こちら - 早稲田大学

Workshop on Geometry and Nonlinear PDE
日時:2015
年 1 月 13 日(火)14:45~18:20
日時
場所:早稲田大学西早稲田キャンパス
51 号館 18 階 06 室
場所
http://www.waseda.jp/top/access/nishiwaseda-campus}
プログラム
プログラム
2015 年 1 月 13 日(火)
14:45~15:45 ChangChang-Shou Lin (National Taiwan University)
Mean field equations, isomonodromic deformation and Painleve VI
16:00~17:00
Martin Guest (Waseda University)
Painleve III: the geometry of the solutions
17:20~18:20 Takashi
School of Economics, Moscow)
Takashi Takebe(Higher
Takebe
Dispersionless integrable hierarchies and Loewner equations
18:40~
懇親会
この研究集会は, 日本学術振興会科学研究費 基盤研究(A)課題番号 25247005
「Systematic development and application of methods in differential geometry
and integrable systems motivated by quantum cohomology」(代表 Martin Guest)
及び早稲田大学重点研究機構「非線形偏微分方程式研究所」の援助を受けています.
組織員
Martin Guest(早稲田大学理工学術院)
Guest
martin あっと waseda.jp
小澤徹 (早稲田大学重点研究機構「非線形偏微分方程式研究所」)
txozawa あっと waseda.jp
田中和永(早稲田大学重点研究機構「非線形偏微分方程式研究所」
)
田中和永
kazunaga あっと waseda.jp
小薗英雄(早稲田大学重点研究機構「非線形偏微分方程式研究所」
)
小薗英雄
kozono あっと waseda.jp
講演要旨
ChangChang-Shou Lin (National Taiwan University)
Title:
Mean field equations, isomonodromic deformation and Painleve VI
Abstract:
Recently we discovered the connection of bubbling phenomena with solutions
of Painleve VI. I will talk about this connection and other developments.
Martin Guest (Waseda University)
Title: Painleve III: the geometry of the solutions
Abstract:
This is part of a project to study nonlinear pde related to geometry/physics,
by using integrable systems methods as well as pde methods. In this talk we
use the radial sinh-Gordon equation (Painleve III equation) as a basic example.
By combining local and global information, we build a complete picture of the
behaviour of all solutions.
This is joint work with Claus Hertling (University of Mannheim).
Takashi Takebe(Higher
School of Economics, Moscow)
Takebe
Title: Dispersionless integrable hierarchies and Loewner equations
Abstract:
Dispersionless integrable hierarchies are a class of integrable systems
obtained as quasi-classical limits of integrable hierarchies like the KP
hierarchy, the Toda lattice hierarchies and so on. It turned out that Loewner
type equations in complex analysis appear from the reduction of dispersionless
integrable hierarchies. Examples of this phenomenon are presented.