LHC実験での2光子生成の イベントジェネレータを用いての解析 渡辺則之、栗原良将、尾高茂(KEK) 日本物理学会秋季大会@京都産業大学, 2012.9.13 Motivation コライダー実験では新粒子/現象を発見したい LOからの予測だけでは不十分 NLO,NNLOからのより精度の高い予測が必要 GRACE イベントジェネレータは必須 Gr@ppa arXiv:1201.5702 Overview of GRACE system Diagram generator User input .fin .mdl .rin model file Drawer diagram description amplitude generator Kinematics library Theory LOOP Make file etc. TREE symbolic code Diagrams (figure) REDUCE, Form etc. FORTRAN code kinematics code convergence information generated code BASES(MC integral) Cross sections distributions Library CHANEL, loop parameter file SPRING (EG manager) Events PS file Overview of GRACE system %%%%%%%%%%%%% Model="sm.mdl" Process; Diagram generator ELWK={2,2}; QCDUser ={0,2}; diagram description .fin .mdl .rin model file Drawer input Kinem="2201"; ----------------------------- amplitude generator Kinematics Initial={u, u-bar}; LOOP library ------------------------------------TREE symbolic code Final ={photon,photon}; Theory Make file etc. Diagrams (figure) REDUCE, Form etc. FORTRAN code kinematics code convergence information generated code BASES(MC integral) Cross sections distributions Library CHANEL, loop parameter file SPRING (EG manager) Events PS file Overview of GRACE system Diagram generator User input .fin .mdl .rin model file Drawer diagram description amplitude generator Kinematics library Theory LOOP Make file etc. TREE symbolic code Diagrams (figure) REDUCE, Form etc. FORTRAN code kinematics code convergence information generated code BASES(MC integral) Cross sections distributions Library CHANEL, loop parameter file SPRING (EG manager) Events PS file Overview of event generator fj (x2 ) i j ˆij hadronization p fi (x1 ) parton shower p Overview of event generator i j fj (x2 ) ˆij Grace Interface d (pp X) = Gr@ppa dx1 dx2 fi (x1 , µF )fj (x2 , µF )dˆ (ij ij i,j ->quark or gluon f : Parton Distribution Functions(PDF) (x : fraction of momentum carried by parton ) ˆij :partonic cross section µF : factorization scale. hadronization p fi (x1 ) parton shower p Interface (PYTHIA) X, x1 , x2 , µF ) 作りたいもの LHC実験では2光子過程はHiggs探索の 重要なチャンネルの一つである 正確なバックグラウンドの評価は重要 qqbar annilation Compton scattering Gluon Fusion SHERPA (exclusiveだけどloopなし) arXiv:0811.4622 Diphox (loopありだけどinclusive) arXiv:9911.340 Resbos arXiv:0704.0001 Fully exclusive 実験屋さんの好きなcut Loop補正も入れたい Difficulties 精度のよいジェネレータを作るためには 高次摂動のpartonic cross section たくさんのdiagram Loop ライブラリ Soft/Collinear singularity GRACE 1-loop ⃝ 2-loop × collinear approximation 非摂動まで含めた効果 Double counting LL-subtraction Fragmentation Parton shower 尾高さんの話 NLO Cross section N LO = Tree + virtual s PDF s 紫外発散はMS-barで繰り込み 赤外発散はPDFとの畳み込みで消える dimensional regularization d=4+2ε Matrix element:Tree Tree cross section Born = (1, 2 Real = (1, 2 Real = soft Soft/Collinear correct :Born 1, 2, · · · , n) 1, 2, · · · , n, n + 1) + collinear + (If massless particle) :RealTwo radiation types of div. Collinear div. ● Soft div. ● hard Lore ● Pha ● Sub ● Slic h Q2c :hard scattering scale Phase spaceを分解 Born , hard はGRACE soft region Soft/Collinear corrections 2pi · pg = 2Ei Eg (1 Eg cos cos ig ) 0 :Soft singularities ig = 1 :Collinear singularities(massless-> Soft Part dP S2 dP Sg dP S2+g 2 2 |Areal (ij 2 + g)| F |A | eik 0 1 the eikonal factor contains the soft pole d sof t = dP S2 sof t Feik = s CF dP Sg Felk |A0 |2 Q2c µ2F Q2c s 1 2 2 4 Feik =1) Soft/Collinear corrections Collinear Part dP S2+g |Areal (ij 1 dP S2 (1 2 + g)|2 z)dP Sg Pii (z) |A0 |2 (1 z)pi · pg DGLAP equation d Collinear = dP S2 p Pii dP Sg |A0 |2 pi · pg coll A0 (s) zp (1-z)p logの近似では不十分 non-logの効果まで入れる k2 sˆ A0 (z · s) Matrix element:Loop Loop cross section virtual = (1, 2 1, 2, · · · , n) :Virtual corrections Effective vertex(3点関数まで) Box,Pentagon i 5 = i i 1 + D=6 2 Bern-Dixon-Kosower(94) Infrared safety N LO = Real = soft = ( + + soft + PDF virtual collinear + hard collinear ) Born + + virtual hard + PDF virtual PDF 発散はBornで分けられる 1 1 , 2 are caneled 1 s 2 Pii 2 Q HardとSoft/Collinearを切り分ける c 依存性 も消えている Results 今回はqq-bar->γγ+XのNLO(すぐにgr@ppaに実装) HARD SOF/COL/Vir sum 10^-4*√s’ 1200.1 -1145.2 54.9 10^-3*√s’ 788.9 -733.9 55.0 10^-2*√s’ 463.1 -408.0 55.1 10^-1*√s’ 223.5 -168.4 55.1 10^0*√s’ 77.1 -22.2 54.9 1500 1125 750 375 0 -375 -750 -1125 -1500 10^-4 s = 14TeV 10 < cos < 170 Emin = 10GeV 10^-3 HARD(GRC) 10^-2 SOF/COL/Vir 10^-1 sum Scheme dependenceはない 赤外発散やQc,factorization scale Negative weight eventが少なくなるようなpointを探る 10^0 Next step N2LO,N3LOの効果を追加していく Under development 寄与が大きいかも?(qgが一番大きい) Future 最終的にはここまで Summary 精度のよいイベントを生成するためには Loopを含む計算は必要 TreeのBornやradiativeプロセス ⃝ 精度の良い Soft/Collinear近似 ⃝ qq-barプロセスは1-loopまで含めた(まもなく実装) qg/ggプロセスなどのloopも入れる必要あり 2-loopライブラリの構築
© Copyright 2024 ExpyDoc