PFR1 1月掲載論文アブストラクト ☆☆☆Rapid Communications☆☆☆ ☆☆☆Letters☆☆☆ First Observation of High Density Edge Transport Barrier Onset of Resistive Interchange Mode in the Large Helical Formation during Reheat Mode of Helical Plasma in CHS Device Takashi MINAMI et al. Satoru SAKAKIBARA et al. Plasma Fusion Res. 1, 047 Plasma Fusion Res. 1, 049 An improved confinement mode with reheat and edge trans- The relationship between magnetohydrodynamic (MHD) port barrier is observed in the Compact Helical System modes and the linear stability boundary has been investi- (CHS). This mode provides enhanced confinement in high gated by controlling the pressure gradient in the Large Heli- density region ( !!∼1.2×1020 m−3) due to the increase in cal Device. Edge plasma pressure was varied by inserting temperature while high density is maintained in the periph- a pump limiter into the plasma, and the onsets of MHD modes eral region. were determined. A quantitative comparison between mode onsets and a linear stability index of the resistive interchange High Deposition Rate of Diamond-like Carbon on Trench mode was performed under the condition of a specific mag- Bottom for Acetylene Gas at Plasma Immersion and Depo- netic Reynolds number. The experimental results are con- sition Process sistent within a factor of 2 with a rough estimation of the sta- Etsuo FUJIWARA et al. bility boundary of a resistive low-n mode. Plasma Fusion Res. 1, 048 A bright optical emission inside a trench in a solid object was observed during a diamond-like carbon (DLC) deposi- Electron BernsteinWave Heating through Slow X-B Mode tion process, with the DLC deposition rate being more than Conversion in CHS two-times faster on the trench's bottom than that on the top Yasuo YOSHIMURA et al. of the trench. We found that the secondary electrons inside Evident increases in plasma stored energy have been ob- the trench played an important role in the higher DLC depo- served in the Compact Helical System (CHS) by injecting sition rate on the trench's bottom. nearly X-mode-polarized 54.5 GHz electron cyclotron (EC) Plasma Fusion Res. 1, 053 waves from the high-field side. An additional plane mirror Formation of Nanostructured Tungsten with Arborescent that enabled the high-field side injection of the EC waves Shape due to Helium Plasma Irradiation was installed. The centrally peaked and increased electron Shuichi TAKAMURA et al. Plasma Fusion Res. 1, 051 temperature distributions with the X-mode wave directions Deeply nanostructured tungsten with an arborescent shape which are not aimed at the fundamental resonance layer at was found for the first time to be formed on tungsten-coated the plasma core region strongly suggest that the heating ef- graphite by a high-flux helium plasma irradiation at surface fects occurred due to the excitation of the electron Bernstein temperatures of 1250 and 1600 K, an incident ion energy of waves via mode conversion from the X-mode waves injected 12 eV (well below the physical sputtering threshold) and a from the high-field side. helium ion fluence of 3.5×1027 m−2. ☆☆☆Regular Articles☆☆☆ First Observation of ECH by Electron BernsteinWaves Ex- A New-Type Equilibrium of Flowing Plasma Dominated by cited via X-B Mode Conversion Process in LHD the Hall Effect Hiroe IGAMI et al. Jun-ya SHIRAISHI et al. Plasma Fusion Res. 1, 052 Plasma Fusion Res. 1, 050 In a magnetic field configuration of the Large Helical Device New type of axisymmetric magnetohydrodynamic (MHD) (LHD), when the extraordinary mode (X-mode) waves are equilibrium of toroidally flowing plasma, which cannot be obliquely injected from a bottom antenna, it can directly ac- found in the framework of the ideal MHD, emerges due to cess the upper hybrid resonance (UHR) layer from the high the Hall and toroidal effects. If either of these effects is ne- field side and excite electron Bernstein waves (EBWs) with- glected, only a conventional MHD-type equilibrium is ob- out the need for any additional reflecting mirror antenna. tained. Numerical solutions of both types are calculated in A localized power absorption is observed in the low field side toroidal geometries to simulate the equilibrium states in the of the electron cyclotron resonance (ECR) layer. This result Ring Trap-1 device constructed at the University of Tokyo. suggests electron cyclotron heating (ECH) by mode con- Numerical analysis shows that when the toroidal flow is in- verted EBWs excited via X-B mode conversion process. creased, the plasma shifts inward in the new-type equilibrium, while in the MHD type the outward shift occurs due to the centrifugal effect. 847 Journal of Plasma and Fusion Research Vol.82, No.12 December 2006 PFR12月掲載予定論文 054 Thomson Scattering Measurements of Helium Recombining Plasmas in the Divertor Simulator MAP-II RC 055 Filippo SCOTTI et al. Development of Tin Droplet Target for 13.5 nm Lithography RC *RC: Etsuo FUJIWARA et al. Rapid Communications Plasma & Fusion Calendar ● 学会ホームページ(http://www.jspf. or.jp/)に最新の詳細な情報を掲載しています.併せてご覧ください. 開催月日 1 2. 2 2 名 称 (開 催 地) 第1 9回専門講習会(東工大百年記念会館)本学会 [email protected] 2 0 0 7 1. 1 7− 1. 1 8 第2 7回レーザー学会年次大会(ワールドコンベンションセンターサミット,宮崎市) 1. 2 9− 1. 3 1 第2 4回プラズマプロセシング研究会(千里ライフサイエンスセンター) 2. 2 7− 3.2 総研大アジア冬の学校―「極限状態の科学」―(核融合科学研究所) 3.5− 3.7 Stochasticity in Fusion Plasmas(SFP2007)(Juelich, Germany) 3. 1 8− 3. 2 1 日本物理学会春季大会[物性] (鹿児島大学) 3. 1 9− 3. 2 2 15th Int. Conf. Atomic Processes in Plasmas(MD, USA) 3. 2 6− 3. 2 8 3rd IAEA Technical Meeting on Theory of Plasma Instabilities(York, United Kingdom) 3. 2 7− 3. 2 9 日本原子力学会 春の年会(名大) 3. 2 7− 3. 3 0 応用物理学会平成1 9年春季講演会(青山学院大学相模原キャンパス、相模原市) 5. 2 3− 5. 2 5 1 1th Int. Workshop on Plasma Edge Theory in Fusion Devices (11th PET)(飛騨世界生活文化センター,高山市) 6.3− 6.8 13th Int. Conf. Emerging Nuclear Energy Systems (ICENES 2007) (Istanbul, Turkey) 6.4− 6.8 6th IAEA Technical Meeting (IAEA-TM) on Control, Data Acquisition, and Remote Participation for Fusion Research(犬 山国際観光センターフロイデ,犬山市) 6. 1 7− 6. 2 2 IEEE Pulsed Power and Plasma Science Conference (PPPS2007) (Albuquerque, New Mexico USA) 6. 1 8− 6. 2 2 22nd Symp. Fusion Engineering (SOFE2007) (New Mexico, USA) 7.2− 7.6 34th EPS Conference on Plasma Physics (Warsaw, Poland) 7. 1 5 XXVIII Int. Conf. Phenomena in Ionized Gases(プラハ) 8. 2 6− 8. 3 1 1 8th Int. Symp. Plasma Chemistry (ISPC 18) (京大桂キャンパス) 9.2− 9. 1 4 8th Carolus Magnus Summer School on Plasma Physics (Bad Honneff, Germany) 9.4− 9.7 応用物理学会平成1 9年秋季講演会(北海道工業大学) 9.9− 9. 1 4 5th Int. Conf. Inertial Fusion Science and Applications (IFSA2007)(神戸国際会議場) 9. 1 1− 9. 1 3 日本原子力学会秋の大会(北九州国際会議場)日本原子力学会 9. 1 8− 9. 2 1 1 3th Symp. Laser-Aided Plasma Diagnostics(高山) 9. 2 1− 9. 2 4 日本物理学会年次大会(北大) 9. 2 4− 9. 2 8 6th Int. Symp. Applied Plasma Science (ISAPS '07)(日光市) 9. 2 4− 9. 2 8 6th Asian-European International Conf. Plasma Surface Engineering (AEPSE2007)(長崎市やすらぎ伊王島) 9. 2 6− 9. 2 8 1 1th IAEA Technical Meeting on H-mode Physics and Transport Barriers(つくば国際会議場,つくば市) 9. 3 0−1 0.5 8th Int. Symp. Fusion Nuclear Technology (ISFNT-8) (Heidelberg, Germany) 1 1. 1 2−1 1. 1 6 49th Annual Meeting of the APS Division of Plasma Physics (Florida, USA) 1 1. 1 5−1 1. 1 9 AVS 54th Int. Symp. (Washington, USA) 1 1. 2 7−1 1. 3 0 第2 4回年会(イーグレひめじ,姫路市)本学会 [email protected] 1 2.3−1 2.5 6th Conf. Asia Plasma and Fusion Association (APFA2007) (Ganghinagar, India) 1 2.3−1 2.6 APCOM-EPMESC'07 (国立京都国際会館) 848 Plasma & Fusion Calendar 開催月日 名 称 (開 催 地) 2 0 0 8 3. 2 7− 3. 3 0 応用物理学会平成2 0年春季講演会(日本大学理工学部船橋校舎) 5. 2 6− 5. 2 8 18th Int. Conf. Plasma Surface Interactions in Controlled Fusion Device (Toledo, Spain) 6.9− 6. 1 3 35th EPS Conference on Plasma Physics (Greece) 6. 1 6− 6. 1 9 35th IEEE Int. Conf. Plasma Science (ICOPS2008) (Karlsruhe, Germany) 9.2− 9. 2 8 応用物理学会平成2 0年秋季講演会(中部大学) 1 0. 1 3−1 0. 1 8 22nd IAEA Fusion Energy Conference - 50th Anniversary of Controlled Nuclear Fusion Research (Geneva, Switzerland) 1 1. 1 7−1 1. 2 1 50th APS Division of Plasma Physics Meeting (Texas USA) 2 0 0 9 6.1− 6.4 26th IEEE International Conference on Plasma Science and 23rd Symposium on Fusion Engineering (ICOPS/SOFE 2009) (University of California) 本会記事 ■第23回年会 一般講演 ・ポストデッドライン講演として以下一件を受け付けました. 23PD‐01 自然対流リチウムループを用いたセラミック材料腐食研究 名倉 勝(東大工) ・一般講演の取り消しは以下5件です. 30pB06P,01aA15P,01aA23P,01aA28P,01aC31P 849
© Copyright 2024 ExpyDoc