7MBR50U2A060 (M711)aŁÏ“X.p65 - Europower Components Ltd

7MBR50U2A060
1. Outline Drawing ( Unit : mm )
a
LABEL
(
) shows reference dimension.
2. Equivalent circuit
[ Converter ]
[ Brake ]
21(P)
2(S)
3(T)
7(B)
14(Gb)
23(N)
[ Thermistor ]
22(P1)
20(Gu)
1(R)
[ Inverter ]
19(Eu)
13(Gx)
18(Gv)
4(U)
17(Ev)
12(Gy)
8
16(Gw)
5(V)
15(Ew)
9
6(W)
11(Gz)
10(En)
24(N1)
MS6M 0799
a
3
15
H04-004-03a
3.Absolute Maximum Ratings ( at Tc= 25°C unless otherwise specified 䋩
Items
Inverter
Collector-Emitter voltage
Gate-Emitter voltage
Collector current
Collector Power Dissipation
Brake
Collector current
Converter
Collector Power Dissipation
Repetitive peak reverse Voltage (Diode)
Repetitive peak reverse Voltage
Average Output Current
Surge Current (Non-Repetitive)
2
It
(Non-Repetitive)
Junction temperature ( except Thyristor )
Storage temperature
Isolation between terminal and copper base *1
voltage
between thermistor and others *2
Mounting
Conditions
VCES
VGES
Ic
Icp
Continuous
1ms
-Ic
Collector-Emitter voltage
Gate-Emitter voltage
Screw
Torque
Symbols
*3
-Ic pulse
Pc
VCES
VGES
Ic
Icp
Pc
VRRM
VRRM
Io
Maximum
Ratings
Units
600
V
±20
50
100
V
50
100
187
1ms
1 device
600
±20
Continuous
1ms
1 device
50Hz/60Hz
sine wave
A
W
V
V
20
40
104
600
800
W
V
V
50
A
A
IFSM
Tj=150°C, 10ms
350
A
2
half sine wave
613
As
It
Tj
150
Tstg
Viso
-40 ~ +125
AC : 1min.
-
2
°C
2500
VAC
3.5
Nm
(*1) All terminals should be connected together when isolation test will be done.
(*2) Two thermistor terminals should be connected together, each other terminals should be connected together
and shorted to base plate when isolation test will be done.
(*3) Recommendable Value : 2.5~3.5 Nm (M5)
MS6M 0799
a
4
15
H04-004-03a
4. Electrical characteristics ( at Tj= 25°C unless otherwise specified)
Items
Zero gate voltage
Collector current
ICES
Gate-Emitter
leakage current
IGES
Gate-Emitter
threshold voltage
Inverter
Collector-Emitter
saturation voltage
Input capacitance
Turn-on time
Turn-off time
Forward on voltage
Brake
Reverse recovery time
Conditions
min.
VGE = 0V
Characteristics
typ.
max.
-
1.0
mA
-
-
200
nA
6.2
6.7
7.7
V
-
2.25
2.45
2.55
Tj=125°C
Tj= 25°C
-
1.85
Cies
Tj=125°C
VCE=10V,VGE=0V,f=1MHz
-
ton
Vcc = 300V
tr
tr (i)
toff
Ic = 50A
VGE=±15V
Rg = 68 ȍ
-
2.15
3.6
0.42
-
VGE(th)
VCE(sat)
(terminal)
VCE(sat)
(chip)
VCE = 600V
VCE = 0V
VGE=±20V
VCE = 20V
Ic = 50mA
VGE=15V
Ic = 50A
Tj= 25°C
tf
VF
(terminal)
VF
(chip)
trr
ICES
Gate-Emitter
leakage current
IGES
VGE=0V
IF = 50A
Tj= 25°C
Tj=125°C
Tj= 25°C
Tj=125°C
IF = 50A
VGE = 0V
VCE = 600V
VCE = 0V
VGE=±20V
V
nF
1.20
0.60
-
0.03
1.20
0.45
-
2.00
2.05
2.35
-
-
1.60
1.65
-
0.35
µs
-
-
1.0
mA
-
-
200
nA
1.85
2.15
1.70
2.00
0.45
2.15
1.20
ton
Vcc = 300V
Reverse current
tr
toff
tf
IRRM
Ic = 20A
VGE=±15V
Rg = 270 ȍ
VR=600V
-
0.15
0.37
0.04
-
0.60
1.20
0.45
1.0
Forward on voltage
VFM
teminal
-
1.20
1.50
chip
-
-
Reverse current
IRRM
Turn-off time
VCE(sat)
(terminal)
VGE=15V
VCE(sat)
(chip)
Ic = 20A
Resistance
R
B value
B
VGE=0V
IF = 50A
VR=800V
Tj= 25°C
Tj=125°C
Tj= 25°C
Tj=125°C
0.24
0.05
0.42
-
-
Collector-Emitter
saturation voltage
Units
-
Zero gate voltage
Collector current
Turn-on time
Thermistor Converter
Symbols
-
1.10
-
T = 25°C
-
5000
1.0
-
T =100°C
465
495
520
T = 25/50°C
3305
3375
3450
MS6M 0799
µs
V
V
µs
mA
V
mA
ȍ
K
a
5
15
H04-004-03a
5. Thermal resistance characteristics
Items
Symbols
Thermal resistance(1device)
Rth(j-c)
Contact Thermal resistance(1device)
Rth(c-f)
Characteristics
Conditions
Inverter IGBT
Inverter FWD
Brake IGBT
Converter Diode
with Thermal Compound (*)
min.
-
typ.
-
max.
0.67
1.10
-
-
1.20
0.82
-
0.05
-
Units
°C/W
* This is the value which is defined mounting on the additional cooling fin with thermal compound.
6. Indication on module
Logo of production
7MBR50U2A060
50A 600V
Lot.No.
Place of manufacturing (code)
7.Applicable category
This specification is applied to IGBT Module named 7MBR50U2A060 .
8.Storage and transportation notes
࡮ The module should be stored at a standard temperature of 5 to 35°C and humidity of 45 to 75% .
࡮ Store modules in a place with few temperature changes in order to avoid condensation on the module surface.
࡮ Avoid exposure to corrosive gases and dust.
࡮ Avoid excessive external force on the module.
࡮ Store modules with unprocessed terminals.
࡮ Do not drop or otherwise shock the modules when transporting.
㨪
㨪
9. Definitions of switching time
90%
0V
0V
V GE
Irr
VCE
Ic
90%
0%
0%
㨪
㨪
0V
0A
V CE
Ic
90%
Vcc
RG
㨪
㨪
L
trr
0%
VCE
tr(i)
V GE
Ic
tr
tf
toff
ton
10. Packing and Labeling
Display on the packing box
- Logo of production
- Type name
- Lot No
- Products quantity in a packing box
MS6M 0799
a
6
15
H04-004-03a
11. Reliability test results
Reliability Test Items
Test
categories
Test items
Reference
Number Acceptnorms
of
ance
EIAJ ED-4701
sample number
Test methods and conditions
(Aug.-2001 edition)
1 Terminal Strength Pull force
(Pull test)
Test time
2 Mounting Strength Screw torque
Test time
:
:
:
:
20N
10±1 sec.
2.5 ~ 3.5 N䍃m (M5)
10±1 sec.
Environment Tests
Mechanical Tests
3 Vibration
Range of frequency : 10 ~ 500Hz
Sweeping time
: 15 min.
Acceleration
: 100m/s2
Sweeping direction : Each X,Y,Z axis
Test time
: 6 hr. (2hr./direction)
4 Shock
Maximum acceleration : 5000m/s2
Pulse width
: 1.0msec.
Direction
: Each X,Y,Z axis
Test time
: 3 times/direction
5 Solderabitlity
Solder temp.
: 235±5 㷄
Immersion time
: 5±0.5sec.
Test time
: 1 time
Each terminal should be Immersed in solder
within 1~1.5mm from the body.
6 Resistance to
Solder temp.
: 260±5 㷄
Soldering Heat
Immersion time
: 10±1sec.
Test time
: 1 time
Each terminal should be Immersed in solder
within 1~1.5mm from the body.
1 High Temperature Storage temp.
: 125±5 㷄
Storage
Test duration
: 1000hr.
2 Low Temperature Storage temp.
: -40±5 㷄
Storage
Test duration
: 1000hr.
3 Temperature
Storage temp.
: 85±2 㷄
Humidity
Relative humidity
: 85±5%
Storage
Test duration
: 1000hr.
4 Unsaturated
Test temp.
: 120㫧2 㷄
Pressure Cooker Atmospheric pressure : 1.7 × 105 Pa
Test humidity
: 85±5%
Test duration
: 96hr.
5 Temperature
Cycle
Test temp.
:
Low temp. -40㫧5 㷄
Test Method 401
Method㸇
Test Method 402
method㸈
5
(0:1)
5
(0:1)
Test Method 403
Reference 1
Condition code B
5
(0:1)
Test Method 404
Condition code B
5
(0:1)
Test Method 303
Condition code A
5
(0:1)
Test Method 302
Condition code A
5
(0:1)
Test Method 201
5
(0:1)
Test Method 202
5
(0:1)
Test Method 103
Test code C
5
(0:1)
Test Method 103
Test code E
5
(0:1)
Test Method 105
5
(0:1)
Test Method 307
method 㸇
Condition code A
5
(0:1)
High temp. 125 㫧5 㷄
Dwell time
Number of cycles
RT 5 ~ 35 㷄
: High ~ RT ~ Low ~ RT
1hr. 0.5hr. 1hr. 0.5hr.
: 100 cycles
6 Thermal Shock
Test temp.
:
High temp. 100
+0
-5
+5
-0
㷄
Low temp. 0 㷄
Used liquid : Water with ice and boiling water
Dipping time
: 5 min. par each temp.
Transfer time
: 10 sec.
Number of cycles
: 10 cycles
MS6M 0799
a
7
15
H04-004-03a
Reliability Test Items
Endurance
Endurance
Tests Tests
Test
categories
Test items
Reference
Number Acceptnorms
of
ance
EIAJ ED-4701
sample number
Test methods and conditions
(Aug.-2001 edition)
1 High temperature Test temp.
Reverse Bias
Bias Voltage
Bias Method
Test duration
2 High temperature Test temp.
Bias (for gate)
Bias Voltage
Bias Method
3 Intermitted
Operating Life
(Power cycle)
( for IGBT )
Test duration
ON time
OFF time
Test temp.
Number of cycles
: Ta = 125±5 㷄
(Tj 㻡 150 㷄)
: VC = 0.8×VCES
: Applied DC voltage to C-E
VGE = 0V
: 1000hr.
: Ta = 125㫧5 㷄
(Tj 㻡 150 㷄)
: VC = VGE = +20V or -20V
: Applied DC voltage to G-E
VCE = 0V
: 1000hr.
: 2 sec.
: 18 sec.
: ∆ Tj=100±5 deg
Tj 㻡 150 㷄, Ta=25±5 㷄
: 15000 cycles
Test Method 101
5
(0:1)
Test Method 101
5
(0:1)
Test Method 106
5
(0:1)
Failure Criteria
Item
Characteristic
Symbol
Electrical
Leakage current
ICES
characteristic
±IGES
Gate threshold voltage VGE(th)
Saturation voltage
VCE(sat)
Forward voltage
VF
Thermal
IGBT
∆ VGE
resistance
or ∆ VCE
FWD
∆ VF
Isolation voltage
Viso
Visual
Visual inspection
inspection
Peeling
Plating
and the others
Failure criteria
Unit
Lower limit Upper limit
LSL×0.8
-
USL×2
USL×2
USL×1.2
USL×1.2
USL×1.2
USL×1.2
mA
µA
mA
V
V
mV
USL×1.2
Broken insulation
mV
-
The visual sample
Note
-
LSL : Lower specified limit.
USL : Upper specified limit.
Note : Each parameter measurement read-outs shall be made after stabilizing the components
at room ambient for 2 hours minimum, 24 hours maximum after removal from the tests.
And in case of the wetting tests, for example, moisture resistance tests, each component
shall be made wipe or dry completely before the measurement.
MS6M 0799
a
8
15
H04-004-03a
Reliability Test Results
Test
categorie
s
Test items
Mechanical Tests
1 Terminal Strength
(Pull test)
2 Mounting Strength
Number
Reference
Number
of
norms
of test
failure
EIAJ ED-4701
sample
(Aug.-2001 edition)
sample
Test Method 401
5
0
5
0
Method㸇
Test Method 402
method㸈
3 Vibration
Test Method 403
5
0
4 Shock
Condition code B
Test Method 404
5
0
5
0
Condition code B
5 Solderabitlity
Test Method 303
Environment Tests
Condition code A
6 Resistance to Soldering Heat
Test Method 302
5
0
1 High Temperature Storage
Condition code A
Test Method 201
5
0
2 Low Temperature Storage
Test Method 202
5
0
3 Temperature Humidity
Storage
4 Unsaturated
Pressure Cooker
5 Temperature Cycle
Test Method 103
5
0
5
0
Test Method 105
5
0
6 Thermal Shock
Test Method 307
5
0
1 High temperature Reverse Bias Test Method 101
5
0
Test Method 101
5
0
Test Method 106
5
0
Test code C
Test Method 103
Test code E
method 㸇
Endurance
Tests
Condition code A
2 High temperature Bias
( for gate )
3 Intermitted Operating Life
(Power cycling)
( for IGBT )
MS6M 0799
a
9
15
H04-004-03a
[ Inverter ]
[ Inverter ]
Collector current vs. Collector-Emitter voltage (typ.)
Collector current vs. Collector-Emitter voltage (typ.)
Tj= 25°C / chip
Tj= 125°C / chip
120
120
Collector current : Ic [ A ]
15V 12V
80
10V
60
40
12V
VGE=20V 15V
100
Collector current : Ic [ A ]
VGE=20V
100
80
10V
60
40
20
20
8V
8V
0
0
0
1
2
3
4
0
5
Collector-Emitter voltage : VCE [V]
1
[ Inverter ]
4
5
Collector-Emitter voltage vs. Gate-Emitter voltage (typ.)
VGE=15V / chip
Tj=25°C / chip
10
Tj=25°C
Collector - Emitter voltage : VCE [ V ]
120
Tj=125°C
100
80
60
40
20
0
8
6
4
Ic=100A
Ic=50A
Ic=25A
2
0
1
2
3
5
4
10
15
20
Gate - Emitter voltage : VGE [ V ]
Collector-Emitter voltage : VCE [V]
[ Inverter ]
Capacitance vs. Collector-Emitter voltage (typ.)
[ Inverter ]
Dynamic Gate charge (typ.)
VGE=0V, f= 1MHz, Tj= 25°C
Vcc=300V䋬 Ic=50A䋬Tj= 25°C
10.00
Collector-Emitter voltage : VCE [ V ]
Cies
1.00
Coes
Cres
0.10
500
25
400
20
300
15
VGE
200
10
100
5
VCE
00
0.01
0
10
20
Collector-Emitter voltage : VCE [V]
25
30
[V]
0
Gate - Emitter voltage : VGE
Collector current : Ic [ A ]
3
[ Inverter ]
Collector current vs. Collector-Emitter voltage (typ.)
Capacitanse : Cies, Coes, Cres [ nF ]
2
Collector-Emitter voltage : VCE [V]
0
0
50
100
150
200
250
Gate charge : Qg [ nC ]
MS6M 0799
a
10
15
H04-004-03a
[ Inverter ]
[ Inverter ]
Switching time vs. Collector current (typ.)
Vcc=300V, VGE=±15V, Rg=68ȍ, Tj= 25°C
Switching time vs. Collector current (typ.)
Vcc=300V, VGE=±15V, Rg=68ȍ, Tj=125°C
1000
Switching time : ton, tr, toff, tf [ nsec ]
Switching time : ton, tr, toff, tf [ nsec ]
1000
toff
ton
tr
100
tf
toff
ton
tr
100
tf
10
10
0
20
40
60
0
80
20
Collector current : Ic [ A ]
80
[ Inverter ]
Switching loss vs. Collector current (typ.)
Vcc=300V, Ic=50A, VGE=±15V, Tj= 25°C
Vcc=300V, VGE=±15V, Rg=68ȍ
4
ton
toff
1000
tr
100
tf
Switching loss : Eon, Eoff, Err [ mJ/pulse ]
Switching time : ton, tr, toff, tf [ nsec ]
60
[ Inverter ]
Switching time vs. Gate resistance (typ.)
10000
10
Eon(125°C)
Eon(25°C)
3
Eoff(125°
2
Eoff(25°C)
1
Err(125°C)
Err(25°C)
0
10
100
1000
0
Gate resistance : Rg [ ȍ ]
20
40
60
80
100
Collector current : Ic [ A ]
[ Inverter ]
Switching loss vs. Gate resistance (typ.)
[ Inverter ]
Reverse bias safe operating area (max.)
Vcc=300V, Ic=50A, VGE=±15V, Tj= 125°C
+VGE=15V,-VGE <= 15V, RG >= 68ȍ ,Tj <= 125°C
120
18
16
Eon
100
14
Collector current : Ic [ A ]
Switching loss : Eon, Eoff, Err [ mJ/pulse ]
40
Collector current : Ic [ A ]
12
10
8
6
Eoff
4
80
60
40
20
2
Err
0
0
10
100
Gate resistance : Rg [ ȍ ]
1000
0
200
400
600
800
Collector - Emitter voltage : VCE [ V ]
MS6M 0799
a
11
15
H04-004-03a
[ Inverter ]
Forward current vs. Forward on voltage (typ.)
[ Inverter ]
Reverse recovery characteristics (typ.)
chip
Vcc=300V, VGE=±15V, Rg=68ȍ
1000
120
Tj=125°C
Reverse recovery current : Irr [ A ]
Reverse recovery time : trr [ nsec ]
Tj=25°C
Forward current : IF [ A ]
100
80
60
40
20
trr (125°C)
100
trr (25°C)
Irr (125°C)
Irr (25°C)
10
1
0
0.0
0.5
1.0
1.5
2.0
2.5
0
3.0
Forward on voltage : VF [ V ]
20
40
60
80
Forward current : IF [ A ]
[ Converter ] / [Anti parallel diode ]
Forward current vs. Forward on voltage (typ.)
chip
120
Forward current : IF [ A ]
100
80
60
40
Tj=125°C
Tj=25°C
20
0
0.0
0.5
1.0
1.5
2.0
Forward on voltage : VFM [ V ]
Transient thermal resistance (max.)
[ Thermistor ]
Temperature characteristics (typ.)
100
FWD[Inverter]
IGBT[Brake]
1.000
IGBT[Inverter]
Conv.Diode
0.100
0.010
0.001
Resistance : R [ kȍ ]
Thermal resistanse : Rth(j-c) [ °C/W ]
10.000
10
1
0.1
0.010
0.100
Pulse width : Pw [ sec ]
1.000
-60 -40 -20 0
20 40 60 80 100 120 140 160 180
Temperature [ °C ]
MS6M 0799
a
12
15
H04-004-03a
[ Brake ]
Collector current vs. Collector-Emitter voltage (typ.)
Tj= 25°C / chip
[ Brake ]
Collector current vs. Collector-Emitter voltage (typ.)
Tj= 125°C / chip
50
50
Collector current : Ic [A]
12V
VGE=20V
40
Collector current : Ic [A]
VGE=20V 15V
40
30
10V
20
15V
12V
30
10V
20
10
10
8V
8V
0
0
0
1
2
3
4
0
5
Collector-Emitter voltage : VCE [V]
3
4
5
[ Brake ]
Collector-Emitter voltage vs. Gate-Emitter voltage (typ.)
Tj=25°C / chip
50
Collector - Emitter voltage : VCE [ V ]
10
40
30
Tj=25°C
Tj=125°C
20
10
8
6
4
Ic=40A
Ic=20A
Ic=10A
2
0
0
1
2
3
5
4
10
15
20
25
Gate - Emitter voltage : VGE [ V ]
Collector-Emitter voltage : VCE [V]
[ Brake ]
Capacitance vs. Collector-Emitter voltage (typ.)
VGE=0V, f= 1MHz, Tj= 25°C
[ Brake ]
Dynamic Gate charge (typ.)
Vcc=300V䋬 Ic=20A䋬Tj= 25°C
Collector-Emitter voltage : VCE [ V ]
10.00
Cies
1.00
Coes
0.10
Cres
500
25
400
20
VGE
300
15
200
10
100
5
[V]
0
Gate - Emitter voltage : VGE
Collector current : Ic [A]
2
Collector-Emitter voltage : VCE [V]
[ Brake ]
Collector current vs. Collector-Emitter voltage (typ.)
VGE=15V / chip
Capacitance : Cies, Coes, Cres [ nF ]
1
VCE
0
0
0.01
0
10
20
Collector-Emitter voltage : VCE [V]
30
0
40
80
120
Gate charge : Qg [ nC ]
MS6M 0799
a
13
15
H04-004-03a
Warnings
- This product shall be used within its absolute maximum rating (voltage, current, and temperature).䇭This product
may be broken in case of using beyond the ratings.
⵾ຠ䈱⛘ኻᦨᄢቯᩰ䋨㔚࿶䋬㔚ᵹ䋬᷷ᐲ╬䋩䈱▸࿐ౝ䈪ᓮ૶↪ਅ䈘䈇䇯⛘ኻᦨᄢቯᩰ䉕⿥䈋䈩૶↪䈜䉎䈫䇮⚛ሶ䈏⎕უ䈜䉎
႐ว䈏䈅䉍䉁䈜䇯
- Connect adequate fuse or protector of circuit between three-phase line and this product to prevent the equipment
from causing secondary destruction, such as fire, its spreading, or explosion.
ਁ৻䈱ਇᘦ䈱੐᡿䈪⚛ሶ䈏⎕უ䈚䈢႐ว䉕⠨ᘦ䈚䇮໡↪㔚Ḯ䈫ᧄ⵾ຠ䈱㑆䈮ㆡಾ䈭ኈ㊂䈱䊍䊠䊷䉵෶䈲䊑䊧䊷䉦䊷䉕ᔅ䈝
ઃ䈔䈩Ἣἴ䋬῜⊒䋬ᑧ὾╬䈱䋲ᰴ⎕უ䉕㒐䈇䈪䈒䈣䈘䈇䇯
- Use this product after realizing enough working on environment and considering of product's reliability life.
This product may be broken before target life of the system in case of using beyond the product's reliability life.
⵾ຠ䈱૶↪ⅣႺ䉕චಽ䈮ᛠី䈚䇮⵾ຠ䈱ା㗬ᕈኼ๮䈏ḩ⿷䈪䈐䉎䈎ᬌ⸛䈱਄䇮ᧄ⵾ຠ䉕ㆡ↪䈚䈩ਅ䈘䈇䇯⵾ຠ䈱ା㗬ᕈኼ๮
䉕⿥䈋䈩૶↪䈚䈢႐ว䇮ⵝ⟎䈱⋡ᮡኼ๮䉋䉍೨䈮⚛ሶ䈏⎕უ䈜䉎႐ว䈏䈅䉍䉁䈜䇯
- When electric power is connected to equipments, rush current will be flown through rectifying diode to charge
2
DC capacitor. Guaranteed value of the rush current is specified as I t (non-repetitive), however frequent rush
current through the diode might make it's power cycle destruction occur because of the repetitive power.
In application which has such frequent rush current, well consideration to product life time (i.e. suppressing
the rush current) is necessary.
㔚Ḯᛩ౉ᤨ䈮ᢛᵹ↪䉻䉟䉥䊷䊄䈮䈲䇮䉮䊮䊂䊮䉰䊷䉕ల㔚䈜䉎ὑ䈱⓭౉㔚ᵹ䈏ᵹ䉏䉁䈜䇯䈖䈱⓭౉㔚ᵹ䈮ኻ䈜䉎଻⸽୯䈲
2
2
I t(㕖➅㄰䈚)䈫䈚䈩⴫⸥䈘䉏䈩䈇䉁䈜䈏䇮䈖䈱⓭౉㔚ᵹ䈏㗫❥䈮ᵹ䉏䉎䈫I t⎕უ䈫䈲೎䈮ᢛᵹ↪䉻䉟䉥䊷䊄䈱➅㄰䈚⽶⩄䈮
䉋䉎䊌䊪䊷䉰䉟䉪䊦⠴㊂⎕უ䉕⿠䈖䈜น⢻ᕈ䈏䈅䉍䉁䈜䇯⓭౉㔚ᵹ䈏㗫❥䈮ᵹ䉏䉎䉋䈉䈭䉝䊒䊥䉬䊷䉲䊢䊮䈪䈲䇮⓭౉㔚ᵹ୯
䉕ᛥ䈋䉎䈭䈬䇮⵾ຠኼ๮䈮චಽ⇐ᗧ䈚䈩䈗૶↪ਅ䈘䈇䇯
- If the product had been used in the environment with acid, organic matter, and corrosive gas ( hydrogen sulfide,
sulfurous acid gas), the product's performance and appearance can not be ensured easily.
㉄䊶᦭ᯏ‛䊶⣣㘩ᕈ䉧䉴䋨⎫ൻ᳓⚛䋬੝⎫㉄䉧䉴╬䋩䉕฽䉃ⅣႺਅ䈪૶↪䈘䉏䈢႐ว䇮⵾ຠᯏ⢻䊶ᄖⷰ╬䈱଻⸽䈲䈪䈐䉁䈞䉖䇯
- Use this product within the power cycle curve (Technical Rep.No. : MT5F12959). Power cycle capability is
classified to delta-Tj mode which is stated as above and delta-Tc mode. Delta-Tc mode is due to rise and down
of case temperature (Tc), and depends on cooling design of equipment which use this product. In application
which has such frequent rise and down of Tc, well consideration of product life time is necessary.
ᧄ⵾ຠ䈲䇮䊌䊪䊷䉰䉟䉪䊦ኼ๮䉦䊷䊑એਅ䈪૶↪ਅ䈘䈇(ᛛⴚ⾗ᢱNo.: MT5F12959)䇯䊌䊪䊷䉰䉟䉪䊦⠴㊂䈮䈲䈖䈱㰱Tj䈮䉋䉎
႐ว䈱ઁ䈮䇮㰱Tc䈮䉋䉎႐ว䈏䈅䉍䉁䈜䇯䈖䉏䈲䉬䊷䉴᷷ᐲ(Tc)䈱਄᣹ਅ㒠䈮䉋䉎ᾲ䉴䊃䊧䉴䈪䈅䉍䇮ᧄ⵾ຠ䉕䈗૶↪䈜䉎㓙
䈱᡼ᾲ⸳⸘䈮ଐሽ䈚䉁䈜䇯䉬䊷䉴᷷ᐲ䈱਄᣹ਅ㒠䈏㗫❥䈮⿠䈖䉎႐ว䈲䇮⵾ຠኼ๮䈮චಽ⇐ᗧ䈚䈩䈗૶↪ਅ䈘䈇䇯
- Never add mechanical stress to deform the main or control terminal. The deformed terminal may cause poor
contact problem.
ਥ┵ሶ෸䈶೙ᓮ┵ሶ䈮ᔕജ䉕ਈ䈋䈩ᄌᒻ䈘䈞䈭䈇䈪ਅ䈘䈇䇯䇭┵ሶ䈱ᄌᒻ䈮䉋䉍䇮ធ⸅ਇ⦟䈭䈬䉕ᒁ䈐⿠䈖䈜႐ว䈏䈅䉍䉁䈜䇯
- Use this product with keeping the cooling fin's flatness between screw holes within 100um at 100mm and the
roughness within 10um. Also keep the tightening torque within the limits of this specification. Too large convex
of cooling fin may cause isolation breakdown and this may lead to a critical accident. On the other hand, too
large concave of cooling fin makes gap between this product and the fin bigger, then, thermal conductivity will
be worse and over heat destruction may occur.
಄ළ䊐䉞䊮䈲䊈䉳ข䉍ઃ䈔૏⟎㑆䈪ᐔမᐲ䉕100mm䈪100umએਅ䇮⴫㕙䈱☻䈘䈲10umએਅ䈮䈚䈩ਅ䈘䈇䇯䇭ㆊᄢ䈭ಲ෻䉍
䈏䈅䈦䈢䉍䈜䉎䈫ᧄ⵾ຠ䈏⛘✼⎕უ䉕⿠䈖䈚䇮㊀ᄢ੐᡿䈮⊒ዷ䈜䉎႐ว䈏䈅䉍䉁䈜䇯䉁䈢䇮ㆊᄢ䈭ಳ෻䉍䉇䉉䈏䉂╬䈏䈅䉎䈫䇮
ᧄ⵾ຠ䈫಄ළ䊐䉟䊮䈱㑆䈮ⓨ㓗䈏↢䈛䈩᡼ᾲ䈏ᖡ䈒䈭䉍䇮ᾲ⎕უ䈮❬䈏䉎䈖䈫䈏䈅䉍䉁䈜䇯
- In case of mounting this product on cooling fin, use thermal compound to secure thermal conductivity. If the
thermal compound amount was not enough or its applying method was not suitable, its spreading will not be
enough, then, thermal conductivity will be worse and thermal run away destruction may occur.
Confirm spreading state of the thermal compound when its applying to this product.
(Spreading state of the thermal compound can be confirmed by removing this product after mounting.)
⚛ሶ䉕಄ළ䊐䉞䊮䈮ข䉍ઃ䈔䉎㓙䈮䈲䇮ᾲવዉ䉕⏕଻䈜䉎䈢䉄䈱䉮䊮䊌䉡䊮䊄╬䉕䈗૶↪䈒䈣䈘䈇䇯෶䇮ႣᏓ㊂䈏ਇ⿷䈚䈢䉍䇮
ႣᏓᣇᴺ䈏ਇㆡ䈣䈦䈢䉍䈜䉎䈫䇮䉮䊮䊌䉡䊮䊄䈏චಽ䈮⚛ሶో૕䈮ᐢ䈏䉌䈝䇮᡼ᾲᖡൻ䈮䉋䉎ᾲ⎕უ䈮❬䈏䉎੐䈏䈅䉍䉁䈜䇯
䉮䊮䊌䉡䊮䊄䉕ႣᏓ䈜䉎㓙䈮䈲䇮⵾ຠో㕙䈮䉮䊮䊌䉡䊮䊄䈏ᐢ䈏䈦䈩䈇䉎੐䉕⏕⹺䈚䈩䈒䈣䈘䈇䇯
(ታⵝ䈚䈢ᓟ䈮⚛ሶ䉕ข䉍䈲䈝䈜䈫䉮䊮䊌䉡䊮䊄䈱ᐢ䈏䉍ౕว䉕⏕⹺䈜䉎੐䈏಴᧪䉁䈜䇯)
- It shall be confirmed that IGBT's operating locus of the turn-off voltage and current are within the RBSOA
specification. This product may be broken if the locus is out of the RBSOA.
䉺䊷䊮䉥䊐㔚࿶䊶㔚ᵹ䈱േ૞゠〔䈏RBSOA઀᭽ౝ䈮䈅䉎䈖䈫䉕⏕⹺䈚䈩ਅ䈘䈇䇯RBSOA䈱▸࿐䉕⿥䈋䈩૶↪䈜䉎䈫⚛ሶ䈏⎕უ
䈜䉎น⢻ᕈ䈏䈅䉍䉁䈜䇯
MS6M 0799
a
14
15
H04-004-03a
Warnings
- If excessive static electricity is applied to the control terminals, the devices may be broken. Implement some
countermeasures against static electricity.
೙ᓮ┵ሶ䈮ㆊᄢ䈭㕒㔚᳇䈏ශട䈘䉏䈢႐ว䇮⚛ሶ䈏⎕უ䈜䉎႐ว䈏䈅䉍䉁䈜䇯ข䉍ᛒ䈇ᤨ䈲㕒㔚᳇ኻ╷䉕ታᣉ䈚䈩ਅ䈘䈇䇯
- Never add the excessive mechanical stress to the main or control terminals when the product is applied to
equipments. The module structure may be broken.
⚛ሶ䉕ⵝ⟎䈮ታⵝ䈜䉎㓙䈮䇮ਥ┵ሶ䉇೙ᓮ┵ሶ䈮ㆊᄢ䈭ᔕജ䉕ਈ䈋䈭䈇䈪ਅ䈘䈇䇯┵ሶ᭴ㅧ䈏⎕უ䈜䉎น⢻ᕈ䈏䈅䉍䉁䈜䇯
- In case of insufficient -VGE, erroneous turn-on of IGBT may occur. -VGE shall be set enough value to prevent
this malfunction. (Recommended value : -VGE = -15V)
ㅒ䊋䉟䉝䉴䉭䊷䊃㔚࿶-VGE䈏ਇ⿷䈚䉁䈜䈫⺋ὐᒐ䉕⿠䈖䈜น⢻ᕈ䈏䈅䉍䉁䈜䇯⺋ὐᒐ䉕⿠䈖䈘䈭䈇ὑ䈮-VGE䈲චಽ䈭୯䈪
⸳ቯ䈚䈩ਅ䈘䈇䇯䇭䋨ផᅑ୯ : -VGE = -15V)
- In case of higher turn-on dv/dt of IGBT, erroneous turn-on of opposite arm IGBT may occur. Use this product in
the most suitable drive conditions, such as +VGE, -VGE, RG to prevent the malfunction.
䉺䊷䊮䉥䊮 dv/dt 䈏㜞䈇䈫ኻ᛫䉝䊷䊛䈱䌉䌇䌂䌔䈏⺋ὐᒐ䉕⿠䈖䈜น⢻ᕈ䈏䈅䉍䉁䈜䇯⺋ὐᒐ䉕⿠䈖䈘䈭䈇ὑ䈱ᦨㆡ䈭䊄䊤䉟䊑
᧦ઙ䋨+VGE, -VGE, RG╬䋩䈪䈗૶↪ਅ䈘䈇䇯
- This product may be broken by avalanche in case of VCE beyond maximum rating VCES is applied between
C-E terminals. Use this product within its absolute maximum voltage.
VCES䉕⿥䈋䈢㔚࿶䈏ශട䈘䉏䈢႐ว䇮䉝䊋䊤䊮䉲䉢䉕⿠䈖䈚䈩⚛ሶ⎕უ䈜䉎႐ว䈏䈅䉍䉁䈜䇯VCE䈲ᔅ䈝⛘ኻቯᩰ䈱▸࿐ౝ
䈪䈗૶↪ਅ䈘䈇䇯
Cautions
- Fuji Electric Device Technology is constantly making every endeavor to improve the product quality and reliability.
However, semiconductor products may rarely happen to fail or malfunction. To prevent accidents causing injury or
death, damage to property like by fire, and other social damage resulted from a failure or malfunction of
the Fuji Electric Device Technology semiconductor products, take some measures to keep safety such as redundant
design, spread-fire-preventive design, and malfunction-protective design.
ን჻㔚ᯏ䊂䊋䉟䉴䊁䉪䊉䊨䉳䊷䈲⛘䈋䈝⵾ຠ䈱ຠ⾰䈫ା㗬ᕈ䈱ะ਄䈮ദ䉄䈩䈇䉁䈜䇯䈚䈎䈚䇮ඨዉ૕⵾ຠ䈲᡿㓚䈏⊒↢䈚䈢䉍䇮
⺋േ૞䈜䉎႐ว䈏䈅䉍䉁䈜䇯ን჻㔚ᯏ䊂䊋䉟䉴䊁䉪䊉䊨䉳䊷⵾ඨዉ૕⵾ຠ䈱᡿㓚䉁䈢䈲⺋േ૞䈏䇮⚿ᨐ䈫䈚䈩ੱり੐᡿䊶Ἣἴ
╬䈮䉋䉎⽷↥䈮ኻ䈜䉎៊ኂ䉇␠ળ⊛䈭៊ኂ䉕⿠䈖䈘䈭䈇䉋䈉䈮౬㐳⸳⸘䊶ᑧ὾㒐ᱛ⸳⸘䊶⺋േ૞㒐ᱛ⸳⸘䈭䈬቟ో⏕଻
䈱䈢䉄䈱ᚻᲑ䉕⻠䈛䈩ਅ䈘䈇䇯
- The application examples described in this specification only explain typical ones that used the Fuji Electric Device
Technology products. This specification never ensure to enforce the industrial property and other rights, nor license the
enforcement rights.
ᧄ઀᭽ᦠ䈮⸥タ䈚䈩䈅䉎ᔕ↪଀䈲䇮ን჻㔚ᯏ䊂䊋䉟䉴䊁䉪䊉䊨䉳䊷⵾ຠ䉕૶↪䈚䈢ઍ⴫⊛䈭ᔕ↪଀䉕⺑᣿䈜䉎䉅䈱䈪䈅䉍䇮
ᧄ઀᭽ᦠ䈮䉋䈦䈩Ꮏᬺᚲ᦭ᮭ䇮䈠䈱ઁᮭ೑䈱ታᣉ䈮ኻ䈜䉎଻㓚䉁䈢䈲ታᣉᮭ䈱⸵⻌䉕ⴕ䈉䉅䈱䈪䈲䈅䉍䉁䈞䉖䇯
- The product described in this specification is not designed nor made for being applied to the equipment or
systems used under life-threatening situations. When you consider applying the product of this specification
to particular used, such as vehicle-mounted units, shipboard equipment, aerospace equipment, medical devices,
atomic control systems and submarine relaying equipment or systems,䇭please apply after confirmation
of this product to be satisfied about system construction and required reliability.
ᧄ઀᭽ᦠ䈮⸥タ䈘䉏䈢⵾ຠ䈲䇮ੱ๮䈮䈎䈎䉒䉎䉋䈉䈭⁁ᴫਅ䈪૶↪䈘䉏䉎ᯏེ䈅䉎䈇䈲䉲䉴䊁䊛䈮↪䈇䉌䉏䉎䈖䈫䉕
⋡⊛䈫䈚䈩⸳⸘䊶⵾ㅧ䈘䉏䈢䉅䈱䈪䈲䈅䉍䉁䈞䉖䇯ᧄ઀᭽ᦠ䈱⵾ຠ䉕ゞਔᯏེ䇮⦁⥾䇮⥶ⓨቝቮ䇮ක≮ᯏེ䇮ේሶജ
೙ᓮ䇮ᶏᐩਛ⛮ᯏེ䈅䉎䈇䈲䉲䉴䊁䊛䈭䈬䇮․ᱶ↪ㅜ䈻䈱䈗೑↪䉕䈗ᬌ⸛䈱㓙䈲䇮䉲䉴䊁䊛᭴ᚑ෸䈶ⷐ᳞ຠ⾰䈮
ḩ⿷䈜䉎䈖䈫䉕䈗⏕⹺䈱਄䇮䈗೑↪ਅ䈘䈇䇯
If there is any unclear matter in this specification, please contact Fuji Electric Device Technology Co.,Ltd.
MS6M 0799
a
15
15
H04-004-03a