単斜晶WO3薄膜抵抗率の熱処理依存性 Resistivity dependence of Monoclinic Thin Tungsten Oxide Film on Annealing Processes 東工大フロンティア研1,東工大総理工2, 東芝マテリアル3 ○李 蔚1, 佐々木亮人3, 大図秀行3, 青木克明3, 角嶋邦之2, 片岡好則2, 西山彰2, 杉井信之2, 若林整2, 筒井一生2, 名取研二1, 岩井洋1 Tokyo Tech. FRC 1, Tokyo Tech IGSSE 2, Toshiba Material Co., LTD3, ○W. Li1, A. Sasaki3, H. Oozu3, K. Aoki3, K. Kakushima2, Y. Kataoka2, A. Nishiyama2, N. Sugii2, H. Wakabayashi2, K. Tsutsui2, K. Natori1, H. Iwai1 Introduction Tungsten oxide (WO3) as a promising candidate for visible light-driven photocatalyst, has attracted a strong interest owing to its narrow band gap (about 2.6eV), strong light absorption, deep valence band, easy synthesis, and nontoxicity . For the application of photocatalyst, WO3 needs high electron transport which can suppress the recombination of photogenerated electron-hole pairs thus improve the performance of photocatalyst . In this study, we measured the resistivities of monoclinic WO3 thin film after different annealing processes and gave a proposal of how to obtain high electron transport in WO3. Results and Discussion 10 Experiment 5 Device Fabrication 104 104 103 103 No annealing N2 annealing 5% O2 annealing 102 101 2.0 2.5 3.0 3.5 4.0 4.5 1000/T (K-1) Fig.1 the nature logarithm resistivity versus 1000/T at different annealing atmospheres Spray coating Resistivity(cm) • Monoclinic WO3 nanopowder •BET Specific surface area: about 37m2/g •Porosity: about35% Resistivity(cm) Material parameters: 105 as-received N2 300oC 5min N2 400oC 5min N2 500oC 5min 102 101 N2 600oC 5min 100 N2 700oC 5min 10-1 N2 750oC 5min 10-2 2.0 2.5 3.0 0 Nearest neighbor hopping n-Si o 450 C WO3(100nm) annealing for 30 min EC ED 700oC in N2 -3 =0.015eV 750oC in N2 -5 1 1 1 E1 T exp exp kT kT qrNd q1 r N d h SiO2(400nm) -2 -4 T exp kT Ea=0.23eV -1 ln (cm) SiO2(400nm) 4.5 Fig.2 the nature logarithm resistivity versus 1000/T at different nitrogen annealing temperatures E1 T 0 exp kT E1 EC ED ED 4.0 1000/T (K-1) Band conduction EC 3.5 Band conduction Hopping conduction -6 0.002 1 1 0.0025 0.003 1/T 0.0035 (K-1) 0.004 0.0045 Fig.3 Resistivity fitting of mixture of band conduction and NNH conduction at 700 0C and 7500C 0 r 1 n-Si W sputtering (50nm) W SiO2(400nm) 1.0E+00 1.0E+21 Hopping conduction 1.0E+20 Mobility (cm2/Vs) WO3(100nm) Carrier density (cm-3) 1.0E+22 1.0E+19 1.0E+18 Band conduction 1.0E+17 1.0E+16 WO3(100nm) Top view SiO2(400nm) n-Si 200 400 600 800 Annealing temperature(oC) W #1#2 #3 #4 Band conduction バンド伝導 1.0E-02 1.0E-03 0 1. Lithography 2. W etching (H2O2) 3. Resist removal 1.0E-01 1.0E+15 1.0E+14 n-Si Hopping conduction ホッピング伝導 Fig.4a carrier density of band conduction and hopping conduction 0 200 400 600 800 Annealing temperature( 熱処理温度 (oC) oC) Fig.4b mobility of band conduction and hopping conduction Conclusion ◎It clearly showed that the oxygen vacancies were generated by the N2 annealing. ◎Moreover, hopping conduction should be increased since it can give lower resistivity and higher carrier mobility. ◎Amount of oxygen vacancies should be increased in order to increase hopping conduction. The possible methods are such as high temperature annealing, metal doping and so on. Email: [email protected]
© Copyright 2024 ExpyDoc