Bull. Plankton Soc. Japan 55(1): 00ῌ00, 2008 ̮῏ῐῑ῍῎ῑ ΐῒ ῌ The Plankton Society of Japan 2008 ῝Ὶ῟̮̮ῖ̮̮ῖ̮ῖ̮ῌ (OPC: Optical Plankton Counter) Ῡ῍ῐ̯Ῐῒ̯ΰῧ̯ῥῨῑ῎῏ΐῡῤ̮̮ῖ̮̮ῖΊ̯῞̯ῒ ῗῠ῏ῢῦῡῙ̯ Ῑῖ ΅῏̯̯ ̰῍῏ῦῨ Ύ ῬΊῩῥῥῘΰ̯Ὶ̯῞ῘΊ`ῤ̰Ὺ῭῎ 041ῌ8611 ῬΊῩ̰῝ῠ̯ῧ 3ῌ1ῌ1 Regional and inter-annual changes in the abundance, biomass and community structure of mesozooplankton in the western North Pacific in early summer; as analyzed with an optical plankton counter YJJ YD@D>, AIHJH=> Y6B6<J8=>῍ 6C9 THJIDBJ I@:96 Laboratory of Marine Biology, Graduate School of Fisheries Sciences, Hokkaido University, 3ῌ1ῌ1 Minatomachi, Hakodate, Hokkaido 041ῌ8611, Japan ῍ Corresponding author: E-mail: a-yama@fish.hokudai.ac.jp Abstract Abundance, biomass and size structure of mesozooplankton samples collected with Norpac nets from 0ῌ150 m at 5ῌ13 latitudinal stations (35ΐN to 44ΐN) on 155ΐE in the western North Pacific during MayῌJune every year (1993ῌ2004) was analyzed by using an optical plankton counter. Zooplankton counts on 4096 size units (size range: 0.25 to 20 mm equivalent spherical diameter [ESD]) were converted to biomass, and summed as the community biomass. The data of each size class was combined with in situ water temperature data to estimate production potential by Ikeda and Motoda’s method. Depending on the latitude, study region was classified into subarctic front (SF: ῒ42ΐN), transition domain (TR: 40ῌ42ΐN), subarctic boundary (SB: 38ῌ40ΐN) and subtropic current system (ST: ῑ38ΐN). Throughout the entire study period, the regional variations were seen in most size fractions of the abundance, biomass and production, ranging from 52,754 to 86,926 inds. mῌ2, from 2,656 to 10,183 mg dry mass mῌ2 and from 134 to 219 mg C mῌ2 dayῌ1, respectively. Among the four regions, TR was characterized by high biomass and production but by least abundance. Inter-annual variations in the abundance, biomass and production were largely due to those of 2ῌ3 mm ESD fraction (and 1ῌ2 mm ESD fraction for the biomass). Thus, the 2ῌ3 mm ESD fractions (composed of Neocalanus spp.) were the most important one a#ecting not only the regional but inter-annual variation patterns of mesozooplankton. Apart from consistent importance of Neocalanus spp., gelatinous zooplankton such as appendicularians, doliolids and salps were observed to form irregular peaks at ST and SB regions in some years. It is suggested that the outbreak of gelatinous zooplankton is related to the development of thermocline or halocline in the top 40 m of the water column, which may prevent nutrient supply to surface layer, and improve food supply via microbial loop. Key words: gelatinous zooplankton, Neocalanus, OPC, size, transition domain 2007 ̰ 0 ῟ 00 ̰ῡ̰῎ 2007 ̰ 0 ῟ 00 ̰ῡ BPS82121ῌ ῌ (Mark2)ῌ ῌ ML9055CῐMark10 ῢ̯῍ῗ Monῌ Decῌ 24ῌ 14:58:02ῌ 2007 ̮̮̮̮̮̮ Pageῌ 1 QQ QQΌ῾QQQQ 2 ̲ 55 Q ̲ 1 Q (2008) ΊῨ΅̮ῧQQ QQΌ῾QῨΏ̱̲QQῤῨQῼ 1. ῌ ῍ Q̱Q`̮ῧ̯ΊῤῩῧ῎Q῎ QQQῨ̱QῨQQ̮ `῞Qΰ̮ῧῬ̮̮ῳ`̯῎ ῘῌῧῩQῦQῪῖQ ῧ῎Qῧ̮̮ῢ῎ QQQQQ̮QῨQQ̳Ὸ ̲̳̱ ῳῲ̯ῧQQῧῠῢ̮῏ ̯ῨQQῤ῞ῢ̯ῨQῪῨ QQ̯ΊῤῩQQQQῨQῡΰ̮ῖ῎ ̯Ῠ̯ΎῧῩ QQ῝ῖQῚ`ῲ῏ ῝QῨQQQῧ΅QῪῧῩ´̲ QQQῨQ̮Qΰ̮QQ QQΌ῾QῨQῼQῧQ̯ ῦQQῤ̮Q῎ ̯῞ῢQQ QQΌ῾QῨQ̲QQῧῡ ῢQ̱QQQ῎ QΏQ̮ῡ̳QQῧQQ̯ΊῤῖQ ̮ῢῨQQῦ ̮ῖQQῤῦ῏ ̯Ῠ̯Ύ ̲῾QΊ QQΰ̮῏ ῦ̮ΰῬ῎ Ώ̱̲Q̮̮ῩῚῐQQῨQ ΰQ`ῲ̯QQ QQΌ῾Q̮QῨ̲QQῩ῎ ̳QQ̰ Q QQΌ῾QQῼQ̱QQ̯ΊῤῩ῎ QῨΏ̱̲ῖ ̯Ῡῖ῞QῨΌQῖQῳῲῨῪΰ῎ Ώ̱̲̮̮ῩQ QQῨQῳ̰ῧQQ̱Q̰̯QQῤῦΊῤ (Shel- QQ̱̰ῨQῪῖῦ῝ῲῨῩῘQQῨ̮QῧQ`ῲ don et al. 1977)῎ QQ̰QῨῚ̱̰ῨQ̮ῖῑQῨ̰̳ ῢ̮ῨῖQΰΰ̮῏ Ί̮῞̯Q῾ῨQQ῍ῤ῞ῢ῎ ῤ̰ῐῧQQ̱Q̮Ίῤ (van der Meeren & Næss ῝QῨQQQῧ΅QῪῧQ̰ῢ̰Q῎ QQ̮ῡ ̮Q 1993) ῦῥ̮`῎ ῤῘῧ῞Qΰ̮ῤQ̮`ῲ῏ ῧΏ̱̲QQῨQῪῖQQῦQQ̮ QQΌ῾QῸῴQ Q̲QQῧ̮Ῑ̳QQῦ QQΌ῾QQΌῤ῞ῢ῎ QQQῨ St. P (Mackas et al. 1998) ῭῎ ῸQ ῶQ ̱ QQQῨ CalCOFI QῼΌ῾ (Ohman & Venrick ̲ῒ (OPC: Optical Plankton Counter, Herman 1988) ῨQQῖ Q῝ῲῢ̮῏ OPC ῨΌQQQῩ̮Q̱QQQῧ̳Q῝̯῎ ̯Ῠῌ 2003)῎ QQQQῨQQQῧ̮Ῑ̳QQQ̳Q ΐ̯ ῧ̰῟QῨQῨ̱QQῥQῤ῞ῢῸ̮῎ ̱Qΰ 4096 1994 ῦῥῖ̮῎ Ίῲ̰ΰ´ῘῨ̮Q῭ῢQῖ Ύ῝ QῨ̲ῼ̲QΏ̱̲Q ̲῾ (DSU) ῧQQ῞Ώ̱̲ ῲῢῗ̯῏ ῞̮῞῎ QQ QQΌ῾QῨ̳QQQῧQ̯ QQQῧQΐῩ̱QQ̯ῬῨΰ̮ (Herman 1988)῏ QQῨ̲QῩ῎ QQ QQΌ῾QQΊ̱̲Ῠῖ῞Q̰ Q DSU ῨQΐῩ Herman (1992) ῧ΅QQ῝ῲ̯Q ̯Ῡ̳QQῤ̮ῠ̯QῼQῧQ̯ῬῨῖ̰ῤ̱ῥΰ̮ ῲQQQ̮̱Q̮ῢQQQQ (ESD: Equivalent Spheri- ΐQ̮̰ Sugimoto & Tadokoro 1997, 1998῏ QQΰ cal Diameter) ῧQ῏῝ῲ῏ OPC Ῡ ESD ῖ 0.25 mm Ῡ῎ QQ QQΌ῾QQΊQῷῧ̯Q̱̮ῢ̯̳QQQ ̮` 20 mm ῨΏ̱̲ῨQΐ̱QΌ̯Ίῤῖΰῗ ῧQ̯QQῬQῳῲῢ̮ῖ (Tadokoro et al. 2005, (Herman 1988)῎ QQ̲ῧ̱ῪQ̱ΰQῡQQῧ̮Ῑ Chiba et al. 2004, 2006)῎ ̯ῲ`ῬῙQῚῧῡ̮ῢῨῪ QQ QQΌ῾QQQῨ̳QῧQQQQΰ̮῏ QQΰ QῪ̱Q̮ῧῤῥ̰ῠῢ̮῎ ̱QQQ̱QῪ῞ῢ̮ ῨῒQQῤ῞ῢ῎ Q̰Q̲̰Q (Herman et al. 1993)῎ ῳῙΰῩῦ̮῏ ῧ῎Qῠ῎ QQῨQ̮Qῤ̮̮QQΰῩ῎ ̱̳Q̱Q (Nogueira et al. 2004)῎ ̱QQ (Labat et QQ QQΌ῾QῨΏ̱̲Q̮̮ῩῚῐQQQQῨQ al. 2002, Gallienne et al. 2004) ῧ̮ῙQQῖ̮῏ ῼQ̱QQ̯Ίῤῖ῞Qΰ̮ῬῨῨ῎ Q̲QQῧ̮ ̮ῢΊῲ`Ῠ QῨ ΎῩ̮̰̯QQΰ̮῏ ̯̯῞῎ OPC Ῡ̯ῨQῷῠ῎ QΐῨ῞ῦῧ΅Qΐ ῩῨQ̯QQ῭῎ QQ῭̲Q̲ ´QQ QQΌ῾Qῦ QQ῎ QQQῤ̮̮QQῧ̮̮ῢῬQQ QQΌ῾Q ῥQQῦQΐῧ̲̯Q̯QQ῎ ̲῾Q̱̲´ῧ΅̲ ῨΏ̱̲QQ̱Q`̮ῧ̯ΊῤῧῩ῞QῦQQῖ̮ Ύ Ῠ Q ̲ Q Q ῤ ̮ ῠ ̯ Q ῾ ̱ Q ̮ ῢ ̮ (Herman ῏ Michaels & Silver (1988) Ῡ῎ QῴῨQQ QQΌ 1992, Sprules et al. 1998, Zhang et al. 2000)῏ ῤῘῧ̱ ῾QQΊῧῥῨ΅̮ῦQQQῖQ̯̮ῖQQQQῧ ῟ῨQQ̲ῧ̱ῪQ̱̯QQ̳QῨ΅̮ῦῡQ῎ Ίῲ` ̮ῙQ̳QῦQῗQῶQ̱QQ̯ῤQ῞ῢ̮῏ ῨQ῾̱QQ̯ΊῤῩQ῞̮ῖ῎ ῘQ̮Qΰ̳Q̳Q ̰̯QQῧ῎ Boyd & Newton (1999) Ῡ῎ Qῴ̮`ῦῴ QQQ̮Q̱QῪ̯ῡQῩQῬῧ̱̯Q̱Q̮῎ Q̰ ̰ῨQΰQQ ̱ (POC) QῶQῩ῎ Qῴ̰̲Qῧ̮Ῑ ῦQQΰ̮Qῖ OPC ̱̳Q̯΅̮ῧ̳̰̯Ίῤῧ QQΌ῾QQΊῨ ̱ῷ̳´ῤQQQ̱̰ῧ΅ῠῢQ ΅̰QῦΌQῖQQῤῦ῏ ̰Ίῤ̱Q῞ῢ̮῏ Q̮̰QῴΰΏQ QῖQ Ίῲ`ῨQ῾Q̱Q̰̮ῢ῎ Beaulieu et al. (1999) ̯ῡQ῎ ΏQ QῩQ̯ῦῤQ QQΌ῾Q̱῭Q ῩῘQ̮Q OPC QΌ ̱QQ῞̯῏ ΊῨ Ῡ῎ ̱ ῞῎ QQῤ῞ῢ̲QΐQ̯ΊῤΰQΐῨ̳QῺQ̱Ὼ ΌQQ̲QQ ῒ̰ῨQQ̱̳`̯Ίῤΰ OPC ̱̳ Ύ῎ Qῴ̮`ῦῴ̰ῨQῺῦQῗQῶ̱QQῧ῞ῢ̮ Q̯QΐῩ ΐQQ QQΌ῾QQ̲Ῡ ̱ῺQ῾Qῒ (Ducklow et al. 2001)῏ ῡ̰῎ QQῧ̮ῙQῗ̯Q Qΰῗ̯Ύ῎ ̱῟ῨQΐῨ῞ῦῧ΅QQ̱QῙ ῤ̮̮QQ̮`Ῥ῎ QQ QQΌ῾QῨΏ̱̲QQ̮ Ίῤῖΰῗ῏ ῝`ῧ῎ ῨQQQῧ̲῾Q̱̲´̯ ̮ῩQQQQῷ̱Q`̮ῧ̯ΊῤῨ῞Q̰ῩQ̮῏ QQῨ ̱Q̲ῒ̱΅ ̯Ίῤΰ ̱̲̱̳Qΰῗ BPS82121ῌ ῌ (Mark2)ῌ ῌ ML9055CῑMark10 ̯Q῍QQ Monῌ Decῌ 24ῌ 14:58:02ῌ 2007 ῺQ̳ῼ̲῾ Pageῌ 2 Q̳ῐQQῐ̮ῑ OPC ῧῪ῭Q̯ῤ῏ῠ̰ῨῙ̯̲ ̳̱Ώ̳QQQῌQQ 3 ῭῏ ῝ῨQ̮`̰̰̯ΰ῎ CalCOFI ῤQQῐῢ῎῟΅ΰ Q῎ Beaulieu et al. 1999 `̲ΐῥ̯ΰῗ῭̮ `Q̰ ῗ̯Q̮QΎ`QQ̯῎ ̲ῲ ῥ Chl-a ῨQQῙῪ ̯῎ ῾ ̳Q̮QΎῨQQῙῪ̰̱ῶ῍̮ῨQῖ ̰̲ῲ ῨQQῡῙῨQῧ (Beaulieu et al. 1999)῎ `QQ̯̯ ̱ ̲ ΐ̱ ̳̮῏ ̱ ̲ ΐ̱ ̳ ̰̯Ῡ̱̳ῳ´Ό (Pacific hake) QῨQῬῨQ̮ ̰Ῠ̰Qῥ̯ΰ῎ ̱ῶΊQΐῨ 6 Q῭Ῠ̯ῘῧῦQQ ῗῧQ̰῟΅ΰῙῬ (Mullin et al. 2000)῎ ̯ῨῩ̰QΊ Q̲ΐῶ ̮Qῑ 0.29, 0.54, 0.80, 1.03, 1.62 ῙῪ̰ 2.38 Qῧ῟΅ΰῗ῭῏ mm̮ Q 10 Q`̰ῗ̯῏ QQῨΰQ Herman 1988, ῥQQῩ῎ Q̯ῤ῏ῠ̰ 155̮E QῨ 35̮N44̮N ῧ Beaulieu et al. 1999, Zhang et al. 2000, Wood-Walker Ῑῗΰ 1993 ῝ῚΎ 2004 ῝ῨQQῚΎQQῧQQ῟΅ et al. 2000, QQ 2003̮ `QQῧ῎ ̰QΊ OPC `̮Q̯ ̯̯Q (0150 m) Ῑ̯̲ ̳̱Ώ̳QΎ`QQQQ ῭QῨQQ̰Ῥ` 10 L minῌ1 ῧ῎ ῍̮QῨ̰QῨῦῖ OPC ῤQQ̯῎ ῚQ̳ῧῙ῭̱ῶ῞ῥῨῙ̯̲ Ί 10 counts secῌ1 ̳Qῧῦ῭ῪῘῧQ̮̯̯῏ ῝ῨQ ̳̱Ώ̳Q῎ῬῙῪ̰̱ῶQQῥQQQQ 0150 QQQῨQ῎ 6 Q῭ῨQQQ̲ΐῶQ 10 Q`̯΅̯΅ m QQῠQQQ̮ ῚΎQQ῟΅̯QQῬῨQQQῡῙ̲ 5 Q̯ῢ OPC ῤ῍̮̯῎ ῍̮῟΅̯ ESD ῥQ̯Qῤ῍ Ὸΐ̳`ῧΎῚῧ̯῭῝ῥ`Ῠ̮ῥ̯̯῏ ̮̯̯̲ΐῶῨ̮Q`῟Q̯̯῏ ̯ῨQQ῎ ῪQῩ̰̰ 1 : 1 Ῠῒ`Q̯῎ QQQQῩ 99.7̮ ῤῖῡ̯῝ῥῚΎ 2. ̮Ῐ῎̮ῖ OPC Ῠ̱ῶQQῨQῖῩQ̯Qῗ῝ῥΊQῧ῟΅̯ (Fig. 1a)῏ 2ῌ1. ῗ̮̮̮ῌ OPC ῏ῒῑ῍ῐΐ̮ Qῧ῎ ῾ ̳Q̮῟΅̯Ῑ̯̲ ̳̱Ώ̳QΎῧ QQQQ OPC ῼῺΏ (Model OPC-1L: Focal Tech- ῐ̯῭ OPC Ῠ῍̮ΊQ`ῧΎῚῧ̯῭̯̰῎ Q̯῭Q῎ nologies Corp.) `Q̰Qῠ OPC QQ̰΅ CT&C Q ῞̳ῑQῙῪ̰̱ῶ῞ῥῧῷΐΏ̯̯QΎ`̰ῗΰ̰ Fig. 1. Relationships between Equivalent Spherical Diameter (ESD) measured with OPC and Equivalent Circular Diameter (ECD) determined microscopically. As test particles, calibration beads (a), copepods (b), chaetognaths (c) and doliolids and salps (d) were used. The regression of (d) is of doliolids only. Vertical and horizontal bars acrossing means denote ̮SD. For gelatinous zooplankton taxa (chaetognaths, doliolids and salps), the e#ect of staining was also tested. Species abbreviation for (b): Eb̮Eucalanus bungii, Mo̮Metridia okhotensis (C6F), Mp̮Metridia pacifica (C6F), Nc̮Neocalanus cristatus (C5), Np̮Neocalanus plumchrus (C5). BPS82121ῌ ῌ (Mark2)ῌ ῌ ML9055CῒMark10 QQ῍Q` ̮ ̮ Monῌ Decῌ 24ῌ 14:58:02ῌ 2007 ̱̳ῴῺΏ Pageῌ 3 QQ̱ῷῺ̰ῲῺ ̲Q 4 Q 55 Q 1 Q (2008) QQ̳ῩQ̯῟῏ QQ̯ῠQ̳ ̯QQΏ ΐ155̮E Q ῤῦ ΰ῟῏ Ίῥ̯῎ ΰ῟QQ̯QQ (V ) ̯QῖQ ̯̲̯῟ 35̮Nῒ44̮N ̯QQΊῨ῟̰̰̰ΎQ ΐNeo- Q̯ ̯Q Ῡ̳Q ̲QQ ECD (Equivalent Circu- calanus cristatus C5, N. plumchrus C5, Metaridia paci- lar Diameter: ECD) ̯̯QQ fica C6F, M. okhotensis C6F ῗῤῡ Eucalanus bungii C5, C6F῎ ῶῴΎQ῎ ΅ῷῺQQQ̱ῷῺ̰ῲῺ ΐ̰ 4 ῌBW῎2 ῌBL῎ 4 ῌECD῎3 p ̮ ̮ p 3 ῍ 2 ῏ ῍2῏ 3 ῍ 2 ῏ ̱`ῸQ , ῪῸῳQ ῩQῖ῟῏ ῚῨῥῠ̳Q ̲̯̯ ECD̮3ῒ BW 2̮BL QQ (Body Length: BL) ῗῤῡQQ (Body Width: BW) ̯ῤῦQQ῎ OPC ̯ῤῧ ESD ̯Q ῟῏ ῢ῟῎ ̱ ῩQQ῎ ῞̯QῤῦQ̲QῩ῾Q̯̯ῙῧQQ̯Q ῷῺ̰ῲῺ̯QῘQQ̯̮ῧῚ̯̯ῤῦQ῝ῧ OPC Q Q (V ) Ῡ Patoine et al. (2006) ῩQ̳̯̯QQ QQ̯̲QQ̲Ῡ̳Q῎ ̰̰̰ΎQῠΌῺ̱Ὸῑ 2 V̮ 4 ῌBW῎ ῌBL῎ p ̮ 3 ῍ 2 ῏ ῍2῏ ̯῎ ῶῴΎQῗῤῡ΅ῷῺQQQῠ̱ῷ̰῭̰ῑ̱ ῺQ´̯QQ῟̳῎ OPC ̯ῤῧQQ῾̯QQῩQῖ῎ Fig. 2. E#ects of repeated use (6ῐ7 times) and staining/non-staining of 6 copepods on the ESD measurements with OPC. The measurement started with non-staining specimens (n̮10) three times, followed by stained same specimens three-four times. Di#erences in average ESD values of successive measurements were significant only for Neocalanus cristatus C5 (one-way ANOVA and Fisher’s PLSD, p̮0.05), which was due to breakage of body parts. Vertical bars acrossing means indicate SD. ῑ: p̮0.05 (Fisher’s PLSD). BPS82121ῌ ῌ (Mark2)ῌ ῌ ML9055CῐMark10 Q̳῍ῼQ ̮ ̮ Monῌ Decῌ 24ῌ 14:58:02ῌ 2007 ̰Ὼ̱Ῥῲ Pageῌ 4 QQῐQQῐῡ̰ῑ OPC ̰ῲ̱̮̲̯ῼ ̰ῪῺ ̳QΏ῾QQQQQ̮ 5 ῖῐ̰ ̲ (stained, not stained) ̰ῲ̱QQῴ̱Qῠ ῥ῏ ῤ̰QQ῎ Ῑΰ̱̰Ώ̳Q̰` OPC ̰ῲ̱ ESD ̰ QΏQῌ̱Q̰̰ῧῥ῏ ῢ̰̱ῦ῎ Όῶ̲̳̰̰Q̱ Q̰ῲ̱Q῝ῠ῝ῳQQῠῥ ECD ̰ 99.5ῖ῎ ̳ ̲̳ ̰̰ 83ῖ῎ ῷ ̲̳ῐ´̳ ̳̰̰ 80ῖ ̰̰ῧῥ (Fig. 1bῌd)῏ ̯῞Qῤ̯̯̮ : ̯Ὸ̱῞̯῟Ῑ̳ ̲̳ ῎ ̯῞̮Q̰῝ῦῢ̰̲ ̰̯῏̰Q῏ῴQQῠ̰̯ Ῑῷ ̲̳̳̰ῙῩ῎ OPC ̰ῲ̱ ESD ̰ῲ̱Qῌ̱ Q̯̱̱QQ῞Qῳ̱ῥ̯̰῝ῳ (Fig. 1c, d)῎ ̯̱ῳQ Ώ̳Q̰ῲ̱Qῌ̱Q̰ῧ̰̰QῙ̰Ώ̳Q̯̰̰Q̯ ῲῪ̯̰̮Q̯̰ῲ̱`̰̰QΊῳ̱ῥ῏ ῖῐ̰ ̲῎ ΎQQ̳̰ῳῷ῝ῦ̰ῲ̱ ESD Ύ̰ QQ̰Ῑΰ̱̰Ώ̳Q̰ῙῩ`Qῳ̱̰῝ῧῥ῞῎ ̳ Q̰ῠῩ̯QΌῶ̲̳̰ Neocalanus cristatus C5 ̰ ̰ΌΐQ̰῝ῦῢ̰Q̳Q̯῞΅῟ῠ῎ ῤ̰QQ ESD ̰Qῌ̱Q῞Qΰ̰Qῳ̱ῥ (Fig. 2)῏ Beaulieu et al. (1999) ̰ῸῺ ̳̰ῲῚ̰̯QῪῺ ̳QΏ῾Q̰ QῦQ̳ῴ OPC ̰῝ῦῢ̱῎Q῎ Qῴ῞Q῞̲̯ῲ ̱ ῠῌ QQῢ̱̯̰̰ῲῧῩ῎ ῪῺ̲̯ ESD ̰ Qῌ̱QῲῪ ῌ Q̰ῲ̱ Qΐ̰Q̯̱Q῞Q ̯̱ῢῙ̰QῨῠῩῙ̱῏ Q῍̰ ̱QQ̰QQῴ̰ ῬΊῩ῎ ̲QQ̰̰QQQQ OPC ̰ῲ̱ῪῺ ̳QΏ ῾QQ̳ῴQ̮ῢ̱Q̰῎ Q̳̰ῖῐΌΐQ̰῝ῦ̰ ῙῧῥQ̳ῢ̰Q̯̰΅῟ῴῲῚΊQ̰Q̱ΰ῎ ῝ῦ̰ 1 Q̳̰Ῠ῟ 1 Q̰῭QῚ`̰̰ῠῥ῏ 2ῌ2. ῖῗῒΐῐῑ̮̮ Q̮̰ ῙῥQ̳̰ 19932004 ῭̰ 5 QQQ῝ῳ 6 QQQ̰ 155̮E ῗ῍̰ 613 ῦ̰ 35̮N44̮N̮ ̰ ῙῩ (Fig. 3)῎ ̲QῬ̯Q̳QῘ ̮̲Q̮ 1993 ῭ 2001 ῭̮ ῲῪ ̮ῠ̱Q̮ 2002 ῭2004 ῭̮ Q Qῢ̰QQ̯̱ῥ`̰̰Ῐ̱ (Table 1)῏ ῪῺ ̳QΏ ῾QQ̳̰ Norpac ̲῾ QQ 45 cm, ῾QῙ 0.33 mm; Q̰ 1957̮ ῴ ῙῩ῎ ῒῑ 150 m ῝ῳ̱̲Ῥ̰ ̰QῥQ῟̰ῲ̱QQῠῥ῏ ̲῾Q̳̰̰ QQ̮Q ῒQῴQ̱ῴ̯῎ ῤ̰Q̰ΐῲ̱Qῒ̳ῴQ΅ῥ῏ Q̳ Fig. 3. The location of sampling stations (35̮Nῌ 44̮N) along 155̮E in the western North Pacific. The stations were grouped into four regions in the present analysis, e.g. SF: Subarctic Front, TR: Transition Domain, SB: Subarctic Boundary and ST: Subtropic Current System. Table 1. Zooplankton sampling period at 35̮Nῌ44̮N along 155̮E in the western North Pacific during 1993ῌ 2004. Year 1st visit (mainly late Mayῌearly June) (n) 2nd visit (mainly late June) (n) 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 5ῌ10 June (13) 5ῌ11 June (13) 5ῌ10 June (11) 6ῌ11 June (10) 7ῌ10 June (5) 4ῌ10 June (9) 5ῌ11 June (7) 6ῌ9 June (9) 4ῌ9 June (8) 22ῌ27 May (13) 13ῌ18 May (8) 11ῌ16 May (12) 24ῌ30 June (11) 23ῌ29 June (13) 23ῌ30 June (13) 23ῌ29 June (11) 25ῌ29 June (13) 26 Juneῌ1 July (6) 27 Juneῌ2 July (9) 25ῌ29 June (13) 23ῌ28 June (9) 12ῌ15 June (6) 6ῌ12 June (11) 4ῌ9 June (11) Number of zooplankton samples are shown in the parentheses. ̰ 5ῖ ῢ ̳ ̳Q̰Qῦῠ῎ ῍QQQ̰QῦQῧ ῥ῏ Ῥῥ῎ QQ̰ΎQ̰ CTD Neil Brown Q̮ Mark QQ̰ῩQ̰Q ̳QΏ῾QΏQQ (Motoda 1959) ῴ III B Q῎ Sea Bird Q̮ SBE-9plus Q̰Ῑῠ̰ SBE-19 ῙῩ 2 ΏQῠῥQ῎ ̲̲̰ῶQ̳ῴ̲ Qΐ̲ΐ̰ Q ̮ῘῐQQ̰ῲ̱Q̰̱̮̮ ̰ῲ̱ῒQ̰QΏ̰῝ῦ ῲ̱QQQ̰῾QῙ 0.1 mm ̳̲̲̳῍̰QῠQ̱῎ ̰ ῴQῧῥ῏ ῒQ̰QΏ̰̲῾QQῚ̰ 0150 m ῑ̰ QῩ`ῴ ῙῩ 0.01 g ̰̮̰̰ῤ̰QQ̳ῴ῝ῦῠῥ῏ ῨῙῩ̮QῼQῠῴQ΅ῥ῏ QQ̳ῴ῝ῦῠῥῶQ̳ ̯Ῥ̯Ῥ̰ῪῺ ̳QΏ῾Q Q̮ ̰QQῺ̰̯Q̰QῡῩ 1/21/32 ̰ΏQῠῥQ῎ 2ῌ3. ̮̮ῘῌOPC ῍῎῏̮Ῑ̮ ̳ ̳QQῦῠῥῪῺ ̳QΏ῾QQ̳̰῎ ῍Q BPS82121ῌ ῌ (Mark2)ῌ ῌ ML9055CῒMark10 QQ῍QQ ῗ QQQQ OPC ῴ ῙῩQῪῺ ̳QΏ῾QQ̯ΐῴ´ ῶ̲Ώ̳̲ (ESD) ̰Ώ´ῠῩQΐῠῥ῏ ῙQ̰ ̱QQ ῗ Monῌ Decῌ 24ῌ 14:58:02ῌ 2007 ῼQ ̲̲῾ Pageῌ 5 Ῠ̱ ̳̳ῼ̳QQ 6 Ὶ 55 Q Ὶ 1 Q (2008) ῭QQῸΰῲ῟῎ (1) ῤῪ ̳̳ῼ̳̯ OPC Ὸ̯Qῤ ̰Q̯ῢῩ (Ikeda & Motoda 1978)῏ ̯῭QQ̲ῸῗQ Q῭´̲΅ 10 L minῌ1῎ (2) ̮̯Q῭ῤῪ ̳̳ῼ ̲̰QQ̱ῴQQῢ῎ QQQῺῸΌ῝̰ῑQ̲̰QQ῭ ̳῭̱ῠ΅ 10 counts secῌ1 ̳Q῎ (3) ῤῪ ̳̳ῼ ῎Q̲ῸQ̯ῤῲ΅ῤῪ ̳̳ῼ̳QQ῭ῪQQ ̳Q̲΅Qῦῥ 1 Q῭ῳ῭QΌ̰ῤ῎ ῭̮̯QQ QῬ̯̯ῴQῸ̯̲Qῤῲ̰ῢ̰QQQ̯Ό῝̱ Ὸῒ̯ῢ̰Q῏ῸQ̰Ῡ῏ ῲῩ῎ OPC Q῏ῬQῢῩQ̲ ῶ̰῝ ̲῟` Al-Mutairi & Landry 2001 ̱ Ro- ΅῎ ῶΐῢῩΎ̲Q̯̱QῸQ̰ΎQῴῥ̯ῢ῎ Q man et al. 2002 ῸQQ̮῏ ῑQ̲Ὸ 1 ῨῡῩῴῬῑQῤ ῢῩ῏ ̮̰̰Qῤ̰῎ I (mg C ind.ῌ1 dayῌ1) ΅̳Q῭Q ̰̰ῦ῏ 2ῌ4. ̮ῌ̯ῥ I̮R̮ ῟ῚΊῠ̯ 2ῌ4ῌ1. OPC Ῥ̱ῴQῌῡῶῩ 4,096 ̲Ό̲̳ ̲̱῭̲ 12 1 1 ̮0.97̮ ̮ ̮24 22.4 0.4 1000 ῤΎῷ̰῎ QQQ ([CO2]/[O2]) Ὸ 0.97 ̲̳ ῼQῙ Qῌ (n) ̰QQ̲Ῥ̯̯ΎQῺ (s) ̯̱ Q̲ (F, Q῎ Gnaiger 1983̮ ̰Q̯ῢ῎ QΏ̲ 1 mol (22.4 L) m3) ̯̱῎ Q̲Ό̲̳ ̲Ῥ̯̯ΊQQ̲ῡῩῴ῭ ῞῭̮῭Q̲ (12 g) ῸQΰ̯̰Ῥ̱ῴQΏ̲̰ QQQῗῌ (N: inds. mῌ3̮ ῸQ̱Ῡ῏ ῢ̰̰Qῡῶ̮̲ῬQQῢῩ̯̰ῬΎ῏ ῡ̱Ῥῥ N̮ QQῺ̰̮῍̯QῺ̱ῴ I̮R/0.4 ̰ῢ῎ ΊQῸ mg ̯ n s̮F ̱ mg QQῢ (̮1000)῎ QQΊQ̱ 1 QQῡῩῴ̯ ῲῩΊQQ̲ῡῩῴ῭QQQῗῌῬQ̱QQ (150 m) Ὸ Qΰ̯̰̰ΊQQ῟ (0ῒ150 m) ῡῩῴ῭QQQῗῌ ῌ2 (inds. m ̱ 1 ῨῡῩῴ (̮24) ῬQQῢῩ῏ ῍̯̲ (G: mg C ind.̮1 day̮1) ΅῎ ̮Q῭Q̯ ῥQ QῺῐ 70Ὶ, ̮῍̯QῺῐ 30Ὶ̮ Ῥ̱ῴ̳Q῭Q̰̰ῡ ) ῬQQῢῩ῏ ῶ῏ 2ῌ4ῌ2. ῒ῏̯̯῍̮῏ῐ̮ΐ G̮0.3̮I 4,096 ̲Ό̲̳ ̲Ῥ῭̯̱ῶῩῤῪ ̳̳ῼ̳ ̯῞ῢ̰ῦ̱ῶῩ 1 QῗῡῩῴ῭ G ̮῎Q̲̮ Ῥ῎ Ί QQ῭QQ̲ Wet Mass, WM ̰Qῼ̮ ΅ῧῶῨῶ῭̲ QQ̲̱ῢ̯΅ΊQQ῟ῡῩῴ῭QQQῗῌ inds. Ό̲̳ ̲῭ ESD (mm) Ῥ̮ῡῤQ῭ῷῐῸQ̱῎ m̮3 ῲῩ΅ inds. m̮2̮ ῸQΰ̰῎ 4,096 ̲Ό̲̳ ̲ Q῝̰ῤῪ ̳̳ῼ̳῭̰Q΅Q῭̰Q̰ῢῢ῝̰Q Ῥ̯̯ 1 ῨῡῩῴ῎ ΊQQ̲ ̱ῢ̯΅ΊQQ῟̮ ῡ ̯ῢ̰῎ ῷῐ̯̱ WM ῸQ̱Ῡ῏ WM ̯̱ DM QQ Ῡῴ῭ G mg C m̮3 day̮1 ῲῩ΅ mg C m̮2 day̮1̮ Ὸ ̲῎ Dry Mass̮ ῭QQῬ΅῎ Yamaguchi et al. (2005) ῦῩ῏ ̯῭̱῞Ῥῢ̰ῦ̱ῶῩ̲Ό̲ῠ̰῭ G ῭̮ ῭QῬῳῖῬῸ̳QῘῒ̳ῩῘ῭QQ 150 m ̳ ̯QQ῎Q̲̰῏ ̰QQῡῶῩῤῪ ̳̳ῼ̳Q̲῭QῬΎ̰῭QΎ Q̲ (84ῒ96Ὶ) ῭῞Q῝ (90Ὶ) ῸΌ῝Ῡ (DM̮0.1̮ 2ῌ5. ῢΰ̮̮ῖῑ̮ῖῙ῞῎῝Ῐῗῤῢ WM)῏ ̯῭Q̲Ό̲̳ ̲Ῥ̯̯ 1 QῗῩῡῴ῭ ̯QQQῬ̯̯ῤῪ ̳̳ῼ̳QQ̯QQQ̯Ῥ DM QQ̲ ΌῺ ̲Ῥ̮Q῭QQQῗῌῸQΰ̯̰ Ὺ῭̱῞Ῥ΅ῤῢ̰῝῭̯Ὸ̱̱̯ῬῤῩ̱Ῥ῎ Q Ῥ̱ῴ῎ ΊQQ̲̱ῢ̯΅ΊQQ῟ῡῩῴ῭QQ̲ Ό QQῗῌ῎ ΌῺ ̲῎ ῎Q̲ῧῶῨῶῬ̰῝̰῎ ῦ̱ Ὼ ̲ mg DM mῌ3 ῲῩ΅ mg DM mῌ2̮ ῸQQῢῩ῏ ῶῩ 4,096 ̲Ό̲̳ ̲῭QQῸ 6 ̰῭̲Ό̲ῼ̳ ̲ ESD ̯ 0ῒ1, 1ῒ2, 2ῒ3, 3ῒ4, 4ῒ5 mm ̯̱ 5 2ῌ4ῌ3. mm ̳Q̮ ῠ̰Ῥῲ̰̱῎ ̰̰̲QῸ 2 ῧΏ΅ῌ̰ῢ̰ ̯ῦ῎̯ῡ ῤ Ὺ ̳ ̳ ῼ ̳ 1 Q ῗ Ῡ ῡ ῴ ῭ Q Q ̲ Ὸ Ikeda (1985) ῭῎̮QQ̰ῗQῸ΅ῌ̰ῢῩQQQ ln R̮0.124̮0.780 ln B̮0.073T two-way ANOVA Ῥ̱Q̯̰ Fisher’s PLSD Ῥ̱ ̲ ̲ῼ῾̲ῸQ̰Ῡ῏ ̯῭Q̯῭Ῡ̱῎ Q̮̯̯΅ῳ̱ῴ 3 ̯ῥ̰ῸQ̲Q ̯̱ῲῥQQῢῩ῏ ̯̯̰ R ΅QQ̲ ( ml O2 ind. ῌ1 ̰ῢ̰QῠῬ̱ῴ`Q̯ῬQΎῢ῎ ῧῶῨῶ ΐ̳QῘ hῌ1)῎ B ΅ῗQ (mg DM ind. ῌ1)῎ T (Ῑ) ΅QQQ̯Ῥ ̳̳ (ῗ42ῘN, Subarctic Front: SF)῎ ΐQQ̲Q ̯̯ 0ῒ150 m Q῭ῐQῬQQQ̰῏ (40ῘNῒ42ῘN, Transition Domain: TR)῎ ΐ̳QῘQQ QῬ῎ ῤῪ ̳̳ῼ̳῭ῑQ̲ (I ) ῸQQ̲ (R), Q (38ῘNῒ40ῘN, Subarctic Boundary: SB) ̯̱ ΐ̳Ῡ ῝̰῍̯̲ (G) Ὸ I ̯̱Q̯ῢῩ῏ ῧ῭Q῎ ῥQQῺ ῘQ (ῖ38ῘN, Subtropic Current System: ST) ̰QQ ([G̮R]/I ) Ὸ 70Ὶ῎ ̮῍̯QῺ (G/I ) Ὸ 30Ὶ ̰ ῤ̯̰̰ῢῩ (Fig. 3)῏ ̯ῶ̱῭̲QQΎ῭QQ΅ BPS82121ῌ ῌ (Mark2)ῌ ῌ ML9055CῑMark10 QQ῍Q῾ Ί Ί Monῌ Decῌ 24ῌ 14:58:02ῌ 2007 ´̳ ̲̲ Pageῌ 6 ̲ῐQQῐQQῑ OPC ῦῪῬQQQQQQῧQQῶῸῺ̱ῺQQQQ Q 7 Favorite et al. (1976) ῤῼ̳̰Ί (1990) `QQῦ̯̯῏ ῞῭ΎῧQ̲̳QῨQ̯̯̰QQ ̳QQ Q ῐ῾Q ῧ̲QQQῴ̱ΐῺ̮ ῦῪῬQQῧ̳Qῤ̲Q̯ῢῘῥ Ῐ῎ Q ΰQ̰ῬῪῙῦ̯῭̯῭ῧQ̲ῦῡῘῢQQ QQῨῗῬ̰ῧῧ῎ Ώ QΌῺ̱ (SF) ῚῪῩΏ Q ̳ (SB) ῧ´QῨ̯῭̯῭ῧ̲QQ̲ Ώ QΌῺ ̱Ῠ ̮42̮N ΰΏ Q̳ Ῠ 38̮N40̮N̮ ῦQΎ῭῎ Q̳QQῧQQQQ῟῭ῢῘῬ῏ ̰̯QQQQῧQ῎ ̳QQQῧQQQῦῗ̯Ῥ 35̮N Ῠ῎ ̳QῧQ΅῭ῥΊῠ̯QQΊῠ̯̯̰ QΊΎQ Ῐ̯῏ ̰̯῎ QQQQῧQΊῠ̯ QQΰ 5 QQῧ̰῎ Fig. 4. Comparison of zooplankton wet mass estimated with OPC and those directly measured. Zooplankton samples used were those collected with Norpac nets, excluding those dominated by gelatinous zooplankton (cf. Fig. 8). Table 1̮ 1997 QῦῚ῝Ῥ 5 Q Q6 QQQῧ̱ΐ̱ Ῠ QΊΎQ ̯̯῏ 3. 3ῌ1. ῑ ῏ OPC ῌ῍῎ῒΐῐ QQ̳ΰQQ̯̯QQῶῸῺ̱ῺQQῧῙ̯῎ ῳῸ ̱ῺQQQῶῸῺ̱ῺQQ̯̯QQ`QῘ̯̰ῧ Table 2. Results of variance analysis (two-way ANOVA) on the abundance, biomass and calculated production for size-fractionated zooplankton at four regions along 155̮E during late Mayῌearly June of 1993ῌ2004. Source of variation Fig. 5. Temperatures (top) and salinities (bottom) averaged over the 0ῌ150 m water column at stations along 155̮E during late Mayῌearly June and late June of 1993ῌ2004. Solid horizontal bars across the means denote ̮SDs. SF: Subarctic Front, TR: Transition Domain, SB: Subarctic Boundary and ST: Subtropic Current System. BPS82121ῌ ῌ (Mark2)ῌ ῌ ML9055CῒMark10 QQ῍̲Q ῖ Abundance Total 0ῌ1 mm 1ῌ2 mm 2ῌ3 mm 3ῌ4 mm 4ῌ5 mm ̮5 mm Biomass Total 0ῌ1 mm 1ῌ2 mm 2ῌ3 mm 3ῌ4 mm 4ῌ5 mm ̮5 mm Production Total 0ῌ1 mm 1ῌ2 mm 2ῌ3 mm 3ῌ4 mm 4ῌ5 mm ̮5 mm Year Region Year̮Region NS NS NS ῍῍ NS NS NS ῍ ῍῍ ῍῍ ῍῍ ῍῍ ῍ NS NS NS NS NS NS NS NS ῍ NS ῍῍ ῍῍ NS NS NS ῍῍ NS ῍῍ ῍῍ ῍῍ ῍ NS NS NS NS NS NS NS NS ῍ NS NS ῍῍ NS NS NS ῍ ῍῍ NS ῍῍ ῍ NS NS NS NS NS NS NS NS NS ῍: p̮0.05, ῍῍: p̮0.01, NS: not significant. ῖ Monῌ Decῌ 24ῌ 14:58:02ῌ 2007 Ὼῷῲ̱̱ Pageῌ 7 QQΌ´̲̲̳ Q 8 Q 55 Q Q 1 Q (2008) (n234) ῤ̯̮̯QQ῝Ὺ̯QQQ (g WM mῌ3) ῡ (SF) ῡ̲̳QQ̳ (SB) ῤῖ̮̯῎ ̲Q῾ (TR) ῡ̲ OPC ῤ̰̰QQ ΐ4,096 ῳ`̱ῼῶ̱ῥQQ ῗ̰Q QQ῾ (ST) ῥ̯Ὺ̰̰̰ 2 QῨῢQῙῚ῎ QQQῤῖ Q῝Ὺ̯QQQ (g WM mῌ3) ῭Q̳῞̯῎ OPC ̳Qῥ Ί̰Q῾QΊῥQQQῘQ῝Ὺ̯῏ QQQῤῖ̮̯ῦ QQQῤ̯̮̯QQ῞̯ (Fig. 4)῏ ̯ῥQ ῎ OPC ῤ̰ 5 Qῗ̰ 6 Qῤΰ̰ῤ̯Ὺ̯QQ ῎ Q Qῤΰ̰QQ ̰QQQῦQQῥQQQῡQ̳῞̯Ῥ̯ῗῤ QQ ῠ ῘῡῚῤ̲Q῾ῠQ̰Ὺ̯῏ QῥQ῾ῠῦQQῤ̰̰Q ̮̯̯̰ῥῥ ΐQ 1.05 Q῎ QQῥQῤῦῙῬ̰̯Q̲ ῡ QῥQQῦQ̯῞̰QQῠῦΰῗ̯̯῏ ΰQQῘῩ̰Ὺ ( p̮0.0001)῎ OPC ῤ̰̰̳QῥQQQ QQΌ´̲̲QQQQQ῎ ῷ`Ώ̱ῖ̰ῧQQ QῤῖΊ̰̳Q῾ῖ̰ῧQQQQῥQQ῭ 5 Q Qῒ6 ῘQ῝Ὺ̯῏ QQQῥQQῴῑ̱ῤ̯̮̯ two-way ANOVA ῠ̳Q 3ῌ2. ῘΊΐῑῒ̮̮῎̮῝Ὶ̮ῗῌ ̮ῖ῍ῐ ῞̯ῡΎ῎ QQQQQῠῦ 6 ῳ`̱´̱ (0ῒ̮5 ῏̮Ῑ῞Ῐ mm ESD) ῥῨῡ΅ῢῤῖ̮̯Q῾QῤQ̲ΰQῘQ̰ QQQQ῎ QQῖ̰ῧQQQQῥ̳Q῭Q̯̯ 1993 Ὺ῎ 2ῒ3 mm ῥῳ`̱´̱ῤῦQQQ̰QQ῝Ὺ̯ Qῗ̰ 2004 Qῥ 5 Q Qῒ6 QQQῖ̰ῧ 6 Q Qῤ (Table 2)῏ ῷ`Ώ̱ῠ̰QῚῥῳ`̱´̱ῠQ῾Q ῖΊ̰ 155̮E Qῤ ̯̯̳QQῥ 0ῒ150 m QQQQ ῥQῘQ̰Ὺ̯Ῐ῎ ̳ῳ`̱῭QQ῞̯QQQΌ´̲ Q ῡQQQQ Q῭ Fig. 5 ῤQ῟῏ Q ῡ Qῡ̰ ̲ῷ`Ώ̱ῤῦQQQ̰Q̰Ὺ̯῏ 0ῒ1, 1ῒ2 ῖ̰ ῤQ̲QῥQQῠQ ῎ Q QῠQ̲QῨῢQ ῎ Q ῧ 2ῒ3 mm ῥῳ`̱´̱ῤ̰Q̲ΰQQQῘQQ῝ Qῠ̮̯̯῏ Q ῖ̰ῧ QῥQQQQῦ̲̳QῸ̲̲ Ὺ̯ῡῗ̰῎ Ὺ̰ῥῳ`̱´̱ῥQQQῘQQQ Table 3. Between-region di#erences in the abundance, biomass and production of size-fractionated at each region along 155̮E during late Mayῌearly June of 1993ῌ2004 tested by two-way ANOVA (“Di#erence”, see Table 2) and Fisher’s PLSD. Any region not connected by the underline are significantly di#erent. Region Zooplankton Size class Region (Fisher’s PLSD, p̮0.05) Di#erence Abundance (inds. mῌ2) Total 0ῌ1 mm 1ῌ2 mm 2ῌ3 mm 3ῌ4 mm 4ῌ5 mm ̮5 mm Biomass (mg DM mῌ2) Total 0ῌ1 mm 1ῌ2 mm 2ῌ3 mm 3ῌ4 mm 4ῌ5 mm ̮5 mm Production (mg C mῌ2 dayῌ1) Total 0ῌ1 mm 1ῌ2 mm 2ῌ3 mm 3ῌ4 mm 4ῌ5 mm ̮5 mm SF TR SB ST 69,713 49,933 12,751 6,044 866 105 14 52,754 34,435 10,131 6,923 1,113 109 42 86,926 73,459 9,506 3,320 591 39 10 61,556 53,780 6,501 1,064 198 11 2 ῍ ῍῍ ῍῍ ῍῍ ῍῍ ῍ NS TR TR ST ST ST ST ST SF SB SB SB SB SF ST TR SF SF SF SB SB SF TR TR TR 9,249 558 2,271 3,977 1,848 442 153 10,183 371 2,093 4,515 2,287 474 443 5,927 602 1,576 2,306 1,189 162 92 2,656 470 938 776 365 48 59 ῍῍ NS ῍῍ ῍῍ ῍῍ ῍ NS ST SB SF TR ST ST ST ST SB SB SB SB TR SF SF SF SF TR TR TR 173 21 50 71 24 5 1 219 19 56 95 37 7 5 192 44 59 60 25 3 1 134 44 48 29 12 1 1 ῍ ῍῍ NS ῍῍ ῍ NS NS ST TR SF SF SB ST TR SB ST ST SF SF SB SB TR TR ῍: p̮0.05, ῍῍: p̮0.01, NS: not significant. SF: Subarctic Front, TR: Transition Domain, SB: Subarctic Boundary and ST: Subtropic Current System. BPS82121ῌ ῌ (Mark2)ῌ ῌ ML9055CῐMark10 QQ῍Q ̮ ̮ Monῌ Decῌ 24ῌ 14:58:02ῌ 2007 ῲ̲Ὼ̱̱ Pageῌ 8 ῎ ῎ 93 94 95 96 98 99 Year 00 01 02 03 04 45 4 3 3ῌ4 mm 4ῌ5 mm ῐ5 mm 11 1 1 38 47 40 12 2 0 34 36 32 24 4 1 25 41 55 27 3 0 32 63 98 21 1 1 37 48 58 166 2,410 1,083 87 38 543 1,363 23 4 1 36 60 85 209 3,633 1,274 267 100 530 1,806 28 4 2 37 70 105 244 4,970 1,675 337 201 734 2,614 21 3 1 24 31 52 133 2,490 1,158 225 115 414 1,106 46 13 13 35 69 54 230 2,318 2,700 960 1165 527 2,218 13 2 0 32 62 43 153 1,938 779 151 42 521 2,145 NS NS NS 95 95 ῍ NS NS ῍῍ 95 ῍῍ NS NS NS 95 95 ῍ NS ῍῍ 95 NS NS NS ῍῍ NS NS NS Di#erence 94 02 94 02 94 94 04 94 04 94 02 04 02 96 03 99 99 99 03 04 99 96 04 03 96 99 02 93 96 02 99 00 96 00 00 96 93 93 93 98 93 93 Year (Fisher’s PLSD, p῏0.05) 00 98 00 04 98 00 98 03 98 03 03 98 Monῌ Decῌ 24ῌ 15:11:14ῌ 2007 ῒ̮̮ΐ Pageῌ 1 01 01 01 01 01 01 9 BPS8212Yῌ ῌ (Mark2)ῌ ῌ ML9055C῎Mark10 ̮̮῍̮̮ ῍: p῏0.05, ῍῍: p῏0.01, NS: not significant. 22 58 78 223 151 0ῌ1 mm 1ῌ2 mm 2ῌ3 mm 4,588 1,697 263 28 2,703 1,570 304 83 522 2,075 2ῌ3 mm 3,601 1,659 1,517 3ῌ4 mm 2,306 631 771 4ῌ5 mm 250 55 200 ῐ5 mm 170 96 13 Production (mg C mῌ2 dayῌ1) Total 209 138 117 508 1,353 355 1,375 357 1,791 495 1,066 0ῌ1 mm 1ῌ2 mm Abundance (inds. mῌ2) Total 43,751 85,892 62,500 53,593 65,756 74,583 73,973 91,877 49,893 71,609 71,682 0ῌ1 mm 27,234 74,897 52,863 41,438 46,680 62,080 57,000 68,910 39,273 54,422 57,124 1ῌ2 mm 10,011 8,140 6,955 7,220 11,071 8,570 10,962 14,281 6,328 12,185 11,223 2ῌ3 mm 5,286 2,531 2,257 4,090 7,127 3,329 5,298 7,790 3,661 3,446 2,904 3ῌ4 mm 1,149 303 376 760 808 579 637 811 567 1,229 393 4ῌ5 mm 59 12 48 76 67 22 66 77 52 215 34 ῐ5 mm 13 10 1 9 3 4 10 7 12 112 5 Biomass (mg DM mῌ2) Total 8,476 4,303 4,062 6,390 9,173 5,523 7,611 10,530 5,507 9,888 5,575 Zooplankton Size class Table 4. Between-year di#erences in the abundance, biomass and production of size-fractionated at each region along 155ῑE during late Mayῌearly June tested by two-way ANOVA (“Di#erence”, see Table 2) and Fisher’s PLSD. Any year not connected by the underline are significantly di#erent. ̮̮ῌῘῖῌ῞῟῍ OPC῏ῑῒῚ̯̯῝̯̯ῐ̯̯̮̮ΐ̮̮Ῑῗ̮Ί QQ`ῳ̱̰῭̱ῸQ 10 Q 55 Ό Q 1 (2008) ̰῭Ύ̰Ῥ̰῭̯ῡΰῶ̳Ὶ̯Ῐῦ῎ ̱̲Q̱ (TR) ̯̮̮῟΅Ῡ̰ῲ̰̯̳ Qῗ῾̮̯ῠῖῖῧῢ Ί῎ ̲̲Q̳ῗ ῠ̳̯̮Ῐ̯ῗQῢῖ̯̯῝ (Table 3)῏ Ῐ̯ TR ̯̮̮῟΅Ῡ̰ῲ̰̯̳ Qῗ῾̮ ̯ῠῖῖῧῢΊ ̲̲Q̳ῗ ῠ̳̯̮´̲̯῎ 11 Q Fig. 6. Abundance (top), biomass (middle) and calculated production (bottom) of zooplankton (all left, meanSD) and its size (ESD) composition (all right) at the four regions (SF, TR, SB and ST) along 155̮E during late Mayῌearly June of 1993ῌ2004. SF: Subarctic Front, TR: Transition Domain, SB: Subarctic Boundary and ST: Subtropic Current System. `ῳ̱̰῭̱΅Ῡ̰ῲ̰̯QQQ̯ῼῴῚ῟̮ῤῘ̯ῗ Ῑῥ (Table 2)῏ ̳QQ`ῳ̱̰῭̱̳ Q̯ῠ Q̱̯Q̱̮ῡ̯QQQῗῺ Ῑῥ῏ ῷ̰ῩῪ̰ῳ̰ ̯῞̮῟̲ῤ̯῎ ESD ῗ 2ῑ3 mm ̯̰ῩῪ̰ῳ̰̯̮ ̮῟Q̱̮ῡ̯Q̯ῠ̯Q̱̯QQῗ̲ῢῥ ( p0.01)῎ Ῐ̯̰ῩῪ̰ῳ̰̯QQῗ̳QQ`ῳ̱̰῭̱̳ Q̯ Q̱ ̮ῡ̯QQQῨῠῢῚῘ̯ῗ̮ῖῗ̮ (Table 2)῏ Q̱Ώ̯QQ ῒ̳QQQΐ ῨῙῢ̯ Fisher’s PLSD ̯ BPS82121ῌ ῌ (Mark2)ῌ ῌ ML9055CῐMark10 ̲῍̱Q ̮ Fig. 7. Year-to-year variations in the abundance (top), biomass (middle) and calculated production (bottom) of zooplankton in 0ῌ150 m water volumes (meanSD), together with the size composition of each, at 7ῌ13 stations along 155̮E during late Mayῌ early June of 1993ῌ2004. ̮ Monῌ Decῌ 24ῌ 14:58:02ῌ 2007 ̰̱̰Ύ῭ Pageῌ 10 ῐQQῐQQῑ OPC ῦ̰ΎQQQQQQῧQQῺ̲̲ῲῷ̲̳QQQ Q Table 5. Results of variance analysis (two-way ANOVA) on the abundance, biomass and calculated production for size-fractionated zooplankton at four regions along 155̮E during late June of 1993ῌ2004. Year Region Year̮Region ῍ ῍῍ NS NS NS NS NS NS NS ῍῍ ῍῍ ῍῍ ῍῍ NS ῍῍ ῍῍ ῍ NS NS NS NS NS NS NS NS NS NS NS ῍῍ NS ῍῍ ῍῍ ῍῍ ῍῍ NS NS ῍῍ ῍῍ NS NS NS NS NS ῍ NS NS NS NS NS NS ῍῍ ῍῍ ῍῍ ῍῍ ῍ ῍ ῍῍ ῍῍ ῍῍ NS NS NS NS ῍: p̮0.05, ῍῍: p̮0.01, NS: not significant. ̳ ῧ Q ̳ ΰ ̰ Q Q ῦ Ῑ ῝ Ὶ῎ ̯ Ῥ Ῠ TR ῦ Ί Ῐ ῢ ESD ῝ 23 mm ῧ̱̱ῲ̲̱ ̮Neocalanus plumchrus C5 ῧ̱̱῎ Fig. 1b `QQ̮ ῝Qῠ̯̯̰ΰ ῗΎ (Fig. 6)῏ ̰̯῎ Q ῧQQQῨ 134219 mg C Source of variation Abundance Total 0ῌ1 mm 1ῌ2 mm 2ῌ3 mm 3ῌ4 mm 4ῌ5 mm ̮5 mm Biomass Total 0ῌ1 mm 1ῌ2 mm 2ῌ3 mm 3ῌ4 mm 4ῌ5 mm ̮5 mm Production Total 0ῌ1 mm 1ῌ2 mm 2ῌ3 mm 3ῌ4 mm 4ῌ5 mm ̮5 mm 11 mῌ2 dayῌ1 ΰῗῪ῎ ̲QQ (ST) ῦΊῘῢQῠ̯῏ QQQQ`̯̰ῦ Fisher’s PLSD ῧῼ̱ῷΏῴῲ ̱ῷῦ̰Ὺ Q̯̯ῤ̯῭῎ 1993 Q῎ 1998 Q῎ 2001 Q Ί̰Ῡ 2003 QῦΊῘῢῸ´̱ῤQQQ῝QῘ̯ῤ ῝Q̰ῦῥῠ̯ (Table 4)῏ Ὸ´̱ῤQQQῧQ QQQ`̱̱ῲ̲̱̯ῤῦQῢῘ῟ῤ῎ 23 mm ̱ ̱ῲ̲̱ῧQQΌ̱ΐ̲ῤ Q̯ῢῘῥῘQQQῺ̲ ̲ῲῷ̲ῧQQQQῨ῎ ESD ῝ 5 mm ̲QῧQ̳̱ ̱ῲ̲̱῝QQQῺ̲̲ῲῷ̲ῧQ ῦQ῞῟ ̳̯ῢ ῘΎ̯ῤ῝Q̯Ῥ̯ (Fig. 7)῏ ̱̲Ὼ̲`̳Q̯̯ῤ̯ ῭῎ 2003 QῨQ̳ῥ̱̲ΌQ (Salpa fusiformis) ῝ῤ ῟ῦ῾QQ (TR) ῦQ῟QQ̯ῢῘ̯῏ QQῦ῎ Q Ί̰ῩQQQῧQQ` 19932004 Qῧ 6 Q Qῧῶΐ̱ῦῡῘῢ Q`Qῠ̯ῤ̯῭῎ 01, 12 mm ῤῘῠ̯Q̳ῥ ESD ̱̱ῲ̲̱ῦΊῘῢ῎ QQQQQ῎ Ὸ´̱Ί̰ῩQQQῧῘ̯Ῥῦ̰Q̲ ῥQQQQ (Year̮Region) ῝Q̰̰Ῥ̯ (Table 5)῏ ̯ ῬῨ῎ QQQQ῝Q̰Ῥῥῠ̯QQῧ 5 Q Q6 Q QQῧῶΐ̱ QQ (Table 2) ῦQ̰ῢ῎ ῞΅̰ῢQ QQΰῗΎ῏ QQQQῧQ̰Ῥ̯QQ Total, 01 ̰̯ Fig. 8. Year-to-year variations in zooplankton abundance (left), biomass (middle) and calculated production (right) of “total” (a), “0ῌ1 mm ESD” (b) and “1ῌ2 mm ESD” (c) size zooplankton at four regions, along 155̮E during late June, which significant “Year̮Region” interactions were detected (cf. Table 5). For prominent peaks, dominant zooplankton taxa are indicated. BPS82121ῌ ῌ (Mark2)ῌ ῌ ML9055CῒMark10 QQ῍ Q ῖ ῖ Monῌ Decῌ 24ῌ 14:58:02ῌ 2007 ῳ̲ῼ̱ῴῷ Pageῌ 11 ῍ῗ̲ ῴ̲ QQ̮ 12 Q 55 Q Q 1 Q (2008) ̰ 1ΐ2 mm Qῶ̱Ὼ̰QQQQQ῎ ̲̱̱῾ΌῙῬ̰ QQ̯ ̰Q̯̳̰Ῑ῝`῎̮Qῳ Fig. 8 ̰Q̯῏ Q̮ ̲ ῴ̲ ̰Ῐῡ῎ ΐQ̯῎ ̱ῼ ̯῎ ῶ ̲̯ῧ ῗῢῠῙQQQῳQῡ῎ QΎῚ̰QQῐῑQ̯`Ώ ´ QQ̮̲ ῴ̲ ΊῌQ̰̯̳ῙῬ̰῎̰Q̯῏Q ̯῎ ̯̰QQ Year̮Region QQQ῞ΊῪῠ῭̯ῠῧ ῐQ̯ῠ῏ QQQῩΏ ´ QQ̮̲ ῴ̲ ̰Q ̳̰ῬῢῥῌQῤ῝῭ῠ̰̰῎ 1994 ῎̰ SB ̰Ῑ῝ `ῶ ̲̯ῙῬ̰̱ῼ ̯῎ 1996 ῎̰ TR ̰Ῑ῝` ΐQ̯῎ 1999 ῎̰ SB ̰Ῑ῝`̱ῼ ̯ῩῨῦῖ` (Fig. 8)῏ ̰ῠ῎ 6 Q̳Q̰Ῑ῝` t wo-way ANOVA ̰QQQ Q (Table 5) ῳ 5 Q̳Qΐ6 QQQ̰QQ (Table 2) ῧ ῒQ̯ῠῧ῟῎ 5 Q̳Qΐ6 QQQ̰̰̲̱̱῾Όῧ QQ̯̰ῙῗῥQῶ̱Ὼῴ ΌQ̯ῦQ῎̮QΊQ῭ ῠΊ῎ 6 Q̳Qῦ̰QQ̰ῶ̱Ὼῴ Ό̰QQQQQῧ QQ̯ῳQῗῥQ῎̮Q̰QQ̯ῩῚῢῠ (Tables 2, 5)῏ 4. 4ῌ1. ῖ ῗ ῞̮̮̮ῒ̮ΐῑῚῘ῎̮Ίῌ ̮Ῑ῍ῐ῏ ̮῝῟ ῗQQῦ̰ 155̮E Q̰̳ῢῠ 35̮N Ὶ῭ 44̮N ̰Q ῳ Q̰Ῥ΅̮QQ̰ 4 Q̳̰Q̮̯ῠ (Fig. 3)῏ Q̮ Fig. 9. Relationship between “total” and “2ῌ3 mm ESD” zooplankton, in terms of biomass (a) and production (b), based on the data obtained during late Mayῌearly or June of 1993ῌ2004. ̲ ῴ̲ QQ̰Q̮ Q ̮̰ῌQῧ̯ῥQ῞ ῭`̰̰῎ Q̯̳ (TR, 40̮Nΐ42̮N) ῦQQ̮̲ ̱῾ΌῧQQ̯̰Q῎̮Q̰ 2ΐ3 mm ῶ̱Ὼῴ Ό̰ ῴ̲ QQQQQΊ 4 ̯̳QῦQῪQῗ̰̰Q̯ῥ῎ ̮Q̰ῬῢῥῪῠ῭̯ῥῗ`῟ῧΊQQ̯ῠ῏ ̯̰ ̲̱̱῾ΌῧQQ̯ΊQῪQῗ῟ῧῦῖ` (Fig. 6)῏ ῟ ῠ̰῎ ̲̱̱῾ΌῧQQ̯̰ΰῗῥ῎ ESD Ί 2ΐ3 mm ̰ Fig. 6 Ὶ῭Ὶ῭ῚῩῬῘ̰῎ TR ̰Ῑῗῥ ESD Ί ̰ῶ̱Ὼῴ ΌῧQQ̮̲ ῴ̲ ̰QQῳQQ̯ῠ 2ΐ3 mm, 3ΐ4 mm ῙῬ̰ 4ΐ5 mm ῧῗῢῠQQῩ ῧ῟῎ ῗ̯Ὺ ῩQ̰QQΊῖ`῟ῧΊῲῚῢῠ ῶ̱Ὼῴ ΌΊΊQ̯῎ Q̯̳ῦQ̳̯ῠQQῶ̱Ὼῴ (Fig. 9)῏ Q῝῟ (r 2) Ί 0.65 Ὶ῭ 0.71 ῦῖῢῠ῟ῧῚ ΌΊQῩῚῢῠῠ̰ῦῖ`῏ ESD Ί 2ΐ3 mm ῧῗῘ ῭῎ QQ̮̲ ῴ̲ ̲̱̱῾ΌῙῬ̰QQ̯̰Q῎ ῶ̱Ὼῴ Ό̰ Eucalanus bungii C6F Ύ Neocalanus ̮Q̰ 65̮ Ὶ῭ 71̮ ̰῎ ESD Ί 2ΐ3 mm ̰ῶ̱Ὼ plumchrus C5 ῧῗῢῠ῎ QQQ̰QQ̱̱̱ῷ̯Ί ῴ Ό̰῎̮Q̰ῬῢῥQῚῦ`῟ῧΊῐῚ̯ῠ῏ ΰ QQ̯` (Fig. 1b)῏ ΰ̰΅῎ 155̮E Q̰̳ῢῠ 35̮N Ὶ ̰΅῎ 155̮E Q̰̳ῢῠ 35̮N Ὶ῭ 44̮N ̰Q̳̰Q̮ ῭ 44̮N ̰Q̳̰῎ Q̯̳ (TR, 40̮Nΐ42̮N) ̰Ῑῗ ̲ ῴ̲ ̲̱̱῾ΌῧQQ̯̰Q῎̮Q̰῎ QQ̱ ῥQQ̱̱̱ῷ̯ΊQῗ῟ῧ̰ῬῢῥῌQῤ῝῭ῥῗ ̱̱ῷ̯̰῎̯ῧ̰QQ̰ῬῢῥQ̳̯ῥῗ`῟ῧ̰ `῟ῧΊῲῚ`῏ Ῡ`῏ Q῎̮Q̰ῙῗῥῪ῎ 5 Q̳Qΐ6 QQQ̰Q̯ῦ̰ QQ̰Q̮̲ ῴ̲ ̰Q̮̮ῙῬ̰Q῎̮Q̰ QQ̮̲ ῴ̲ ̲̱̱῾ΌῧQQ̯̰ Ῡ̮QΊ 5 Q̳Qΐ6 QQQ̰QQῦῖῢῠ῏ ̳ῖ 6 Q̳Q̰̰῎ Q ῭ ῎ ῗ ̯ Ὺ 1993 ῎῎ 1998 ῎῎ 2001 ῎ Ῑ Ῥ ̰ 5 Q̳Qΐ6 QQQ̰̰Q῭ῩῚῢῠ Year̮Region 2003 ῎̰Qῗ῟ῧΊῚ῭ῚῧῩῢῠ (Table 4)῏ Qῶ̱ ̰ ̮QQQ῞̮ Ίῑ̰QQ̯ῠ (Table 5)῏ ῟̰QQ Ὼῴ Ό̰Ῐῡ 2ΐ3 mm ̰ῑ̰ Ῡ῎̮QΊQ῭ Q῞̰῎ ̮Q῎̮Q̲ῼῒ ΊQ̯̳̰Ῥῢῥ Ῡ`̮ ῟ ῠ῟ῧῚ῭ (Table 4)῎ QQQQ̮̲ ῴ̲ ̲̱ ῧῳ Ῐ̯ῥῗ`῏ QQQ῞ΊQ῭ῠQ̯̰ΰῗῥQ BPS82121ῌ ῌ (Mark2)ῌ ῌ ML9055CῑMark10 QQ῍̳̯ ̮ ̮ Monῌ Decῌ 24ῌ 14:58:02ῌ 2007 ̲Ὸ̲̲ Pageῌ 12 ῾̲ῐQQῐQQῑ OPC ῥ̰ῪQQQQQQῦQQῴῷΌ`̱Ό̳QQQ Q 13 Fig. 10. Vertical distribution patterns of temperature and salinity at the station/year when gelatinous zooplankton were dominated (closed circles) as compared with those of 12-year means during 1993ῌ2004 (open circles). Horizontal bars for the latter denote ̮SD. SB: Subarctic Boundary, TR: Transition Domain. Q̯Ὺΰ῎ ̮̯Ύ̰ῳῷ̱ΌQQQῴῷΌ`̱Ό Ὸ ̯῎ QQῥQ῞̯ ̳ῥῤΎῨQQῥ̰̰Q ῥQQ ̱Q῎ ΅ῶ̱ῸQῗ̰ῩQQQ ῙQQ῞ῡ̮̯ (Fig. ̳῭Q̰̯῝ΰῙῢῚῪ Bone 1998 ῭QQ῏ ῝Ύ̰ 8)῏ ̯̰̰῎ 6 ̳ QῦQQῴῷΌ`̱Όῧ῎ ̳QQῤῳ ῳῷ̱ΌQQQῴῷΌ`̱ΌῙQῘ̯̯QῦQΰ̲Q ῷ̱ΌQQQῴῷΌ`̱ΌῦQQῥ̰̯ῡQQῠ̰Ύ ῦ̲QQQΰ῎ Q´QῥῗῪ 12 QQ̳ΰῦQ ῭ Ὺ῝ΰῙῬῘ̯̯῏ ῝Ύῧ 5 ̳ Qΐ6 ̳QQῦQQῢ Q̯̯ (Fig. 10)῏ 1994 QῦῺ Q̳ (SB, 38̮Nΐ ῧ̳̰ΎῤῘ̯̯QQῢ̮Ὺ῏ 6 ̳ Qῥῤ̯ῡῳῷ̱ 40̮N) ῥῡῸ̱Qΰ΅ῶ̱ῸQῙQῘ̯̯Qῧ῎ ̮̯ ΌQQQῴῷΌ`̱ΌῙ̳QQῥQQQ̯Ὺ̰̮ῥῤ̯ ΎῦQQ̰QQ̰̰QQ῎ Q̲Qῢ῎ QQ 40 m ΏQ ̯QQ῭Ώ ῥQQ̯Ὺ῏ ῥQQῙQQ῞ῡ̮ῪQQῙ̮ῘῙῖ̯῏ 1996 Qῦῼ Ὸ̱Q῎ ΅ῶ̱ῸQῗ̰ῩQQQΰ̮̯̯ῳῷ̱Ό QQQῴῷΌ`̱ΌῧQQQQΰΰ̰ῥQQQQ῭Q BPS82121ῌ ῌ (Mark2)ῌ ῌ ML9055CῒMark10 QQ῍̲Q ̮ QQ̲ (TR) ῢῦQQQῦQ̲ῧQ̲QῢQQῠ̰ Ύ῎ Q῟ΊQQ 40 m ΏQῥQQῦQQῙ̮ῘῙῖ̯῏ ̮ Monῌ Decῌ 24ῌ 14:58:02ῌ 2007 Όῲ̱̱ Pageῌ 13 QQῸ´̲ῴ̲ Q 14 Q 55 ̳ Q 1 Q (2008) 1999 Qῦ̲̳QQ (SB) ῡῧQQ̰̰̰QQ 20 m ̲ ῝ΎῪ῏ ῦ QῦQQῥῧ῎ QQῸ´̲ῴ̲QQQ QῦQQῦQQῗQQῢ῞ῠ̳Ί̰ΎῪ (Fig. 10)῏ ̯̰ Q̯ῚῡῧῤῙ῎ QQῸ´̲ῴ̲QQQQῗQQQQ ̰῎ 6 Q Qῥ̱´̱̲QQQῸ´̲ῴ̲ῗQ῾῞̯ ῡ̮Ὺ῏ QQ ῡῧ῎ ̮̯Ύ̰QQ̰̰̰QQῗQQ῞ῠ̮Ὺ ῢῗQQῢ῞ῠ̳Ί̰ΎῪ῏ Ύ̰ῦQ ῖ̰῎ 5 Q Qῖ̰ 6 QQQῥῧQ̰Ύ̯῎ 6 Q QῦQQῗQQ῞ 4ῌ2. ῖῚ῞ῗ῟῎ῌ῍ῐῘΊΐῑῒ̮̮῏̮ ̮̮῝ῘῙ̮ ̯ῢῘῥῦ̰Q̰ΎῪ̱´̱̲QQQῸ´̲ῴ̲ῦQ 155E Qῥ̯̯ 35N ῖ̰ 44N ῦQQῸ´̲ ῾ῧ῎ ̮̯̰Ῑ ΐQQῦQQ̮QQῩῦ̲Q ̳̳QQ ῴ̲ῦῶ῭΅Ὼ̱ῐQQQῦQQQQ῎ QQQῦQQ ̮ῷῲ῭̱ῤΰQQQQῸ´̲ῴ̲ῦQQ̮QQQ QQ̮̰ῨQQ 5 Q Qῒ6 QQQ̮̰Ῠ 6 Q Qῥῖ QῬQQQῙQ̲ῡῘῪ̱´̱̲QQQῸ´̲ῴ̲ῗ ῚῠῦQQQQῦQ̳QQῦQQQῬQ῟ (Fig. 11)῏ Q QQ ῢ̮̮ῼ`̱ΏῗQ̮̯Q ῡῧῤ̮ῖῢQQ QῸ´̲ῴ̲ῶ῭΅Ὼ̱ῐQQQ̮̯ΎῦQQQQ̰ Fig. 11. Schematic diagrams showing year-to-year variations in zooplankton biomass and production as a#ected by the abundance of Neocalanus (2ῌ3 mm ESD), and 3D images for spatial-temporal changes in zooplankton community structure in the western North Pacific as revealed by OPC analysis. BPS82121ῌ ῌ (Mark2)ῌ ῌ ML9055CῑMark10 QQ῍̲Q ̮ ̮ Monῌ Decῌ 24ῌ 14:58:02ῌ 2007 ̲Όῳ̱ῴ Pageῌ 14 QQῐ̮QῐQQῑ OPC ̰̱̱ῸQQ QQ̰QQ̳QQῼ QQῢQ QΌ 15 QQQQ (TR, 40̮N42̮N) ̰ΊῘῩ̳QΏῸῷ̲Q Ί̯̱QQ̳QQῼ QQῢ̰̯΅̯΅̰̲´Q̰̰ ̰QQ῝̳῞῟ (Fig. 6)῎ ΅ῥῤ̰QQQQῪ῎ ῲ῭ ῞QQQQ̳῝Q̱̰̰̱̯̰῝Q̳̯̱̱῏ 1040 m ̰̳QΏῸῷ̲Q Neocalanus cristatus ῲ N. plumchrus C5 ῝ Ῐ̯̰῝QQ̰ῗ̱ ̮QQQQQ̮῏ 6. ῏ ῎ QQ̳QQῼ Q ῸῺ̳̲̰ῶ̮Q̰ῪQQQQ῝Q ̱̱῎ ̳QΏῸῷ̲Q Neocalanus ̰ Q̰̱ῧῩQ QQῶῠῚ̱̰ῗῥ̱῎ QQQ̰ῠῩῳΐ̰̯ῨQ QQQ῝Q῞Q̯̯̱ῩῘῥ (Fig. 9)῏ Q QQQQ̳ ̰QQ̰̯ῌQῶ῝̱΅ῠῥQQQ̳Q̳QQῲ̮QQ Q̰QQ̳QQῼ Q ῸῺ̳̲̰ΊῘῩ῎ ̯̱̱̳Q QQQ̰Q ΏῸῷ̲Q῝̯QQ̱Q̰ῗ̱̯̰Ὺ῎ ̯̱΅̰Ῐ῟Ῠ ̯΅ῡ῏ QQQ̰QῘῥΊQῲQ ̰ΐῢ̰ ̰QQ̰Q̱̰̯̱ῩῘ̱ ̮QῚΎ Tadokoro et ῠ῎ ῠῗ ̳̰̯QQῶῘῥῦῘῥQQQ̳QQῡ̲ al. 2005 ῶ̰̮῏ 6 QQῥ̰QΏ῝``̰Ῠ̱ῩQQ̳ ̮ΊῠῳῴQ̮ Ί̱Ῥ ̮Q̱Q̮ ̰̲Q῎ ̰῾Q̰QΐΊ QQῼ Q̰QῢQ Ὺ̳῞῟QQῠ῎ QῧQ̰Q ̱ῬQ̰̯̱ῥQQ̯QQ̰Ῥ̱QQ΅ῠ̰̯΅ῡ῏ Q῟QQ̳QQῼ Q̰Q´῝Q̱̱̱̱Ῑ̰̰̱ ΅ῥ῎ OPC ̰̮Q̰ῠ῎ QQQ̱Qῲ̮ ῍QQ῾ (Fig. 8)῏ ̯̰QΏ ̲̳̰ῠῩ ̮Q̰Q̳ῖQ῭̰ Q QQῲ̮QQῧ̰Ῑ̲Q̮Qῖ̰Ὺῳΐ̰̯QQ QQQQQ̱Qῖ̳̲̲Ὸ̲̰̰̰Q̰Q̳QQῼ Q ̰̯ῨQῶῘῥῦ῞΅ῠῥ῏ ῭῟Q̯Ῐῥῠ΅ῡ῏ QQ ̰Q´ῖ̰QQῘῶQQQ῟ῺQ̰῞̱Q Q῟QQ QῪQQQQQQῨQ ̮QQQQ (S) 16108002̮ ̮QQ ̳QQῼ Q῝Q´̮ ̰ῘῙQῼῶQῩῠῥ῏ QQ̰QQQ̰QQῡ̱QQῶ̳Q̰Q̮QQ̲̰̰ ῸQQ QQ̲Q̰ῥῧῩ῎ QQῲQQῥ̱̰QQ ̳QQῼ Qῶ̮Q῎ ̰῟̰̰Ὺ̯Qῢ̰ῪQQQQῪ Q̲ῶ̮Q̰ῴQQῡ̱̯̰῝Q̱̱ῩῘ̱ ̮Taniguchi 1973, QQ 1981̮῏ ῐQ῎ OPC ̰̱ῧῩQ̱̱ῥ QQ̳QQῼ Q̰̲Ὸ̲῾̱̱Q̮̯̱ῥῶ̮Q (134219 mg C mῌ2 dayῌ1) Ὺ῎ QQQ̰Ί̯̱QQ ̰ Q Q (107 232 mg C mῌ2 dayῌ1, Taniguchi 1973) ̰QQQ̰ῗ̱῏ ΅ῥ̳Q̰QQ̳QQῼ QῪ ῤ̰QQ̳Q̰ῥ῎ QQQ̰Q῟Q Qῶ Q̯ΰ ̱ (Ducklow et al. 2001)῏ 5 QQῥ̱ 6 Q̰ῥ̰̯ ῩῪQQQQ (TR) ̰ΊῘῩQQ̳QQῼ Qῶ̮Q῝ ῌῘ̯̰̰QῚῩ῎ ̳Q̰̲Ὸ̲ῼQ̲῝Q´ῡ̱̯̰ ̰̱̱ (Fig. 6)῎ ῤ̰QQQ̰Q῟Q Q῝ Qῡ̱̯ ̰῝ ̯̱̱῏ Q QQ ̮̯̰QQ̳Q̮ ̰Ί̯̱QQ̳QQῼ Q ῸῺ̳̲̰QQQQ̰QQ̰ῠῩΏQ̳ ̳̲̰ Q (Sugimoto & Tadokoro 1997)῎ Q̲̳̲̳ (Sugimoto & Tadokoro 1998)῎ ΌQ Q (Sugimoto et al. 2001) ῲ῎ 10 QῳΰQ̯Q̰QQQQ (Chiba et al. 2006) ̰̰῝Q῎̯̱ῩῘ̱῏ QQQ̰Ί̯̱QQQ Q ̮ ῸῺ̳̲̰ῶ̮Q῝ 1993 Q῎ 1998 Q῎ 2001 Q Ί̱Ῥ 2003 Q̰ῌῘ̮ Ὺ῎ Qῢῠ̯̱̱QQ̰QQ QQ̰QQῠ̰ῧῥ῝῎ ῤ̱ῪQῒQQ῝ 1993 2004 Q ̮12 Q̮ ̰Q῟῎ QQQQQQ Q῝ΰQ ̰ῷQ̰Qῤ̯̱̰ῧῥQQ̱ῗ̱ ̮QῚΎ Chiba et al. [2006] ̰ῪQ 50 QQ̰Q̰ῨῘῩQΌ̮῏ ῐ Q῎ OPC ̰̱̱QΌῶ̯̱̰ ῟̰Q̮QQQ̳QQ ῼ QΊQ̰ῨῘῩQῙ̯̰̰̱̱῎ Q̳̰Q QQ̰ BPS82121ῌ ῌ (Mark2)ῌ ῌ ML9055CῒMark10 ῦQ῍QQ ̮ QQQ̯̰ῚQQΎQ̯̰Q῟QQ΅ῠ̰ QQ ̮̳Qῑ Q QQ̮̮ ̰̱Q̰QQ̰ῡ῏ ῌῑῐ῍ Al-Mutairi, H. & M. R. Landry 2001. Active export of carbon and nitrogen at Station ALOHA by diel migrant zooplankton. Deep-Sea Res. II 48: 2083ῌ2103. QQ Qῐ QQQῐ̰QQ̮ῐ̮Q̯QῐQ῏QQῐῑΐQ ̱Qῐ̳QQ 1990. QQQ QQ 180 Q̲QQQQ̯Q ̰QQQ ̰ῤ̰QQ῏ Q̳ῲ̮QQ 41: 73ῌ88. Beaulieu, S. E., M. M. Mullin, V. T. Tang, S. M. Pyne, A. L. King & B. S. Twining 1999. Using an optical plankton counter to determine the size distribution of preserved zooplankton samples. J. Plankton Res. 21: 1939ῌ1956. Bone, Q. 1998. The Biology of Pelagic Tunicates. Oxford University Press, Oxford, 362 pp. Boyd, P. W. & P. P. Newton 1999. Does planktonic community structure determine downward particulate organic carbon flux in di#erent oceanic provinces? Deep-Sea Res. I 46: 63ῌ91. Chiba, S., T. Ono, K. Tadokoro, T. Midorikawa & T. Saino 2004. Increased stratification and decreased lower trophic level productivity in the Oyashio region of the North Pacific: A 30-year retrospective study. J. Oceanogr. 60: 149ῌ162. Chiba, S., K. Tadokoro, H. Sugisaki, & T. Saino 2006. E#ects of decadal climate change on zooplankton over the last 50 years in the western subarctic North Pacific. Global Change Biol. 12: 907ῌ920. Ducklow, H. W., D. K. Steinberg & K. O. Buesseler 2001. Upper ocean carbon export and the biological pump. Oceanography 14: 50ῌ58. Favorite, F., J. A. Dodimead & K. Nasu 1976. Oceanography of the subarctic Pacific region, 1960ῌ1971. Bull. Int. North Pacific Fish. Comm. 33: 1ῌ87. Gallienne, G. P., D. V. P. Conway, J. Robinson, N. Naya, J. S. William, T. Lynch & S. Meunier 2004. Epipelagic mesozooplankton distribution and abundance over the Mas- ̮ Monῌ Decῌ 24ῌ 14:58:02ῌ 2007 ̲Q̳̲ Pageῌ 15 ̳Q̯ῡῢ῝̯ῢ̰ῨQ 16 carene Plateau and Basin, south-western Indian Ocean. J. Mar. Biol. Ass. U.K. 84: 1῍8. Gnaiger, E. 1983. Calculation of energetic and biochemical equivalents of respiratory oxygen consumption, pp. 337῍ 345. In Polarographic Oxygen Sensors (eds. Gnaiger, E. & H. Forstner). Springer, Berlin. Herman, A. W. 1988. Simultaneous measurement of zooplankton and light attenuance with new optical plankton counter. Cont. Shelf Res. 8: 205῍221. Herman, A. W. 1992. Design and calibration of a new optical plankton counter capable of sizing small zooplankton. Deep-Sea Res. 39A: 395῍415. Herman, A. W., N. A. Cochrane & D. D. Sameoto 1993. Detection and abundance estimation of euphausiids using an optical plankton counter. Mar. Ecol. Prog. Ser. 94: 165῍ 173. ̱̲ ̱ 2003. ̯ῡῢ῝̯ῢ̯ῢ῟ῒῖῧ̮̮Ί̮ῌῺ̱ ῩQ̰Ῑ̱ ̮Ὶ῏ ̳Q̯ῡῢ῝̯ῢ̰ῨQ 50: 29῍35. Ikeda, T. 1985. Metabolic rates of epipelagic marine zooplankton as a function of body mass and temperature. Mar. Biol. 85: 1῍11. Ikeda, T. & S. Motoda 1978. Estimated zooplankton production and their ammonia excretion in the Kuroshio and adjacent seas. Fish. Bull. 76: 357῍367. Labat, J. Ph., P. Mayzaud, S. Dallot, A. Errhif, S. Razouls & S. Sabini 2002. Mesoscale distribution of zooplankton in the Sub-Antarctic Frontal system in the Indian part of the Southern Ocean: A comparison between optical plankton counter and net sampling. Deep-Sea Res. I 49: 735῍749. Mackas, D. L., R. Goldblatt & A. G. Lewis 1998. Interdecadal variation in developmental timing of Neocalanus plumchrus populations at Ocean Station P in the subarctic North Pacific. Can. J. Fish. Aquat. Sci. 55: 1878῍1893. Michaels, A. F. & M. V. Silver 1988. Primary production, sinking fluxes and microbial food web. Deep-Sea Res. 35A: 473῍490. ` Q 1957. Q̲̳Q̳ῶ̯ῡῢ῝̯ῢ̯̯̯Ῐ̮̮῏ ̳ Q̯ῡῢ῝̯ῢ΅QQ 4: 13῍15. Motoda, S. 1959. Devices of simple plankton apparatus. Mem. Fac. Fish. Hokkaido Univ. 7: 73῍94. Mullin, M. M., E. Goetze, S. E. Beaulieu & J. M. Lasker 2000. Comparisons within and between years resulting in contrasting recruitment of Pacific hake (Merluccius productus) in the California Current System. Can. J. Fish. Aquat. Sci. 57: 1434῍1447. Nogueira, E., G. Gonza ´lez-Nuevo, A. Bode, M. Varela, X. A. G. Mora ´n & L. Valde ´s 2004. Comparison of biomass and size spectra derived from optical plankton counter data and net samples: application to the assessment of mesoplankton distribution along the Northwest and North Iberian Shelf. ICES J. Mar. Sci. 61: 508῍517. Ὸ Q̱ 1994. QῩῥῘ̮Ί̳̳̯ῡῢ῝̯ῢῙ̳̲ῗ ̰Q̳Ῐ̰̮Ί΅Ὺ῏ QῺ΅Qῳ 56: 115῍173. Ohman, M. D. & E. L. Venrick 2003. CalCOFI in a Changing BPS82121ῌ ῌ (Mark2)ῌ ῌ ML9055CῑMark10 ῷ῍ῦQ ΐ 55 ̰ 1 ῲ (2008) Ocean. Oceanography 16: 76῍85. Patoine, A., B. Pinel-Alloul, G. Methot & M.-J. Leblanc 2006. Correspondence among methods of zooplankton biomass measurement in lakes: e#ect of community comparison on optical plankton counter and size-fractionated seston data. J. Plankton Res. 28: 695῍705. Roman, M. R., H. G. Dam, R. L. Borgne & X. Zhang 2002. Latitudinal comparisons of equatorial Pacific zooplankton. Deep-῍Sea Res. II 49: 2695῍2711. Sheldon, R. W., W. H. Sutcli#e Jr. & M. Paranjape 1977. Structure of pelagic food chain and relationship between plankton and fish production. J. Fish. Res. Bd. Can. 34: 2344῍2353. Sprules, W. G., E. H. Jin, A. W. Herman & J. D. Stockwell 1998. Calibration of an optical plankton counter for use in fresh water. Limnol. Oceanogr. 43: 726῍733. Sugimoto, T. & K. Tadokoro 1997. Interannual-interdecacal variations in zooplankton biomass, chlorophyll concentration and physical environment in the subarctic Pacific and Bering Sea. Fish. Oceanogr. 6: 74῍93. Sugimoto, T. & K. Tadokoro 1998. Interdecadal variations of plankton biomass and physical environment in the North Pacific. Fish. Oceanogr. 7: 289῍299. Sugimoto, T., S. Kimura & K. Tadokoro 2001. Impact of El-Nin ˜o events and climate regime shift on living resources in the western North Pacific. Prog. Oceanogr. 49: 113῍127. Tadokoro, K., S. Chiba, T. Ono, T. Midorikawa & T. Saino 2005. Interannual variation in Neocalanus biomass in the Oyashio waters of the western North Pacific. Fish. Oceanogr. 14: 210῍222. Taniguchi, A. 1973. Phytoplankton-zooplankton relationships in the western Pacific Ocean and adjacent seas. Mar. Biol. 21: 115῍121. ῤ 1981. ̲̳Qΰ̰̲̲̲ῩῥῘ̮Ί ῴῼ̳ῼ̱ Ῑ̳ΏῗΎΌ̰Ῥ῏ Q῾Ὼ̱QQ΅῭´῎ ̳Qῲῐ 23῍35. van der Meeren, T. & T. Næss 1993. How does cod (Gadus morhua) cope with variability in feeding conditions during early larval stages? Mar. Biol. 116: 637῍647. Wood-Walker, R. S., C. P. Gallienne & D. B. Robins 2000. A test model for optical plankton counter (OPC) coincidence and a comparison of OPC-derived and conventional measures of plankton abundance. J. Plankton Res. 22: 473῍483. Yamaguchi, A., Y. Watanabe, H. Ishida, T. Harimoto, M. Maeda, J. Ishizaka, T. Ikeda & M. M. Takahashi 2005. Biomass and chemical composition of net-plankton down to greater depth (0῍5,800 m) in the western North Pacific Ocean. Deep-Sea Res. I 52: 341῍353. Zhang, X., M. Roman, A. Sanford, H. Adolf, C. Lascara & R. Burgett 2000. Can an optical plankton counter produce reasonable estimate of zooplankton abundance and biovolume in water with high detritus? J. Plankton Res. 22: 137῍150. ΐ Monῌ Decῌ 24ῌ 14:58:02ῌ 2007 ῞ῢῠ̯̯̯ Pageῌ 16
© Copyright 2024 ExpyDoc