Y,Sato,S.,Bull.Chem.Soc.々n.,53,3159(1980). [17]Davidson,D.F.,Hanson,R.K.,1ht.JChem.Kinet,22,843(1990). [18]Koshi,M・,Ybshimura,M・,Fukuda,K.,Matsui,H.,Saito,K.,Watanabe,M.,Imamura,A., Chen,C.,JChem.P々叩.,93,8703(1990), 【19]AtkillSOn,R・,Baulch,D・L・,Cox,R・A.,Crowley;J.N.,Hampson,R.F.,HylleS,R.G, Jenkin,M・E・,Rossi,M・J・,andTroe,J.,Atmos.Chem.P句岱.,4,1461(2004). [20]Sun,F・;Glass,G・R;Cul・l,R.F.Chem.P匂岱.Lett.,337,72(2001). [21]Gradd,GE.;Slanger,T.G,JCheln.P如.,92,2194(1990). [22]Gong,VC・,Chen,X・R・,Weil-er,B.R.,51hhternationalCoJゆ7mCeOnChemical Kinetics,NationalInstituteofStandardsandT七chl10logy,Gaithersburg,MD,USA2001. [23]TsLtii,M.,Noda,K.,Sato,H.,Hamagami,T,Tbttii,T.,Chem.Lelt.,34,496(2005). [24]Matsumi,Y,Murasawa,Y,Obi,K.,Tbnaka,I.,LaserChem.,1,113(1983). 【25]Jusinski,L・E・,Sharpless,R.L・,Slanger,T.G,JChem.Pjwg.,86,5509(1987). [26]Nagai,H・,Kusumoto,T・,Sl-ibuya,K・,Obi,K.,Tbnaka,I.,JPbLS.Chem.,92,5432(1988). [27]Sal-der,S・R,Friedl,R・R・,Golden,D.M.,Kurylo,M.J.,Huie,R.E.,Orkin,VL., Moortgat,G・K・,Ravishankara,A・R・,Kolb,C・E・,Molina,M・J・,Finlayson-Pitts,B・J・, ChemicalKineticsandPho(OChemicalDalajbruseinAtmo3PhericStudies,Evaluatioll No.14,JPLPublicatiollO2-25,2003. [28]Harder,J・W・,Brau)t,J・W・,Johnston,RV,Mount,GH.,JGeqp句Lf.Res.,102,3861 (1997). 【29]Vandaele,A・C・,Hermans,C・,Simon,RC.,Carlee11M.,Colill,R.,Fal)y,S.,Meriellne,M. 70 F.,Je110uVrier,A.,Coquart,B.,JQuant.勘eclrosc.Radiat・77・anS・,59,171(1998)・ [30]Gierczak,T.,Burkholder,J.B・,Ravishankara,A・R・,JPhys・Chem・,A103,877(1999)・ [31]Rottke,H.,Zacharias,H・,JChem・PjDLS・,83,4831(1985)・ [32]Shibuya,K.,Stuhl,F.,JChem・PiD)S・,76,]184(1982)・ [33]Shibuya,K.,Stuh),F.,Chem・Pjvs・,79,367(1983)・ 【34]Shibuya,K.,Stuhl,F.,Chem・Pjp・,94,167(1985)・ [35]GihlOre,F.R.,JQuanl・勘eclrosc・Radial・升an4br,5,369(1965)・ 【36]Gradd,G.E.,S)anger,T.G・,JChem・PjDLg・,92,2194(1990)・ [37]Haak,H.K,Stuhl,F.,JPho10Chem・,17,69(1981)・ [38]Gamallo,P.,Gonzalez,M.,Sayos,R・JChem・P句岱・,119,2545(2003)・ [39]Tbkahashi,K.,Tbkeuchi,Y,Matsumi,Y,Chem・P7叩・Lett・,410,196(2005),and refbrencesthereill. [40]7bketani,F.,Tbkahashi,K.,Matsumi,Y,Wallington,T・J・,JPjws・Chem・,AlO5,3935 (2005),andrefbrellCeStherein・ 【41]Thkiyama,K.,Munakata,T.,Tsukakoshi,M・,Kasuya,T・,Chem・Pjp・,121,55(1988)・ 71 Chapter5 TranslationalrelaxationofsuprathermalN(4s)atoms intheupperatmosphere 5.1Introduction Observations ofNO reevaluatetheproduction densityln processes the havelead thermosphere to ofNOinthethermosphere,because a need to slgni丘cant discrepanCybetweentheobservedabundanceandmodeledestimationfbrNOhasbeen that identi丘ed【1,2,3].In1983,Solomon[4]proposed chemicalreaction of tranSlationallyhotN(4s)atomswith02mOleculescouldbeanewsourceoflower thermosphericNO: (5.1) fastN(4s)+02→NO+0. TheN(4s)+02reaCtionhasalargeactivationenergyof∼0.24eV(=5.5kcalmol-1)[5] whichresultsinanegligiblysmallratecoefncientattypICaltemperaturesencountered inthelowerthermosphere.ThesuprathermalN(4s)atomsproducedinthelower thermospheremayreactwithO2tO fbrmNO atanenergydependentratewhichis COnSiderablylagerthanthatatthermalequilibriumforambienttemperatures[e・g・4]・ Sincethen,mOdelcalculationshaveextensivelybeenperformedtoevaluatethe tranSlationalenergydistributionsofN(4s)andtheformationefnciencyofNOthrough reaction(5.1)undersuprathermalcollisionsinthethermosphere[4,5,6,7,8,9,10]・The suprathermalnitrogenatomsinthethermospherecanbeproducedbyanumberof processesincluding dissociative recombination of ofNO+,CO11isionalquenching electronica11yexcitedN(2D)atomsandphotodissociationandphotoelectronimpact dissociationofN2.Then,thosehotatomsarerelaxedbycollisionswithN2andO2 moleculesintheambientair.Inthemodelcalculationsofthesteady-StatetranSlational energydistributionsofN(4s)atomsinthethermosphere[4,5,6,7,8,9,10,11,12,13,14], thethermalizationratesinco11isionswithN2andO2mOleculesarecrucial.However, nolaboratorystudydetermlnlngeXPerimentallythethermalizationcross suprathermalN(4s)atomsincollisionswithambientgaseshasbeenreported. fastN(4s)+N2→SlowN(4s)+N2 fastN(4s)+02→SlowN(4s)+02 72 sectionsof Inthemodelcalculations,the cross N(4s)inN2[4,11,12,15]orthat diffusionstudies sectionthatestimated丘om computedusing classicaltr毎ectory(QCT)methods[8,9,13,14]have quantum of meChanical(QM)and been utilized・Thelack of precisioninthethermalizationcrosssectionsresultsinaslgnincantuncertaintyinthe modelcalculationsforthefbrmationrateofNOthroughreaction(5.1). Inthepresent collisional study,thefirstexperimentaldeterminationofthe relaxationratesofsuprathermalN(4s)inco11isionswithN2,02,HeandArhasbeen reported.AsmallamOuntOfNO2dilutedinanexcessam0untOfbathgases(N2,02, HeandAr)isphotolyzedat193mm,andthesuprathermalN(4s)atomsproducedare detected by a technique of VUV-LIF・Measurements Doppler time-reSOIved of pronlesofthesuprathermalN(4s)atomsenableustoevaluatethetime-dependent tranSlationalenergy experimentalresults distributions andMonte-Carlo of the bath N(4s)atomsin calculations based gas.From onanelastic hard-SPhere model,thecollisionradiibetweenN(4s)andthebathgasmoleculesaredetermined. 5・2Experimental ThedetailsoftheqpparatuSuSedinthepresentstudyareshowninChapter2 andhereonlyadescriptionrelatedtothischapterwillbeglVen・A11theexperiments wereperformedunderbulbconditionsat295±3K,inwhichgasmixturesofasma11 amountofNO2dilutedinbathgasP2,02,HeorAr)wereslowlyintroducedintoa reactionchamber.ThetranslationallyhotN(4s)atomswereproducedby193nm pulsedArFlaserphotolysisofNO2(SeeChapter4)・ThedensityofthehotN(4s) atomsproducedbythelaserphotolysiswaslO9-1010atomscm-3,Whichwasmuch smallerthanthatofbathgas(1016moleculescm-3).Thetimewidthsofthephotolysis laserandprobelaserpulseswere∼15nsand∼10ns,reSPeCtively・Thedelaytime betweenthephotolysIS andprobelaserpulseswassetto30ns-5巨S,Whichwas controlledbyadigitaldelaygenerator(StanfordResearch,DG535)・ 5・3Experimentalresults TheDopplerpro丘1esofN(4s)atomswererecordedbyscalmingtheprobelaser wavelengthacrosstheresonanCeCenteratVariousdelaytimesbetweenthephotolysis ArFlaserandprobeVUVlaserpulses・TheDopplerpronlesrenectthedistributionof thevelocitycomponentofN(4s)atomsalongthepropagationdirectionoftheprobe 73 the VUVlaser[16].We丘rstrecordedtheDopplerpro丘Iesat50nsdelaytimewithll mTorrofNO2Withoutanybathgasundertwo geometrica11aserbeamCOnditionsof kp//Edandkp⊥Ed,WherekpandEdarethepropagationdirectionvectoroftheprobe VUVlaser and the polarization vector ofthe photolysISlaser,reSPeCtively.The promesprovidethenascenttranSlationalenergyofN(4s)producedfromNO2Photolysis, becausetherelaxationisnegligibleunderthoseconditions.Wedidnotobserveany difftrenceintheDopplerlineshapesbetweentwocon丘gurations,Whichindicatesthe directionoftherecoilvelocitiesintheNO2PhotolysisisisotropIC. Figure5.1showstypicalDopplerpromesofN(4s)atomsatvariousdelaytimes ineachbathgasofN2andO2.TheDopplerwidthbecomesnarroweratlongerdelay timesduetorelaxationofthefasttranSlationalspeedofN(4s)atomsbycollisionswith thebu脆rgas,aSShowninFig.5.1.A氏erthedelaytimeoflトLS,nOSlgni丘cantchange intheDopplerpro丘1eswasobserved.Thisindicatesthatthetranslationaldistribution ofN(4s)wasentirelythermalizedtothatatambienttemperature(295K).TheVUV laserlinewidthwasestimatedtobeO.40cm-1(FWHM)withaGaussianShqpefromthe Dopplerpro丘1esofentirelythermalizedN(4s)atoms.Itwasfoundthatallthepronles atanydelaytimeswerewe11reproducedbyGaussianShapes.AGaussianlineshape COrreSPOnds to anisotropIC Maxwellian distribution of velocities.The average translationalenergyofN(4s)atomsintheLABname,<Et>,WaSCalculated丘omthe GaussianDopplershape,uSingthefbllowingexpression[16]: <Et>=忘(封mc2, (5・2) Where△vistheFWHMoftheGaussianShape丘ttedtotheDopplerpro丘1e,Vois■the resonanCeCenterfrequency,misthemassofnitrogenatom,Cisthespeedoflight. Theinitial<E.>Valueatt=OwasO.93±0.10eV(21.4±2.2kcalmol-1),Whichwas calculatedfromtheN(4s)Dopplerpro丘1erecordedat50nsdelaytimewithoutbathgas. Figure5.2ashowstheaveragetranslationalenergyofN(4s)atomsintheLAB frame,<El>,aSafunctionofdelaytime,Whenthebathgaswasl.OTorrofO2.The relativeconcentrationsofN(4s)asafunctionofdelaytimewerealsorevealedby integratingthepeakareaofDopplerproⅢe.TheN(4s)concentrationateachdelay timewasnormalizedwiththatatdelaytimeof400ns.Thetime-dependentrelative concentrationofN(4s)atomsinl.OTorrofO2thusobtainedisplottedinFig.5.2b 74 (OPenCircles).Forcomparison,thetime-dependentconcentrationofN(4s)atomsin l・OTorrofArisalsoplottedinFig.5.2b(OPentriangles). The center-Oflmass collision energy between hotN(4s)and O2bath gas moleculeisroughlycalculatedtobe32/46Et,WhereEtisthetranSlationalenergyof N(4s)atomsintheLAB丘ame.InthedelaytimesrangeShorterthanlOOns,about one-thirdofcollisionsbetweenN(4s)andO2areeStimatedtohavecenter-Ofこmass COllisionenergieshigherthantheactivationenergyforreaction(5.1),∼0.24eV(=5.5 kcalmol.1).However,aSShowninFig.5.2b,nOnOtabledecreasewasobservedfor N(4s)concentrationsinO2gaSeVenintheshortdelaytimerange,COmParedwiththe concentrationofN(4s)atomsinArgas.Thismaybeduetomuchsmallercross SeCtionsfbrreaction(5.1)atthecenter-OflmasscollisionenergiesofaboutO.24-0.6eV thanthetranSlationalrelaxationcrosssection. 5・4Modelcalculationsfbrhardspherecollisionradii ThecollisionalrelaxationofsuprathermalN(4s)atomswassimulatedusingan elastichard-SPherecollisionmodelwithaMonteCarlomethod・Usingthismodel Calculationmethod,WePreViouslystudiedthecollisionalrelaxationofsuprathermal O()D)[17,18].TheexperimentalresultsfbrtranSlationalrelaxationofsuprathermal O(1D)incollisionswithbathgasesofN2andO2mOleculesandraregaSatOmSWere SuCCeSSfu11yreproducedbythesimulation.Detailofthesimulationwasdescribedin OurPreViouspqper[19]・Therefore,thesimulationprocedureisonlybrieflyexplained here.ThevelocityofN(4s)atomsatt=0foreachtrqiectoryisgeneratedrandomlyso thatithasthenascentdistributionobtainedfromtheDopplerpro丘1e・Thevelocityof thebathgasesisgeneratedrandomlyforeverycollisionsothatithasaMaxwellian distribution at295K・The maximumimpact parameter,bmax,is the equalto hard-SPhereradius,d=r(N)+r(bathgas),Whichhasbeentakenasaparametertofitthe Simulation to the experimentalvalues of<Et>・TheilnPaCt ParameterS,aZimuthal angles,andcollisionintervaltimeforeverycollisionarealsogeneratedrandomlywith their respective appropriate weightfunctions.The velocity ofN(4s)aRer every COllisionwiththoserandomlygeneratedconditionsiscalculated.Thetr毎ectoryof eachN(4s)atomiscalculatedfbrsequentialcollisionsuntilthetimeexceedslOOOns undertheconditionofl.OTorrofbathgases,thatis,1000ns・Torr.A氏ercalculations Ofupto50000trqjectories,thetranslationalenergydistributiol10fN(4s)intheLAB 75 framewasobtainedateachdelaytlmeuPtOlOOOns・Torr. Figure5・3showsacomparisonbetweentheexperimentalresultsandmodel calculationsfortheln[(<El(t)>-<Etth>)/(<Et(0)>-<Etlh>)]valuesasafunctionof delaytime,Where<Et(t)>istheaveragetranslationalenergyofN(4s)intheLABftame atdelaytimet,<Et(0)>istheaveragenascenttranslationalenergyofN(4s)formedin thephotolysisofNO2at193nmand<Etth>istheaveragethermalenergyat295K・ Open are circles ones simulated results with Doppler ofthe the hard sphere curvesare pro鎖1e measurements・Solid collision best-nt model.The for Values hard-SPherecollisionradiiwere(3.2±0.2),(3.0±0.2),(2.4±0.1),and(2.7±0.1)Åfor N(4s)+N,,02,HeandAr,reSPeCtively.Thethermalizationcrosssectionvalues(7td2) weredeterminedtobe(3.2±0.4),(2.8±0.4),(1.8±0.2)and(2.3±0.2)inunitsoflO-15 cm2forthebathgasofN2,02,HeandAr,reSPeCtively・Inthesemodelcalculations Only elastic collisions were takeninto account,althoughthe can relaxationprocess includeenergytranSfbrtotheinternaldegreesoffreedomwhenthecollisionpartneris the molecule(N2and O2).Therefore,the obtained hard-SPhere radiifor these moleculesareefftctivevalues.ThevalueobtainedinthepresentstudyforN(4s)+N2 COllisionisslightlysma11erthanthatestimatedfrommoleculardi払1Sioncoefncients (3.5×10.15cm2)[15].Kharchenko etal.[13]comparedtheenergydistribution functionsofN(4s)atomscalculatedusingthethermalizationcrosssectionsobtained fromtheQMcalculationandhardsphere叩PrOXimationforN(4s)+0(3p).They suggestedthatusageofthehardspherecollisioncrosssectionof6×10-15cm2provided an exce11ent approximation to reproducethe energy distributionfunction calculated usingtheQMcrosssection.Thisvalueislargerthanthoseobtainedinthepresent StudyforcollisionswithN2,02,ArandHe・ 76 (.qJe)倉su茎こコ(s寸)Z ー1 0 1 ー1 0 1 △v(Cm-1) Figure5.1.Dopplerpro丘1esofN(4s)atomsatvariousdelaytimesbetweentheNO2 photolysisandN(4s)detectionlaserpulses.Thepeakheightsofthepro丘Iesare normalized.TherelaxationagentsareN2andO2.PressuresofNO2andN2(orO2)in thechamberwerellmTorrandl.OTorr,reSPeCtively.TheDopplerpro頁1eatdelay timet=Owasactua11yrecordedatt=50nswithoutbathgas. 77 (T一〇∈l円呈∧}山V Su。○寸【(s寸)Z】\}【(s寸)Z】 0 200■ 0100 300 400 Delaytime(ns) Figure5.2.(a):TimeevolutionoftheaveragetranSlationalenergy,<E>t,intheLAB &amefortheN(4s)atomsproduced&omthephotolysisofNO2at193nm.Thevalue Of<Et>ateach delaytime was obtainedfromthe analysIS Ofthe Dopplerprofi1es, whichweretakenundertheconditionsofllmTorrofNO2andl.OTorrofO2.Filled CirclesaretheresultsoftheDopplerpro創emeasurements.Thebrokenlineindicates thethermaltranslationalenergyat295K,thatis,(3/2)kBT=0.89kcalmol,】.(b): TimeevolutionoftheconcentrationfortheN(4s)atomswhenthebathgasisl.OTorrof O2(OPenCircles)andl.OTorrofAr(OPentriangles).Theverticalscaleisnormalized bytheN(4s)concentrationatdelaytimeof400ns.ErrorbarSindicatelGValuesof themeasurements. 78 O 【(∧缶Y∧(○)止V)、(∧£}山V人(エ}山V)】u T -2 ■3 -40 -1 ■2 【3 ■4 0200 400 0 200 400 600 DeIaytime(ns) Figure5.3.Semi-logaritlmicplotsofthetranSlationalenergyratios,1n[(<Et(t)><Etth>)/(<Et(0)>-<Etth>)],VerSuSdelaytimebetweentheNO2PhotolysisandN(4s) detection,Where<Et(t)>istheaveragetranslationalenergyofN(4s)atdelaytimet, <Et(0)>istheaveragenascenttranslationalenergyinthephotolysisofNO2at193nm and<Etth>istheaveragethermalenergyat295K・Opencirclesaretheresultsofthe Dopplerpro丘Iemeasurements・Solidcurvesaresimulatedonesuslngthehardsphere collisionmodelwithbest一餌hard-SPhereco11isionradii(seetext)・Thepressureof eachbathgaswasl・OTorr・ErrorbarsindicatelcTValuesofthemeasurements・ 79 RcfbrcnccsfbrChapter5 [l】ClancyR.T.,RuschD.W.,Muhlmann,GeqpjvLS.Res・Lett.,19,261(1992)・ [2]Suskind,D.E.,Strick】and,D.J.,Meier,R.R.,1句eed,T.,Eparvier,F.G.,JGeqp句げ.Res., 100,19,687(1995). [3]Barth,C.A.,Farrner,C.B.,Suskind,D.E.,Perich,J.P.,JGeqpわ岱.Resリ101,12489 (1996). [4]Solo】nOll,S.,ア血〃eJ.勘αCe助f.,31,135,(1983). [5]Lie-Sevelldsen,0.,Rees,M.,Stamnes,K,Whipple,E.C.,Planel.勘aceSti.,39,929, (1991). [6]Schematovith,ⅤⅠ.,Bisikalo,D.Ⅴ,G6rard,J.C.,Geqp匂LS.Res.Lett.,18,1691(1991). 【7]Girard,J.C.,Bisikalo,D.Ⅴ,Shernatovich,ⅤⅠ.,Du托J.W.,JGeqpj叩.Res.,102,285, (1997). [8]Dothe,H.,Sharma,R.D.,Du托J.W.,Geqp句LS.Res.Letl.,24,3233(1997). [9]Swami11athan,P.K.,Strobel,D.F.,Kupperman,D.G.,KrishnaKumar,C.,Acton,L., DeMqiistre,R.,Ybe,J.H.,Paxton,L.,Anderson,D.E.,Stricklalld,D.J.,Du托J.W.,J Ge呼卸∫.月e∫.,103,11579(1998)・ [10]Ba)akrishnan,N.,Sergueeva,E.,Kharchenko,Ⅴ,Dalgarno,A.,JGeqp如.Res.,105, 18549(2000). [11]Schematovich,ⅤⅠ.,Bisikalo,D.Ⅴ,G6rard,J.C.,Ann.Geqp7w.,10,792(1992). 【12]Sharma,R.D.,Kharchenko,Ⅴ,Sun,Y,Dalgarn0,A.,JGeqp7vLS.Res.,101,275(1996). [13]Kharchenko,Ⅴ,Tharamel,J.,Dalgarno,A.,JAtmos.SolaT:乃r7:P7w.,59,107(1997). [14]Kharchenko,V.,Balakrishnan,N.,Dalgarno,A.,JAlmos.Sola7:乃r7:P7DLS.,60,95(1998)・ 【15]Morgan,J.E.,Schiff;H.J.,Can.JChem.,47,2300(1964)・ [16]Zal・e,R.N.,Herschback,D.R.,Proc.mEE,51,173(1963)・ [17]Matsumi,Y,Chowdhul≠A.M.S.,JChem.P/り岱.,104,7036(1996). [18]Tbniguchi,N.,Hirai,K.,1もkahashi,K・,Matsumi,Y,JP7p・Chem・,AlO4,3894(2000)・ [19]Matsumi,Y,Shamsuddin,S.M.,Sato,Y,Kawasaki,M.,JChem.P如.,101,9610 (1994). 80 Chapter6 PhotochemicalreactionprocessesofO(1s) andtheirimplicationsfbrOHproductionsandairglow 6.1Introduction ThephotochemicalprocessesofO(ls)atomplayanimportantroleinchemical physicsandatmosphericchemistry[1]・ForinstanCe,PrOductionoftheO(ls)atoms and their the chemicalreactionsin terrestrialatmosphere upper haveknown to be relatedtoairglowphenomena[2,3,4]・ TherearetwoenergeticallypossiblepathwaysfbrO(ls)formationfromO3 PhotoysISarOund200nm: 03+hv→0(ls)+02(X3∑g )(入<234nm) →0(一s)+02(al△g)(入<196nm). (6.1a) (6.1b) Channel(6.1a)isaspin-forbiddenprocess,Whilechannel(6.1b)isaspin-allowedone・ ExperimentalstudieshaveshownthatO(1D)andO(3p)atomsarethemqjoratomic oxygenproductsandthatO(1s)istheminoroneintheUVphotolysisofO3arOund200 nm[5,6,7,8,9].Nishidaetal.[9]haverecentlydeterminedtheO()D)quantumyield 丘omO3PhotolysISaSafunctionofphotolysISWaVelengthbetween193and225nm, andreportedamonotonicdecreaseintheO(lD)quantumyieldvalues丘om225nmto 193nm.NoinformationisavailableonthephotolysISWaVelengthdependenceofthe quantumyieldofO(ls)formationfromUVphotolysisofO3arOund200nm.Leeetal・ [5]photolyzedO3mOleculesat170-240nmusingthesynchrotronradiationandtriedto detecttheO(ls)atomsbyobservationofthe557.7-1memission.Theyobservedno discemibleemission,andreportedanuPPerlimitvalueofthequantumyieldforO(ls) formation(≦0.1%). TheO()s)formationfromN20photolysisat193nmisenergeticallypossible throughthepathway: (入<211nm). N20+hv→0(ls)+N2 (6.2) PhotodissociationproductsfromN20around200nmhavebeenstudiedindetail,and thequantumyieldsforO(1D),0(3p),andN(4s)productionsare>0.95,(5±2)×10.3, (2.1±0.9)×10 3[1,10,11,12,13,14],reSPeCtively.Felderetal.[11]reportedanupper 81 1imitvalueofthequantumyieldforO(1s)fbrmation丘・Om193nmphotolysisofN20 molecularbeamtobe≦0.04. TheO(ls)fbrmation丘・OmH202Photolysisat193nmisenergetica11ypossible throughthepathway: (入<213nm)・ H202+hv→0(ls)+H20 TheIUPAC on subcommittee gas kinetics data evaluation (6・3) reviewed the available literaturedata[15,16,17]onthephotodissociationprocessesofH202at193nmand recommendsthequantumyieldsl・70andO・15fbrOHradicalandHatomformation, respectively[18]・AnupperlimitvaluefbrO(ls)formationwasreportedtobe<0・02 basedonthekineticmeasurements[16]. KineticstudiesonthereactionsofO(ls)withsma11moleculessuchasH2,02, CO,CO2,N20,03,H20,SF6,hydrocarbons,andchlorofluoromethaneS,havebeen performedbyseveralgroups[19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36] andreviewedbyScho丘eld[37]・Inpreviousstudies,0(ls)atomsweregeneratedfrom VUVphotolysis ofN200rCO2uSlngaPulsedatomicresonancelampandtime resoIvedkineticmeasurementswereachievedbydetectingtheemissionoftheO(ls- 1D)tranSitionat557.7nm.Highpressureofraregas(mostlyAr)wassometimes reaction addedinthe systemtointensifythe greenemissionthroughtheexciplex formationbetweentheraregasandO(1s)atom.Electron-beamirradiationofagas mixtureofO2inhigh-PreSSureArwasalsoutilizedasasourceofO(ls)tostudythe reactionofO(ls)withH20,inwhichthe557・7nmemissionwasmonitoredtodetect O(1s)【30]. Inthepresentstudy,theformationofO(ls)inthephotolysisofO3at193,215 and220nmandthatforN20andH202at193nmhavebeeninvestigated,uSlngthe vuv-LIFspectroscopyteclmique・ThequantumyieldsofO(1s)inthephotolysisof O3at193,215and220nmhavebeendetermined・Thequantumyieldmeasurements havebeenmadebycomparingtheVUV-LIFsignalintensityofO(1s)withthethatof H(2s)atom producedin the193nm photolysis which ofHCl,in the H atom nuorescencehasbeendetectedbythesameVUV-LIFmethodat121・'56nm・The upperlimitsoftheformationyieldsofO(1s)&omthephotolysisofN20andH202at 193nm have also been room:temPerature reported・The rate COnStantS reactionsO(1s)+02,CO2,H20,03,andHClhavebeendeterminedbyapplyingthe pulsedlaserphotolysis/VUV-LIFdetectiontechnique・Theatmosphericimplications 82 fbr the ofthose experimentalresults OHradicalproductionandterrestrialalrglow onthe emissionhavebeendiscussed. 6.2Experimental ThedetailsoftheapparatususedinthepresentstudyareshowninChapter2 andhereonlyadescriptionrelatedtothischapterwillbegiven・TheO(1s)atoms producedfromO3PhotolysISat193,215and220nmwereprobedbytheVUV-LIF methodat121.76nm,WhichisresonantWiththeelectronictransitionofO(3sIpl←2p 】so).TheH(2s)atomsproduced丘omHCIphotolysisat193,215and220nmwere detectedbytheVUV-LIFteclmiqueat121・56nm(Lyman-α),Whichisassociatedwith electrictransitionofH(2p2n←1s2s).ThetunableVUVlaserradiationaround 121.56nmwas also same obtainedwiththe VUVlaser experimentalsetupforthe systemwiththeKr/Arce11andthefluorescencedetectionsystem・ The O3mOlecules were by prepared passlng the ultra-Pure O2mOlecules (>99.9995%,NagoyaKosan)throughacommercialozonizer・Thenumberdensityof O3mOleculesinthereactionchamberwasdeterminedbyabsorpt10nSPeCtrOmetryat 253.7nm using a mercury obtainedN20(>99・9%, penraylamp.Commercially TakachihoCo.)gaswasusedintheexperimentswithoutfurtherpurification・Aqueous hydrogenperoxidesolution(30%w/v,Wako)wasgentlydistilledundervacuumand storedinaglassbulb・TheconcentrationofH202WaSeStimatedtobe>97%丘omthe measurements absorption based at193and210nm on the reported absorption CrOSS-SeCtions[12]. Forthekineticreactionexperiments,gaSmixturesofO3andreactantswere introducedslowlylntOthereactionchamberwhichwascontinuouslyevacuatedbya rotarypumpthroughaliquidN2tr叩・0(1s)atomsweregeneratedbyO3Photolysisat 193nm(channe16・1)・WeestimatetheinitialconcentrationofO(ls)produced photolyticallytobeintherangeOf(2-12)×1010atomscm-3,Whichwasestimated fromthereportedabsorptioncrosssectionofO3(4・34×10-19cm2molecule-1)【34],the o(】s)quantumyieldfromO3Photolysisat193nm((2・5±1・1)×10-3)[33],the photolysislasernuence(9・6×1016photonscm-2),andtheO3COnCentration(7-36 mTorr).Thepartialpressuresofreactantgaseswere4-32Torr(02),7-36Torr (CO2),5-48mTorr(H20),2-12mTorr(03),and3-54mTorr(HCl)・TheHCl(> 99.9%,Sumitomo Seika)and CO2(>99.99%,ShowaTansan)gaseswereobtained 83 commerciallyandwereusedwithoutfurtherpuri丘cation・Thedistilledwaterwasused aRerfreeze-PumP-thawcycles・A11experimentswereperformedat295±2K・ 6.3Resultsanddiscussion 6.3.1QuantumyieldsfbrO(1s)fbrmationfromO3photolysisat193,215,and220nm Figure6・1showsthefluorescenceexcitationspectraforO(1s)andH(2s)atoms producedinthe193nmphotolysISOfO3andHCl,reSPeCtively・Theatomicline pronlesoftheO(3sIpl←2pIso)transitionweredirectlydetectedbyVUV-LIFmethod ar。。nd121.76nm,WhilethoseoftheH(2p2巧←1s2s)transitionweredetectedat 121.56nm.ChecksweremadetoensurethattheO(ls)LIFsignalintensitywas linearlydependentonthephotolysislaserpowerasshowninFigure6・2・Wealso O(1s)norH conhnedthatneither atoms,signalwas observed without193nm photolysislight・Figure6・3showsthefluorescenceexcitationspectrumfortheO(1s) atomsproducedinthephotolysISOfO3at215and220nm・Thequantumyieldsfor o(1s)formationintheO3Photolysisatwavelength入,◎01SO3(入),havebeendetermined bycomparingtheVtN-LIFintensitiesforO(1s)andHatomsproducedinthephotolysis ofO3andHCl,reSPeCtively・SincethephotolysisofHClat193,215,and220nm providesHatomswithaquantumyieldofunity[12],theabsolutequantumyieldsfor o(1s)formation,◎01SO3(193nm),001SO3(215nm),and◎01SO3(220nm),WereObtained bythefo1lowlngequation: S。(lS)(L)IHfHGH。l(L)[HCl]4H ×1 ◎3言IS)(九)= SH(九)I。(一S)f。(一S)G。,(L)[0,]¢0(1S)' (6.4) (at入=193,215,and220nm) whereSo(lS)(入)andSH(九)arethepeakareasofthenuorescenceexcitationspectraofthe O(ls)andHatomsinthephotolysisofO3andHCl,reSPeCtively・Io(1S)andI=arethe probelaserintensitiesattheresonancewavelengthsofO(ls)(121・76nm)andHatoms (121.56nm),reSPeCtively・fb(1S)and玩arethetransitionprobabilitiesforO(3sIpl← 2pIs。)andH(2p2Pj←1s2s)opticalexcitation,reSPeCtively・Go3(入)andGHCl(入) photoabsorption cross-SeCtions HClat ofO3and respectively.¢0(lS)and¢Hindicate the detection photolysis efnciencies wavelength ofthe of九, resonance fl。。,eSCenCe丘。mtheexcitedstates,0(3sIp.)andH(2p2n),reSPeCtively,Whichare preparedbytheVUVlaserirradiation・Thevaluesof玩andfb(1S)Weretaken舟omthe 84 NISTatomicspectradatabase[38].ThevaluesofGo3(入)andGJICl(入)weretaken丘om MolinaandMolina[39]andSanderetal・[12],reSPeCtively・ThevaluesofSo(1S)(入) and S]l(入)were obtained byintegrating the atomicline thefluorescence shapesin excitationspectrafbrtheO(ls)andHatoms,reSPeCtively.Underourexperimental COnditions,the quenching ofthe Becausethetotalpressuresinthe O excited and H atoms bythe gasesis negligible. chamberwerelessthan1.2Torrandtheradiative decaylifttimesoftheexcitedstatesarelessthanseveralnanOSeCOnds.Thedetection emciency of the PMT systemis to assumed be constant between the resonanCe nuorescencewavelengthsofO(3sIpl-2pIso)andH(2p2n-1s2s)at121.76and121.56 nm,reSPeCtively,Sincethedifftrenceofthewavelengthsisverysmall.Theelectronic stateo(3sIpl),WhichispreparedbytheVUVlaserexcitationat121.76nm,emitsthe twotransitionlines,3pIpl→2pIsoat121・76nmand3pIpl→2pID2at99・50rm・ Thelattertransitionisnotdetectedbythephotomultiplierthroughthe LiFwindow. TheA-ValuefortheO(3pIp.→2pIso)transitionisAl=2.06×108sec.1andthatforthe O(3pIpl→2pID2)isA2=5.06×108sec.1.weusedtherelativevaluesofthe detectionefncienciesasOo(1S)=Al/(41+A2)and¢H=1. Thevaluesof◎。ISO3(193nm)=(2.5±1.1)×10-3,◎。1SO3(215nm)=(1.4± 0.4)×10-4,and◎。1SO3(220nm)=(5±3)×10-5werethusdetermined,Wherethe quotederrorswerethe2GStatisticaluncertaintyoftheexperimentaldata.Thereare twoenergeticallypossiblechannels(6.1a)and(6.1b)forO()s)formationintheUV photolysisofO3.ObservationoftheO(1s)formationatboth215and220nmisa cleareVidencethatthespin-forbiddenchannel(6.1a)isresponsibleforO(一s)formation fromO3PhotolysISatthosewavelengths.Intersystemcrosslngfromtheexcitedsinglet StatetOatripletstatecorrelatingtothechannel(6.1a)productsordirectphotoexcitation onto the triplet state(S)can accountforthe O(1s)formation.Aweak spin-Obit interactionbetweentheslngletandtripletexcitedstatesorsmalltransitionprobability fromthegroundtothetripletstate(S)mayresultintheverysmallquantumyieldfbr O(1s)formation.Otherspin-forbiddendissociationprocessesofO(lD)+02(X3∑g-), 0(3p)+02(alAg),0(3p)+02(bl∑g')inthephotolysisofozonehavebeenreportedat longerwavelengths(∼32511m)withthequantumyieldsofO.08-0.10[40]. 6.3.2 DoppIcrpromeofO(1s)produced蝕・OmthephotolysisofO3at193nm DopplerpronleofO(1s)wasanalyzedtoinvestigatetheO(1s)production 85 processin the photolysIS the OfO3at193nm・Figure6・4shows nuorescence excitationspectrumofthetranSlationa11ythermalizedO(ls)atomsandthatofthe nascento(1s)atomsfromthephotolysisofO3at193nm・ThethermalizedO(1s) spectrumshowninFig・6・4awasmeasuredwith17mTorrofO3in2TorrofHebufftr gas,atthetimedelayof3LISbetweenphotolysISandprobelaserpulses・Thenascent O(ls)spectrumshowninFig・6・4bwastakenwith3mTorrofO3and150mTorrofO2, atthedelaytimeof70ns・TheFWHMofthespectralpro丘1eofthethermalizedO(ls) Gaussian o.54 a was 6.4a). Assumlng atoms cm-1with shape(Fig the Maxwell-BoltzmanVelocitydistributionsforthethermalizedO(ls)atroomtemperature, theprobelaserlinewidthiscalculatedtobeO・48cm-1・Figure6・4showsthatthe spectrumOfthenascentO(1s)hasabroaderfbaturethanthatofthethermalizedO(1s)・ ThisisduetoDopplerefftctsoftheO(1s)fragmentvelocitycomponentsalongthe propagationdirectionoftheprobelaser[41]・WehaveexaminedtheDopplerprofiles forthemaximumtranSlationalenergyoftheO(ls)atomsproducedinthe193nm photolysisofO3・FortheO(ls)+02(X3=g-)process(Chamme16・1a),themaximum possibleDopplershi氏iscalculatedtobeO・89cm-1・Ontheotherhand,fortheO()s)+ 02(al△g)process(Channe16・1b),themaximumDopplershi氏iscalculatedtobeO・23 cm・1,WhichcorrespondstothecasethatthewholeavailableenergylSreleasedintothe solidandtwodashed tranSlationalfreedominthe193nmphotolysisofO3・Two curvesinFig・6・4bindicatetheexpectedmaximumspectralshi氏sconvolutedwiththe probelaserlinewidthfortheO(1s)+02(alAg)(Channe16・1b)andO(1s)+02(X3=g ) (Channe16.1a)processes,reSPeCtively・Theexperimentallyobtainedspectrumclear1y indicatesthattherelativelyfastcomponentsoftheO()s)carmotbeexplainedby channel(6.1b).Thissuggeststhatchamel(6・1a)shouldberesponsibleforO(1s) formationinthephotolysisofO3at193nm,althoughthecontributionofcharmel(6・1b) cannotberuledout.Observationofthespin-forbiddenchannel(6・1a)inthephotolysis ・OfO3at193nmisreinforcedwithasma11butnon-negligibleformationyieldofO(1s) through charmel(6.1a)atlonger photolysis wavelengths of215and220nm describedintheprevioussection・ 6.3.3Quantumyields伽rO(1s)伽rmationn・OmN20andH202photolysisat193nm TheO(1s)formation丘・OmthephotodissociationofN20andH202at193nmwas alsostudiedinthiswork.ThepartialpressuresofN20andH202inthechamberwere 86 as 230andllOmTorr,COrreSPOndingto7・4×1015and3・6×1015moleculescm-3, respectively・Thesesampleswerephotolyzedat193nm(∼10mJpulse-))・Usingthe sameeXPerimentalsetup,theO(ls)fbrmation丘omO3Photolysisat193nmwasprobed justbeforetheN20andH202eXPerimentswereperformed・TheO3COnCentrationin thechamberwas3.8×1014moleculescm・3asestimatedbytheabsorptlOnSPeCtrOmetry・ TheO(】s)atomsarePrOducedinthe193nmphotolysiswiththequantumyieldof ◎。ISO3(193nm)=(2.5±1.1)×10-3.weestimatedtheminimumdetectablelimitfor O(ls)tobe3×108atomscm.3forsignal-tO-nOiseratioofl・ No discernible LIF N20and observedfrom signalofrO(1s)was H202 photolysisat193nmwhilesigni丘cantLIFsignalofO(ls)formationwasobserved丘om O3PhotolysIS underthe sameeXPerimeptalconditions・Consideringtheavailable absorptioncross-SeCtionsofO3[39],N20[12],andH202[12]at193nm,Wehave determinedtheupperlimitvaluesofthequantumyieldsforO(ls)formationinthe193nm photolysisofN20andH202tObe◎01SN20(193rm)≦8×10-5andOoISH202(193nm)≦3 ×10-5,reSPeCtively・Inthisstudy,theHatomsproducedfromH202PhotolysISat193 nmwerealsodetectedbytheVUV-LIFmethodat121・56nm・Thequantumyield measurementwasmadebycomparingtheVUV-LIFsignalintensityofH(2s)atom producedinthe193nmphotolysISOfH202Withthatproducedinthe193nmphotolysis ofHCl.TheHatomquantumyieldwasdeterminedtobeO・20±0・03,Wherethe quotederrorswerethe2GStatisticaluncertaintyoftheexperimentaldata・ Theproductchannelsandtheirbranchingratiosinthephotodissociation ofN20andH202at193nmaresummarizedinTables6・1and6・2,reSPeCtively・In thephotolysisofN20at193nm,0(1D)+N2PrOductcharmelisadominantprocess withthebranChingratiowhichisclosetounityandotherchannelsareminor(Table6・1)・ The theoreticaland shownthat experimentalstudies[42,43,44,45,etC・]have dissociationofN20around200nmoccursmainlyviathe21A・state,andthatthe nearbyllAI・state may beinvoIvedin the dissociationprocess・An adiabatic symmetry correlationdiagramforN20(N-NO,N20,N2-0)systemassumingaCs suggeststhattheO(1s)formationisnotfavorablefrombothstates[42]・Inthe photolysisofH202at193rm,thesumofthequantumyieldfbrOH+OHandH+HO2 product channels canaCCOuntfor a H202loss uncertaintiesasshowninTable6.2[16,17]. 87 quantum yield ofl・O with、the 6.3.4ReactionkineticsofO(ls)withatmosphericmoIcculcs AtypicalexampleofthetemporalpronleofVUV-LIFintensityofO(】s) fo1lowlngthe193-nmlaserirradiationofagasmixtureofO3andO2isshowninFigure 6.5.ThepartialpressuresofO3andO2Were15mTorrand750mTorr,reSPeCtively・ ThetemporalVUV-LIFsignalofO()s)exhibitsaninitialjumpduetophotolytic formationofO(1s)fo1lowedbyaslowdecayduetoitsremoval・Thetranslationa11y hotO(ls)atomsproduced丘・OmreaCtion(6・1)arethermalizedwithin1LISunderour experimentalconditions,aSObservedbymeasurementsofthespectralbroadeningofthe resonanCelineofO(ls)at121・76nm・InthereactionsofO(】s)withthereactants(X), thetemporalbehaviorofO(ls)atomsinthelongtimedomain(t>1匹S)isgovemedby thefo1lowlngPrOCeSSeS: kx 0(ls)+reactantS→PrOducts (6・5) 0(1s)→loss(bydiffusionandgasmixtureflow)kd・(6・6) TheO(1s)concentrationasafunctionofreactiontime,[0(1s)]t,Canbeexpressedas fbllows: [0(1s)].=[0(1s)]0×eXP(-k,t) (6・7) 〝=板【Ⅹ】+毎2[02]+払3[03]+れ (6・8) [0(1s)]tand[0(1s)]aretheconcentrationsofO(1s)atdelaytimetandO,reSPeCtively・ [X]istheconcentrationofreactantXinthechamber・k'isthedecayrateobservedfor theO(1s)concentration.Thenon-ZerOinterceptkdatZerOreaCtantPreSSurereSults fromtheescapeofO(ls)atomsftomtheprobingzone・Single-eXPOnentialdecay c。rVeS Were Obtained fbrtemporalpro丘1es ofO(1s)as showninFig・6・5・The pseudo-nrSt-OrderrateconstantHforaparticularreactantpressurewasderivedbya nonlinearleast-SquareS丘tanalysis・Theresultantdependenceofthedecayrates,kt- (ko3[03]+kd),OnthenumberdensityofO2forO(1s)+02reaCtionisshowninFigure 6.6.Linearleast-SquareS丘tanalysISOfthedatainFig・6・6yieldedthebimolecularrate constantOfko2=(2.85±0・31)×10-13cm3molecule-1s-l・Westudiedthereaction kineticsofO(ls)+02,CO2,H20,03,andHCltodeteminethebimolecularrate constantSko2,kco2,kH20,ko3andkHClat295±2K・Plotsofthedecayratesversusthe densities ofthe reactantsare Shownin bimolecular Figs・6・6and6・7・The rate constants,kco2=(3.09±0・29)×10-13,kH20=(6・38±0・38)×10-10,ko3=(4・63±0・45) ×10-10andkHCI=(5.47±0.27)×10-10cm3molecule-1s-l,WereObtainedfromtheslope of the best一丘t straightlines・The quoted 88 uncertainties of the resultsare the 2cT-Statisticalerrors. Table6.31iststheroom-temPeraturebimolecularrateconstantSOftheO(ls) reactions,lnWhichboththeresultsfromthepresentstudyandpreviousstudiesare includedfbrcomparison.ReactionprocessesofthemetastableO(1s)atomshavenot beenextensivelyinvestigated.WhileO(lD)atomswhichhavelessenergythan0()s) reactwithsmallmolecules veryefncientlylnalmostevery collision,thekinetics of O(ls)appearstobehighlydependentonthenatureofthecollisionpartner[37]. Therateconstantdeterminedinthisstudyat295±2KforO(ls)+02isin agreementwiththeresults Within the uncertainties ofAtkinsonandWelge[26]and associated aslistedin Table6.3.The Capetanakis result etal.【34] obtainedin the PreSentStudyisalsoclosetothevaluereportedbySondermannandStuhl[33].The branchingratiosfortheproductionofO(1D)andO(3p)ftomO(ls)+02WererePOrted tobeO・31±0・07andO.69±0.07,reSPeCtively[27],Whiletheelectronicstatesofthe PrOductO2mOleculeareunknown.Inthepresentstudy,therateconstantvaluefbrthe O(ls)+02reaCtionhasbeenprovidedusingthenovelexperimentalmethodwhichis difftrentfromthemothodsusedinthepreviousstudies. Therateconstantkco2deteminedinthisstudyfbrO(1s)+CO2isconsistent WiththevaluesofBlacketal.[21],Filsethetal.[23],AtkinsonandWelge[26],and Blacketal・[29]withintheunCertainties・SlangerandBlack[31]studiedtheproduct charmelsinthereactionofO(1s)+CO2andreportedthebranchingratiosforO(3p)and O(1D)productionstobeO.37±0.05andO.63±0.05,reSPeCtively.Incomparisonwith O(1s),thequenchingofO(1D)byCO2isknowntobeextremelyefncientwiththe room-temPerature activation rate COnStantOfl・1×10-10cm3molecule-1s-1withno energy[12].Those observationsareindicative orlittle that the deactivation mechanismforO(ls)+CO2isdi脆rentfromthatforO(1D)+CO2. WehavedeterminedtherateconstantkH2。forO(1s)+H20.Thisisthe丘rst reportofthereactionrateconstantwithdennitiveerrorlimitsforO(ls)+H20.As listedinTable6・3,thekH20Valuesinthepreviousstudiesrangedfrom7×10-11to5× 10-10cm3molecule-1s-1・Theresultobtainedinthepresentstudyisclosetothereport OfSlangerandBlack[31].Averylargerateconstantforthisreactionisindicativethat reactivescatterlngaSWellasphysICalquenchinglSillCludedintheremovalprocessof O(ls)incollisionswithH20.SlangerandBlack[31]suggestedthebranchingratiosof O.30±0.06,0.09±0.06andO.61±0.06fbrproductchannelsO(1D)+H20,0(3p)+ 89 H20,andOH+OH,reSPeCtively・ Therateconstantk。3determinedinthisstudyforO(ls)+03isconsistentwith theformermeasurementsbyLondonetal.[24]andKorolevaandKhvorostovskaya[28] withintheunce,tainties.SincetherateconstantforO()s)+03isaslargeasthegas kineticcollisionlimit,itislikelythatthereactiveprocessestoproduceO+0+02Play animportantroleinthisreactionaswellasO(lD)′0(3p)formationthroughthephysical quenchingofO()s). ForO()s)+HClreaction,therateconstanthasnotbeenreportedbefore,and thepresentstudyprovidesa丘rstdeterminationofhc]=(5・47±0・27)×10-10cm3 molecule-1s-l.ontheanalogyoftheveryfastO(1s)+03andO(ls)+H20reactions, itisprobablethatreactivescatteringaswellasphysICalquenchinglSincludedinthe removalprocessofO(ls)incollisionswithHCl・BothCl+OHandClO+H productionsareenergetica11yfeasibleasproductchannelsinthereactivescatterlng PrOCeSS・ 6・4Atmosphericimplications 6・4・10Hproductioninthestratosphereandmesosphere Inthestratosphereandmesospherebelowabout60km,PrOductionofO(1D) fromUVphotolysISOfO3isfo1lowedbygenerationofchemica11yactivespeciessuch asoHradicalsthroughthereactionofO(lD)withH20,WhilemostofO(lD)is quenchedtoO(3p)bycollisionswithairP2andO2)[46]: 0(lD)+H20→20H O(1D)+N2→0(3p)+N2 0(lD)+02→0(3p)+02. TheO(1s)atomsproduced丘omO3PhotolysismightgenerateOHradicals throughthereactionofO(1s)withH20inthestratosphereandmesosphere・The reactionrateofO(ls)withH20isveryfastwhilethequenchingrateofO(1s)withN2 anO2areratherslow(Table6・4): 0(1s)+H20→PrOducts O(1s)+N,→0(1Dor3p)+N2 0(ls)+02→0(lDor3p)+02. ThebranchingforOHformationcharmelinreaction(6・12)wasreportedtobeO・61[31]・ TheatmosphericOHproductionrates丘omO(lD)andO(ls)reactionswithH20asa 90 functionofthealtitudebetween20and60km,Ro]1)DandRo[JIS,havebeenestimated uslngthefo1lowlngeXPreSSions,reSPeCtively; た。.9[H20]Y諾 月諾= ん6.9[H20】+た6.,。脚去]+た6.‖[02] ×【03]上伸)G。3(入)鴫。,(入)瓜 (6.15) 月誌= た6.12[H20】Y浣 ×[03】l叩)G。3(九)鴫s)(入)瓜 た6.12[H20]+ん6.13脚2]+た。.14[02] (6.16) whereLiswavelength,F(入)isthesolarnuX,Go3(入)istheabsoIPtioncrosssectionof ozone,◎oIDO3(入)and◎oISO3(入)arethequantumyieldsofO(ls)andO(1D)fromthe photolysisofozoneat入,reSPeCtively,k6・9,k6・10,k6・11,k6・12,k6・13,andk6・14arethereaction rateconstantSfbrreactions(6.9),(6.10),(6.11),(6.12),(6・13),and(6・14),reSPeCtively・ TherateconstantSadaptedarelistedinTable6・4・Thek6・12Valuedeterminedinthe presentstudywasused・Thetemperature-dependentrateconstantsk6・14forO(ls)【34] andk6.10andk6.11forO(1D)[12]reactionsweretakenintoaccount・Yo=lDandYo=1Sare molaryieldsforOHformationfromO(1D)+H20reaction(Yo=1D=2)[18]andO(1s)+ H20reaction(YoHIS=1・22)[31]・FortheO(ls)quantumyields,itwasassumedthatthe yieldsfo1lowlinearfunctionsintherangeS193-215runand215-220nm・Below193 nm,theyieldwasassumedtobe2・5×10-3・Above220nm,mOnOtOnicdecreaseofthe yieldfrom5×10-5at220nmtozeroat234nmwasassumed・TbevaluesofF(九)are calculatedusingtheprogrampresentedbyKyllingetal・[47]・TbevaluesoftemperaturedepepdentGo3(九)aretaken丘omthedatapresentedbyMolinaandMolina[39]・Theloss ofO(1s)isdominantbyreaction(6・14)atallaltitudesbetween20and60km・Radiative decayandthereactionwithOatomareunlmportantaSthelossprocessesofO()s)inthe altituderangeOf20-60km・ Figure6.8showsthepercentagefractionoftheOHproductionfromO(1s)+ H20relativetoO(1D)+H20,RoHIS′RoHIDxlOO,aSafunctionofaltitudebetween20 and60kmatmid-1atitudesatnoon(SZA=500),WhereRoHISistheOHproductionrate 丘omO(ls)+H20reactionwhileRoHIDisthat丘omO(1D)+H20reaction・Ithasbeen fbundthatthemaximumcontributiollOfO(1s)+H20reactionintheOHproduction ratesappearsat30kmaltitude,andthefractionrelativetoO(1D)+H20reactionis about2.5%. Thesolaractinicfluxdistributionandphotoabsorptioncross-SeCtionsofN20 91 andH202reSultinthephotodissociationofthosemoleculesaround200nminthe stratosphere[12]・Therefbre,WerOughlyhaveestimatedtheupperlimitsoftheO(ls) productionratefromN20andH202relativetothatfromO3PhotolysIS,aSSumlngthe wavelength-independentconstantvaluesoftheO(1s)quantumyieldbelowthreshold wavelengthsforchannels(6・2)and(6・3),8×10-5and3×10-5,reSPeCtively・The o(ls)productions丘omN20andH202relativetothatfromO3areeStimatedtobe<10-3 and<10-5,reSPeCtively,atallaltitudesbetween20and60km,uSlngthecross-SeCtions [12],aCtinicflux[47],andnaturalabundanCeS[46]・ThenaturalabundancesofN20 andH202rangefroml・1to270ppbvandfromO・44tollOpptv,reSPeCtively,inthe altituderangeof20-60km[46].TheO(1s)formationfromN20andH202Photolysis, evenifitoccurs,isnotslgni丘cantastheOHsourceinthestratosphereandmesosphere・ 6.4.2Dayglowemissioninthemesosphereandlowerthermosphere TheopticalemissionoftheatomictransitionofO(1s-1D)at557・7nmis knownasagreencomponentindayglow,nightglow,andauroraspectra・Theavailable databaseonthegreenlinedayglowemissionhasrecentlybeengreatlyexpandedasa resultofobservationsmadewiththeWINDIIonboardtheUARS[48].TheVERhas beenobtainedoverthealtituderange80to300km丘omtheWINDIIobservation・The WINDIIdatashowedthatthepeakVERaround90-100kmaltitudewaslargerbya factorofthreeormoreinthedaytimethanatnight[48,49,50,51]・Theobservation indicates thatfurther excitation should processes beinvoIvedin to addition the three-bodyrecombinationprocessofatomicoxygen(Barthmechanism)・TheBarth mechanismisknowntobethedominantexcitationprocessofthenightglowemission peakaroundlOOkm[52],thatis, where O2*is 0(3p)+0(3p)+M→0;+M (6・17) 02*+0(3p)→02(Ⅹ3∑ (6・18) electronically excited g)+0(1s), state(S)ofoxygen molecule・Shepherdand co-WOrkers[49,50,51]haveproposedthatphotodissociationofO2bythesolarradiation between・100and130nm,eSPeCia11yatLyman-β(102・6nm),isprimarysourceofO(1s) forthisemissionpeakinthedaytime・ wehaveestimatedtheimpactofthedirectformationofO(1s)丘omtheUV photolysISOfO30nthegreenlinedayglowemission・TheVERisobtainedbytaking intoaccountthefbllowingprocessesinadditionto.reactions(6・12)and(6・14)atthe 92 altitudeabove50km: 0()s)→0(lD)+hv(557・7run) (6.19) 0(ls)→0(3p)+hv(297・2nm) (6.20) 0(ls)+0(3p)→0(1Dor3p)+0(3p) (6.21) 0(1s)+02(a]△g)→PrOducts・ (6.22) Assumingthephotochemicalsteady-StateCOnditions,theVERofO(ls)fromO3 photolysis,77(03),Canbecalculatedasafunctionofaltitudebetween50-100kmusing thefo1lowlngeXPreSSion: d6.19 り(03)= [02]+た6.21[0]+た。.22【02(al△g)】 」6.19+4.2。+た。.12【H20]+た6.14 ×[03]l叩)G。3(畔昭s(九)瓜・ whereA.9andA2。are the Einstein coefncientsfor (6・23) channels(6・19)and(6・20), respectively,k6.12,k6.14,k6.21,andk6.22aretherateconstantSforreactions(6・12),(6・14), (6.21),and(6・22),reSPeCtively,and◎01SO3(入)isthequantumyieldofO(ls)&omO3 photolysisat入・TheEinsteincoefncientsandrateconstantsusedinthecalculations arelistedinTable6.4.ThesolarfluxspectraF(入)weretakenfromShimazaki[53] andKyllingetal・[47]・Theatmosphericdensitiesandtemperaturesoftheneutral weretakenfromtheMSISE-90modelatmosphere[54].ThedensitiesofO3Were calculatedontheassumptionofthephotochemicalsteady-StatebetweenO3andO(3p)・ ThedensitiesofO2(al△g)werecalculatedusingtheVERprofi1eofthedayglowO2(al△g- X3=J)(0-0)bandreportedbyEvanSetal・[55]・Figure6・9showstheestimatedVER pro丘IeforO()s)fromO3Photolysisasafunctionofaltitude・ThedaytimeVER promeobservedbyWINDIIandtheVERpro丘IeforO(ls)producedfromtheBarth mechanism(6.17)-(6・18)arealsoplottedinFig・6・9fbrcomparison・TheWINDII emissionprome,WhichwasanalyzedbyShepherdetal・[50],WaSObtainedataSZAof 47.90andthel。Caltime。flO.5hr.TheVERpro丘1eofO(ls)producedfromtheBarth rneChanismwascalculatedusingtheparameterSOfMcDadeetal・【52],Whichwere 。btained丘。mthe,。CketmeasurementsofboththeO(1s)nightglowemissionratesand atomicoxygendensities・InFigure6・9,tWOdistinctpeakshavebeenidentinedinthe VERpro丘1eofO(1s)produced丘omtheUVphotolysisofO3,Oneisaround90km altitudeandtheotherisbelow50km.Thepeaksprobablycorrespondtotwopeaksin thenumberdensitypronleofO3,Oneisaround85kmandtheotherisaround30km 93 [56,57].ThepeakvalueofVERforO(ls)produced丘omtheO3Photolysisaround90 kmis∼1photoncm・3s-1,Whilethatoftheobservedpronleis∼700photonscm-3s-1・ Thisresultindicatestllatthe O(ls)formationintheUV photolysis Slgni五cantasanexcitationprocessofgreenlinedayglowaround90kmaltitude・ 94 ofO3is not (s}モ⊃.q」且倉su望u一 1 0 (slモコ.q」且倉su望u一 1 0 △v(Cm-1) Figure6・1・ThefluorescenceexcitationspectraofO(ls)producedfromthephotolysis ofO3at193nmandHatomsfromHClat193nm,1nWhichtheVUVprobelaser wavelengthwasscarmedovertheDopplerpro丘1esofeach丘agments・Thedelaytime betweenthephotolysISandprobelaserpulseswas150ns・ThepartialpressuresofO3 andHClinthereactioncellwere20and4mTorr,reSPeCtively・ 95 (slモ⊃.q」且倉su甲7ニ山コ(s盲 Photo[ysisIaserpower(arb.units) Figure6.2.LIFsignalintensityforO(1s)versusthephotolysislaserpower・The photolysislaserpowerwaschangedwhilemonitoringtheO(ls)LIFsignalat121・76 nm.ThetimedelaybetweenthephotolysISandprobelaserpulseswas150nsandthe pressureofO3inthereactioncellwas20mTorr・Solidlineistheresultsoflinear weighted丘tanalysISOftheexperimentaldata・ 96 1 (.q」且倉su望u一 5 0 1 (.q」且倉su望u一 5 0 △v(Cm-1) Figure6.3・FluorescenceexcitationspectraofO(1s)produced丘omthephotolysisof o3at215and220nm・Thespectrumwasmeasuredatthepressuresof25mTorrO3 andl.2TorrofO2,andatthetimedelayoflOOnsbetweenthephotolysISandprobe laserpulses・ 97 (b) Figure6.4.(a)FluorescenceexcitationspectrumofthermalizedO(1s)atoms・The thermalizedspectrumWaSmeaSuredwith17mTorrO3in2TorrofHebu脆rgas,anda time delay of3トLS between photolysIS and probelaser pulses・The solid curve indicatesaGaussianShapewithFWHMofO・54cm-1,Whichntstheobservedspectrum・ (b)FluorescenceexcitationspectrumofnascentO(1s)丘omthephotolysisofO3at193 nm,Whichwasmeasuredatthepressuresof3mTorrofO3and150mTorrofO2atthe timedelayof70ns・Solidanddashedcurvesindicatetheekpectedmaximumspectral shi氏s(0.23andO.89cm-1)convolutedwiththeprobelaserlinewidth(0・48cm-1)when O(1s)+02(alAg)(Channe16・1b)andO(1s)+02(X3=g assumed,reSPeCtively(SeeteXt). 98 )(Channe16・1a)processeswas (s}.≡⊃.q」且倉su茎こコ(s盲 0 5 DeIaytime山S) Figure6.5.TypicalexampleofthetemporaldecaycurveofO(1s)fo1lowingthe 193-nmlaserphotolysisofthegasmixturecontaining16mTorrofO3in750mTorrof O2at295K.TheO(1s)atomsweredirectlydetectedbytheVUV-LIFspectroscopy teclmiqueat121・76nm・ 99 4 (TUむSの○こむ扇」ゝ3占 [Reactant](1017mo)ecuIescm-3) Figure6.6.Plot of pseudo-nrSt-Order-loss of O()s)atoms,kx[X],VerSuS concentrationofthereactants(OPendiamond=02andopeninvertedtriangle=CO2)・ Solidlinesaretheresultsoflinearweighted丘tanalysISOftheexperimentaldata・ 100 the (TUむSsOこ¢扇」倉崇占 5 【Reactant](1014moIecuIescm-3) Figure6.7・Plot ofpseudo一丘rst-Orderloss ofO()s)atoms,kx[X],VerSuS concentrationofthereactantS(OPenSquare=H20,OPenCircle=03,andopentriangle= HCl).Solidlinesaretheresultsoflinearweighted丘tanalysisoftheexperimental data. 101 the 0 (∈豊むP⊃茎< 0 0 (RoHIS/RoHID)×100 Figure6.8.PercentagefractionofthecalculatedOHproductionfromO(1s)+H20 relative to O(1D)+H20,RoHIS/RoHID xlOO,aS mid-latitudes(SeeteXt). 102 afunction ofaltitudein the (∈呈むP⊃l≡< 10-1 100 101 102 103 volumeEmissionRate(Photonscm-3s-1) Figure6.9.ThecalculatedVER(VOlumeemissionrate)pro丘1esofO(1s)produced fromO3Photolysis(SOlidline)andthatofO(1s)producedbytheBarthmechanism (dottedline),andadaytimeVERpro丘1eobservedbyWrNDIIfbrasolarzenithangle (SZA)of47.90andthelocaltimeoflO・5hr(dashedline)[50]・ 103 Table 6.1. Photodissociation channels and their branching ratiosin the PhotodissociationofN20at193nm・ cham一el入1..resh。・da Branchingratiob N2+0(lD)341 ∼1.O 慧ごRe指・ Sanderetal.(2003)・【12] Greenblattand N+NO 248 ≦8×10 NO 3 Ravishankara(1990)[10] (2.1±0.9)×10■3 N Thiswork N2+0(3p)742 (5±2)×10-3 0(3p) Nishidaetal.(2004)[14] N2+0(ls)211 ≦8×10-5 0(1s) Thiswork N2+0(ls)211 ≦0.04 0C Felderetal.(1991)[11] N+NO a. 248 Thermochemicalthresholdforeachchannelinn皿. b.Quoteduncertaintiesincludethe2G-Statisticalerrors. c.Felderetal.(1991)[11]detectedthetranSlationalenergydistributionofO atolnSWithtime-Of-nightmassspectrometryinthemolecularbeam Photodissociationexperiment・ 104 Table 6.2. Photodissociation channels and their branching the ratiosin PhotodissociationofH202at193nm・ 器;ごRe鈷・ channel入threshoIda慧hing Vaghiianietal.(1992)[16] 20H(Ⅹ2n) H+HO2C 325 0(3p)/0(lD) 0.76±0.09 0H 0.61±0.07 0H Schiffrnanetal.(1993)[17] 0.20±0.03 H Thiswork 0.25d±0.02 H Gerlach-Meyeretal.(1987)[15] 0.16±0.04 H Vag旬ianietal.(1992)[16] <0.001 0(3p) Vag坤弧ieJαJ.(1992)[16] ≦3×10.5 0(1s) Thiswork <0.02 0(3p) Vagljianietal.(1992)[16] 555 829/358 +H20 0(ls)+H20 a. 213 ThermOChemicalthresholdforeachcharmelinnm. b.Quoteduncertaintiesinclude2G-Statisticalerrors・ c.2H+02Channelisalsopossible,入thre,h。)d=209nm・ d.ThevalueofO.12±0.01whichwasorlglnallyreportedbyGerlach-Meyeretal・ [15]hasbeenmodi丘edusingthenewcross-SeCtionvaluerecommendedbyNASA [12]andbyNicovichandWine[58]・ 105 Table6.3.SummaryoffbrmerandpresentstudiesonthereactionkineticsofO(ls) withO2,CO2,H20,03,andHClatroomtemperature・ 02 ka O(ls)detectionmethod Ref§. 1.0×10-13 0(1s→1D)Emissionb YoungandBlack(1966)【19] 3.2×10-13 O(1s→1D)Emissionb StuhlandWelge(1969)[20] 5×10-13 O(ls→lD)Emissionb Blacketal.(1969)【21] 3.7×10-13 O(1s→1D)Emissionb FilsethandWelge(1969)[22] (3.6±0.4)×10-13 O(ls→1D)Emissionb FilsethandStuhl(1970)[23] (2.57±0.3)×10 O(ls→1D)Emissionb 13 O(1s→1D)Emissionb 2.1×10-13 AtkinsonandWelge(1972) 【26] Slangeretal.(1972)【27] Korolevaand (5±3)×10 CO2 O()s→1D)Emissionb 13 Khvorostovskaya(1973)[28] (2.58±0.08)×10 13c O(1s→1D)Emissionb Sondermannetal.(1990)[33] (2.64±0.16)×10 13 O()s→lD)Emissionb Capetanakisetal.(1993)【34] (2.85±0.31)×10 13d VUV-LIF Thiswork 2.5×10-川 0(1s→lD)Emissionb YoungandBlack(1966)【19] 4.6×10-13 O(ls→1D)Emissionb StuhlandWelge(1969)【20] 3×10-13 O(ls→1D)Emissionb Blacketal.(1969)[21] O(ls→1D)Emissionb FilsethandStuhl(1970)[23] 3.9×10-13 O(1s→1D)Emissionb Londonetal.(1971)【24] 5×10-13 O(1s→lD)Emissionb Welgeetal.(1971)[25] (3.31±0.3)×10-13 O(ls→1D)Emissionb AtkisonandWelge(1972)[26] (3.8±0.4)×10 O(ls→lD)Emissionb Blacketal.(1975)[29] (3.6±0.4)×10 13 13 (3.80±0.22)×10 13 O(1s→1D)Emissionb Capetanakisetal.(1993)【34] (3.09±0.29)×10 13d VUV-LIF Thiswork 106 H20 ∼4×10-10 (7.0±3.5)×10 11 (1.27±0.15)×10 O(1s→lD)Emissionb FilsethandStuhl(1970)【23] O(3p)detectionf (6.38±0.38)×10 (5.8±1)×10 FilsethandWelge(1969)[22] 10e O()s→lD)Emissionb 5.0×10-10 03 0(ls→1D)Emissionb 10d VUV-LIF 10 Binghametal.(1976)[30] SlangerandBlack(1978)[31] Thiswork 0(1s→lD)Emissionb Londonetal・(1971)[34] Korolevaand (8±3)×10.10 (4.63±0.45)×10 0(ls→】D)Emissionb Khvorostovskaya(1973)【28] 10d vuv-LIF Thiswork vuv-LIF Thiswork HCl(5.47±0.27)×10,10d a・BimolecularreactionrateconstantatrOOmtemPeratureinunitsofcm3molecule-) s-1. b・EmissionarisingfromO(ls-1D)transitionat557.7nm. C.Theerrorlimitsareestimatesof3G. d.Theerrorlimitsareestimatesof2G. e.TheerrorlimitsareeStimatesoflG. f ProductsanalysiswasperformedwithO(3P)detectionusinganatOmicoxygen lamp[31]. 107 Table6.4.AdoptedreactionrateconstantS(k)andEinsteincoefficients(4) Reactions kaandAb 6.9 毎.9=2.2×10 6.10 毎・10=3・2×10 Refb. 10 Sanderetal.(2003)[12] Sanderetal.(2003)[12] 】1exp(芋) Sanderetal.(2003)[12] 丘…=1・8×10-‖exp(ギ) 6.14 毎.12=6.38×10●10 Thiswork 毎.13<5×10 Okabe(1978)[1] 17 k6.1.=2.64×10,13exp(ー812+18.2T2、Capetanakisetal.(1993) [34] 」6.18=1.26 Martinetal.(1999)[38] 月6.19=7.54×10-2 Martinetal.(1999)[38] 毎.20=2×10 SlangerandBlack(1981) 14 【59] 鬼6.21=2.6×10-柑 KennerandOgryzlo(1982) 【60] a.incm3molecule-1s.1 b.ins-l 108 RefbrencesfbrChapter6 [1]Okabe,H.PhotochemistTyQrSmallmolecules,Wi】ey-Interscience,NewYork,1978・ [2]Wayne,R.P.,ChemistTyQfAtmo甲heres,thirdedn・,OxfbrdUniversityPress,NewYork, 2000. 【3]Ghosh,S.N.,meNeutralこ如,erAtmo甲here,KluwerAcademicPublishers,Dordrecht, 2002. [4]Slanger,T.G.,Cope)and,R・A・,Chem・Rev,103,4731(2003)・ [5]Lee,L.C.,Black,G.,Sharpless,R・L・,Slanger,T・G・,JChem・P句岱・,73,256(1980)・ [6]Tumipseed,A.A.,Vagltiiani,G・L・,Gierczak,T・,Thompson,J・E・Ravishankara,A・R・,J C力e耽夕砂∫.,95,3244(1991)・ [7]Cooper,I.A.,Neil),P.J・,Wiesenftld,J・R・,JGeqp妙ゞ・Res・,98,12795(1993)・ [8]Stranges,D.,Yang,X.,Chesko,J.D.,Suits,A・G・,JChem・P7p・,102,6067(1995)・ 【9]Nishida,S.,恥ketani,F.,Tbkahashi,K・,Matsumi,Y,JP砂s・Chem・,A108,2710(2004)・ [10]Greenblatt,GD.,Ravishankara,A・R・,JGeQP/叩・Res・,95,3539(1990)・ [11]Felder;R,Haas,B.」Ⅵ・,Huber,J・R・,Cわem・Pわげ・Lett・,186,177(1991)・ [12]Sande11S.P.,Friedl,R.R.,Golden,▲D.M・,Kurylo,M・J・,Huie,R・E・,Orkin,VL・, Moortgat,G・K・,Ravishankara,A・R・,Kolb,C・E・,Molina,M・J・,Finlayson-Pitts,B・J・, ChemicalKineticsandPhotochemicalDatajbruseinAtmo甲hericStudies,Evaluation No.14,JPLPublicationO2-25,2003. [13]Nakayama,T.,Tbkahashi,K;Matsumi,Y;Tbniguchi,N;Hayashida,S・,JGeqp如・Res・, 108,doi:10.1029/2003JDOO3709(2003). 【14]Nishida,S.,Thkahashi,K.,Matsumi,Y,T餌一iguchi,N・,Hayashida,S・,JPj叩・Chem・, AlO8,2451(2004). 【15]Gerlach-Meyer,U.,Lil-nebach,E・,Kleinermal-nS,K・,Wolfrum,J・,Chem・P7ws・LetL,133, 113(1粥7). 【16]Ⅶg]tiiani,G.L.,Turnipseed,A.A・,Vhrren,R・F・,Ravishankara,A・R・,JChem・PJp・,96, 5878(1992). 【17]Schiぽhan,A.,Nelson,Jr.D・D・,Nesbitt,D・J・,JChem・PJp・,98,6935(1993)・ [18]Atkinson,R.,Baulch,D.L.,Cox,R・A・,Crowley,J・N・,HampsonJr・,R・F・,Hynes,R・G, Jenkin,M.E.,Kerr;J.A.,Rossi,M.J.,Troe,J.,2005:Summaryqfevaluatedkinetics α〝d〆0加力e椚加Jゐね♪川加0乎カerfccゐe椚由りり肌C∫〟占co∽画伽eo〝g那妨7eぬ dblaevaluationjbratmo?PhericchemistTy,VhbVbrsion (h仕p://ww.iupac-kinetic・Ch・Cam・aC・uk/)・ [19]Young,R.A.,Black,GJ・,Chem・P句岱・,44,3741(1966)・ [20]Stul11,E.A.,Welge,K.H・,Can・JChem・,471870(1969)・ [2]]Black,G.,Slanger,TG,St.John,G.A.,Young,R・A・,JChem・P妙ゞ・,51,116(1969)・ [22]FiIseth,S.V.,We)ge,K・H・,JChem・PJp・,51,839(1969)・ [23]FiIseth,S.Ⅴ,Stuh),E・A・,JChem・PJ叩・,52,239(1970)・ 109 【24]London,G.,Gilpin,R・,Schiff;H・l・,We)ge,K・H・,JChem・Pjp・,54,4512(1971)・ [25]Welge,K.H.,Zia,A.,Vietzke,E・,Filseth,S・Ⅴ,Chem・Phys・Lett・,10,13(1971)・ [26]Atkinson,R.,We]ge,K・H・,JChem・P句岱・,57,3689(1972)・ [27]S】anger,T.G.,Wood,B・J・,B】ack,G,Chem・P卸ゞ・Lett・,17,401(1972)・ [28]Koroleva,E.A.,Khvorostovskaya,L・E・,(わt・勘ectTVSC・,35,11(1973)・ [29]Black,G.,Sharpless,R・L・,S]anger,T・G,Lorents,D・C・,JChem・Phys・,62,4266(1975)・ [30]Bingham,F.W.,Johnson,A・W・,JChem・Pj叩・,65,1663(1976)・ 【31]S)anger,T.G.,Black,G・,JChem・P7叩・,68,989(1978)・ [32]Slanger,T.G.,B)ack,G・,JChem・P7p・,68,998(1978)・ [33]Sondermann,F.,Stuhl,F・,JChem・P桓・,93,3978(1990)・ 【34]Capetanakis,F.R,Sondermann,F.,Hoser,S・,Stuhl,F・,JChem・P7p・,98,7883(1993)・ [35]Capetanakis,F.P.,Sondermann,F・,Hoser,S・,Stuhl,F・,Chem・P′叩・Lett・,206,361(1993)・ [36]Hoser;S.,Capetanakis,F.R,Kassner,Ch・,Stuhl,F・,Chem・P7p・Letl・,208,399(1993)・ [37]ScllOfield,K.JPholoche"1・,9,55(1978)・ [38]Martin,W.C.,etal.,〃ばTAtomic勘ectraDatabaseh,eTTion2・Q),NationalInstituteof StandardsandTrbchnology,Gaithersburg,MD(http:〟physics・nist・gOV/asd),1999・ [39]Molina,L.T.,Molina,M・J・,JGeq,jp・Res・,9l,14501(1986)・ [40]Matsumi,Y,Kawasaki,M・,Chem・Rev,103,4767(2003)・ [41]Zare,R.N.,Herschback,D・R・,Proc・mEE,51,173(1963)・ [42]Hopper,D.G.,JChem・P卸∫・80,4290(1984)・ 【43]Suzuki,T.,Katayanagi,H.,Mo,Y,Tbnokura,K・,Chem・P7p・Lett・256,90(1996)・ [44]Tbule,J.M.,Groenenboom,G.C・,Neyer,D・W・,Chandler,D・W・,Janssen,M・H・M・,Chem・ 〃叩.エeJJ.320,177(2000)・ [45]Brouard,M.,Clark,A.P.,Vallance,C・,Ⅶsyutinskii,0・S・,JChem・P妙∫・119,771(2003)・ [46]Brassuer,G.P.,J.J.Orla11do,GS.Tyndall,Atmo乎hericChemねり′andGlobalChange, OxfbrdUniversityPress,NewYork,1999・ [47]Kylling,A.,Stamnes,K.,Tbsay,S・-C・,JAtmos・Chem・2l,115(1995)・ [48]Shepherd,G.G.,etal・,JGeQPJp・Res・,98,10,725(1993)・ [49]Singh,Ⅴ,McDade,I.C.,ShepherdG・G・,So)heim,B・H・,Vhrd,W・E・,Ann・Geq?7叩icae・, 14,637(1996). [50]Shepherd,G.G,Siddiqi,N.J・,Wiens,R・H・,Zhang,S・,A血勘ace・Res・,20,2127(1997)・ 【51】Sharma,R.M-.,Shepherd,G・G・,JGeqp桓・Res・,109,AO3303, doi:10.1029/2003JAOlO183(2004). [52]McDade,Ⅰ.C.,Murtagh,D.P・,Greer,R・G・H・,Dickinson,PiH・G・,Witt,G・,Stegman,J・, Llewellyn,E.J.,Thomas,L.,Jenkins,D・B・,Plane(・勘aceSti・34,789(1986) 【53]Shimazaki,T.,MinorconstituenLsinthemi`甜ealmo4,here,KluwerAcademicPublishers, 1985. [54]Hedin,A.E.,JGeqp句帯・Res・96,1159(1991)・ 110 [55]Evans,W.F.,McDade,]・C.,Yuen,J・,Llewe]lyn,E・,Ca77・JPjp・66,941(1998)・ 【56]Gunson,M.R.,Farmer,C.B.,Norton,R.H.,Zander,R.,Rinsland,C.P.,Shaw,J.H.,Gao, B.-C.,JGe呼砂∫.月eぷ.95,13,867(1990). 【57]Vardavas,I.M.,CarVer,J・H・,Tbylor,F・W・,Ann・Geqp7DWicae・16,189(1998)・ [58]Nicovich,J.M.,Wine,P.H・,JGeqp7叩・Res・,94,3487(1988)・ 【59]SlangerT.G,B)ack,G.,GeQPJ叩.Res.Lett・8,535(1981)・ [60]Kenner,R.D.,Ogryzlo,E・A・,JPhotochem・18,379(1982)・ 111 Chapter7 Summaryandfutureperspective Inthepresentstudy,thehigh-SenSitiveteclmiquesforN(4s)andO()s)detection usingvacuumultravioletlaser-inducedfluorescence(VUV-LIF)spectroscopyat120・07 minimum and121.76nm,reSPeCtively,Weredeveloped・The detectionlimitsfor N(4s)andO(Is)atomswereestimatedtobe2×109and3×108atomscm-3, respectively・Usingthenewdetectionteclmiques,SeVeralimportantPhotochemical reactionsrelatedtoNOxandHOxchemistrylnthemiddleandupperatmospherewas studied. TheN(4s)formationprocess丘omUVphotolysisofN20wasstudied・The quantumyieldfbrN(4s)formationintheN20photolysisat193nmwasdeterminedto be(2.1±0・9)×10-3・Impactofth?PhotolyticN(4s)andNO(X2Il)production丘om N20photolysIS On chemistry StratOSPheric was explored uslng aOne-dimensional photochemicalmodelwhilethefragmentationwasnotconsideredinformermodel dissociationchannelwas calculations.WhentheN(4s)+NO consideredinthe photochemicalmodel,anenhanCementOftheNOxproductionrate(upto3%)was observed,Which wasfo1lowed by a decrease ofthe steady-State O3COnCentration throughoutthestratosphere・Theexperimentaltechniqueofpulsedlaserphotolysis combinedwiththeVUV-LIFdetectionwasappliedforthenrsttimetothekinetic studiesoftheimportantreactionsofN(4s)inthemiddleandupperatmosphere・The N(4s)atomswereproducedfo1lowing193nmArFlaserirradiationofNOandNO2・ TheratecoefncientsofN(4s)withNOandNO2at295±2Kweredeterminedtobe (3.8±0・2)×10-1]and(7・3±0・9)×10-12cm3molecule-1s-l,reSPeCtively・The competitiveprocessesoftheinelasticcollisionstoproduceNOandtheelasticcollisions t。the,malizethetranslationalenergyofN(4s)wasalsoinvestigatedfbrthereactionof suprathermalN(4s)reactionwithO2atinitialcenter-Oflmasscollisionenergyofabout O.24-0.6eV.ThesuprathermalN(4s)atomswhichhaveanaveragetranslational energyofO・92±0・095eVinthelaboratoryflamewereproducedby193nmphotolysis ofNO2inbathgasofO2・NocleareVidenceoftheNOproductionwasobserved, whichwillbeexplainedbyarelativelylargevalueofthethermalizationcrosssection 112 theinelastic COmParedwith SuPrathermalN(4s)in co11ision collisions cross section.Thethermalization withN2,02,He・and Ar rates were of experimental1y determinedforthe丘rsttime・Thosethermalizationratesarecrucialparametersfor evaluating the thermOSPheric contribution NO ofthe production reaction ofsuprathermalN(4s)with thermalization rates.The cross section O2inthe valuesfor suprathermalN(4s)incollisionswithN2,02,He,andArare(3・8±0・4),(2・8±0.4),(1.8 ±0・2),and(2.3±0.2)inunitsoflO 15cm2,reSPeCtively. TheO()s)formationprocessesfromUVphotolysisofO3,N20,andH202WaS studied.TheO(ls)formationinthephotodissociationofO,ar0und200nmwas Observedforthenrsttime,and'thequantumyieldsat193,215,and220nmwas determinedtobe(2・5±1・1)×10-3,(1・4±0・4)×10-4,and(5±3)×10-5,reSPeCtively. TheupperlimitvaluesofthequantumyieldsfbrO(1s)productionffomN20andH202 Photolysisat193nmweredeterminedtobe8×10-5and3×10-5,reSPeCtively・The quantum yieldfor H H202PhotolysIS atomproductionfrom at193nm was also determinedtobeO・20±0・03・Thepulsedlaserphotolysis/VUV-LIFteclmiquewas appliedforthe丘rsttimetothekineticstudiesofO()s)・TheratecoefncientsofO(1s) WithO2,CO2,H20,03,andHClat295±2Kwasdeterminedtobe(2.85±0.31)×10.13, (3・09±0・29)×10-13,(6・38±0・38)×10-10,(4・63±0・45)×10-10,and(5・47±0.27)× 10-10cm3molecules-1s-l,reSPeCtively・Basedonthepresentlaboratorydata,theimpact ofO(1s)formationfromtheUVphotolysisofO30ntheOHproductionthroughO(ls)+ H20reactioninthestratosphereandmesospherewasestimated.Itwasfbundthatthe relativecontributionsoftheO(1s)+H20reactionagainsttheO(lD)+H20reactionin theOHproductionshaveitsmaximumat30knaltitudeanditscontributionisabout 2・5%・TheimpactofdirectformationofO(ls)intheUVphotolysisofO30nthe 557・7-nm dayglow emissionin the mesosphereandlower thermosphere wasalso estimated・ThecontributionoftheO(1s)formationintheO3Photolysiswasfoundtobe OfminorimportanCeaSaneXCitationprocess of557・7-nm dayglowaround90kn altitude. ThepresentstudyhasdemonstratedthattheVUV-LIFteclmiqueisapowerfu1 tooltoinvestigatetheimportantPhotochemicalprocessesinvoIvingN(4s)andO(1s)in themiddleandupperatmosphere・Theresultsinthisthesisshowthatthephotolytic formationofN(4s)andNO&omN20canaCtaSaneWSOurCeOfstratosphericNOx,and thatthereactionofH20withO(ls)whichisformedfromO3PhotolysiscanaCtaSa l13 newsourceofstratosphericandmesosphericHOx・Thekineticdata(quantumyield, ratecoe餓cient,andthermalizationcrosssection)determinedpreciselyinthepresent Studywillbeimportantfordetailunderstandingofthephotochemicalprocessesrelated tothe O3COnCentrationinthemiddleatmosphereand steady-State O(ls)dayglow emissionintheupperatmosphere. FurtherlaboratorystudiesofthephotochemicalreactionsinvoIvingN(4s)and O(1s)atomsarenecessaryfbrdetailunderstandingofthechemicalprocessincluding HOxinthe NOxand middleand thepresent upperatmosphere.In rate study,the coefncientsforthereactionsofN(4s)withNOandNO2at295±、2Khavebeen determined.However,thetemperature-dependentratecoefGcientsofthesereactions are atmospheric requiredfor mesospheric reaction to modelcalculations processes the study stratospheric alimited ofN(4s)atoms.Only number and ofthe temperature-dependentkineticstudiesforthoseN(4s)reactionshavebeenreported PreViouslyandagreementbetweentheresultantdataisrelativelypoor・Thepulselaser Which has been as approved developedinthepresent spectroscopy PhotolysISCOuPledwiththeVUV-LIF a promlSlng teClmiquefor study, kinetic studies room at temperature,isapplicabletothetemperature-dependentkineticstudiesforthereactions invoIvingN(4s)atomsatatmospherictemperatures.Atemperature-COntrOlledreaction Chamber should be developed orlglnallyfor the experiments.The state art of_the teclmiqueoftheVUV-LIFspectroscopywillprovideprecisekineticdataasafunction OfgastemperatureandclarifythediscrepanCiesreportedinthepreviousstudies. ThecollisionalrelaxationratesofsuprathermalN(4s)incollisionswithN2and O2determinedinthepresentstudywillmakeitpossibletoperformmOrePreCisemodel Calculations relevant thermalization cross to the section thermospheric values NOformation obtainedin the present processes・Using study,a Steady the state tranSlationalenergydistributionsofN(4s)willbecalculatedasafunctionofaltitude. ToestimatetheimplicationsofthereactionofsuprathermalN(4s)onthethermospheric NOformation,theenergy-dependratecoefncientsofthereactionofsuprathermalN(4s) WithO2arealsoneeded・However,nOlaboratorystudydetermlnlngtheenergy-depend ratecoefncientsofthereactionムfsuprathermalN(4s)withO2hasbeenreported.The relevantexperimentalteclmiquesincludingtheproductionofsuprathermalN(4s)atom andthedetectionofthereactionproducts,NOorO(3p),Shouldbeappliedfbrthe l14 ▲ kinetic studies ofthe ofa reaction・Development new to experimentaltechnique producesuprathermalN(4s)atomwithoutformationofNOandO(3p)isrequired・ Inthepresentstudy,theimpactofO(1s)formation丘omtheUVphotolysisof O30ntheOHproductionthroughO(1s)+H20reactionhasbeenestimatedbasedonthe availableliterature presentand data・Since nolaboratory study to determine the temperaturedependenceoftheratecoefncientsofO(1s)withH20hasbeenreported, theratecoe伍cientsatroomtemperatureobtainedinthepresentstudywasadoptedin theestimation.Iftherate coefncient ofO(ls)+H20reactionhad asigni丘cant temperaturedependence,theresultoftheestimationwouldhavechanged・Infuture, determinationsofthetemperaturedependenceofthereactionsofO()s)withH20will beperformed・ThestateofthearttechniqueoftheVUV-LIFdetectionofO()s)will hasapotentialtobeappliedtothetemperature-dependentstudies・ Theexcitationprocessesof557・7-nmdayglowandnightglowemissionsar0und 90-100km are stillcontroversial.Thethree-bodyrecombinationprocessofatomic oxygen(Barthmechanism)isknownasaprimaryexcitationprocessforbothdayglow and nightglow mechanism,three emission.As the excited state(S)ofmolecular candidates,02(A3∑。+),02(Cl∑。 oxygenin ),and O2(A,3△。),have Barth been proposedonthebasisofenergyconsiderations・However,nOdirectevidenceaboutthe molecularquantumStateShasbeenobtained・Beyonddoubt,SuChthespectroscopIC dataishighlyneededforcompleteunderstandingoftheairglowemissionprocesses・ Furtherexperimentalstudiesfortheenergytransferreactionsofthesecandidatesin collisionswithO(3p)toproduceO(ls)arerequired.Inthemydissertation,1aboratory experimentsuslngtheVUV-LIFteclmiquewithatmosphericmodelcalculationshave beenmadetoclarifyadiscrepanCyinthevolumeemissionratesof557・7-nmdayglow betweentheobservationandmodelcalculations.Ithasbeenfoundthat,forthe丘rst time,thecontributionoftheO(1s)formationintheO3PhotolysisisofminorimportanCe asaneXCitationprocess.TheO(ls)formationintheVUVphotolysisaroundlOO-130 rmwasalsoreportedtobeacandidateforexcitationprocess・Thequantumyieldsfor O(1s)formationintheVUVphotolysisofO2arOundlOO-130nmhavenotbeenwell known.TheVUV-LIFtechniqueisapplicabletotheprecisedeterminationsofthe quantumyieldsforO(1s)formationintheVUVphotolysisofO2arOundlOO-130nm・ 115 Acknowledgments The present work was carried out at Laboratory(STEL),NagoyaUniversityandwas Proftssor Yutaka Solar-TerrestrialEnvironment the achievedunderthe Matsumi・Fore血ost,the author a owes supervision specialthanks to of Prof YutakaMatsumifortheopportunitytoworkonthisprq]eCtandfbrprovidingguidance, COmmentS,SuggeStions,andencouragementsthroughthework・Dr.KenshiTakahashi (STEL,Nagoya Univ・)is also acknowledgedfor his help,guidanCe,advice,and encOuragementS・ TheauthorwouldliketothanktoProfKazuoShiokawa(STEL,NagoyaUniv.), ProflAkiraMizun0(STEL,NagoyaUniv・)andDr.NoriyukiTanaka(Univ.Alaska Fairbanks)fortheirvaluablecommentSOnthemanuSCript.Theauthorisgratefu1to Pro£Masahiro Kawasaki(Kyoto Fairbanks),and Univ・),ProflWilliamR.Simpson(Univ.Alaska Dr・TimothyJ・Wallington(Ford Motor Co.)for providing the OPPOrtunitiestolearnexperimentalskillsintheirlaboratory・ The author wishes to acknowledge Dr・NoriTaniguchiand Pro£Sachiko Hayashida(NaraWomen'sUniv・)forprovidingthemodelcalculationsinChapter3and ProflKazuhiko Shibuya(TokyoInstituteofTeclm0logy)for丘uitfuldiscussions photolyticN(4s)formationsinChapter4.Theauthorwouldliket。thal止theteclmical Staf穐oftheSTEL;Mr・NoriiiToriyama,Mr.HidehikoJindou,Mr.MasahiroKaneda, Mr・HiroshiNakada,andMr・MasahiroNagatanifortheirteclmicalassistance・Special thanksaredueto allthememberoftheMatsumilaboratoryforthemanyfruitfu1 discussionsandassistanCe. Fina11y,Iamgratefu1tomyfamilyfortheirsupportandencouragements. on
© Copyright 2025 ExpyDoc