光学式プランクトンカウンタ (OPC: Optical Plankton Counter) を用いた

Bull. Plankton Soc. Japan 55(1): 00ῌ00, 2008
῔̮῏ῐῑ῍῎ῑ
ΐῒ῕
ῌ The Plankton Society of Japan 2008
῝Ὶ῟̮̮ῖ̮̮ῖ̮῕ῖ̮ῌ (OPC: Optical Plankton Counter)
῔Ῡ῍ῐ̯Ῐῒ̯ΰῧ̯ῥῨῑ῎῏ΐῡῤ̮̮ῖ̮̮ῖΊ̯῞̯ῒ
ῗῠ῏῜ῢῦῡῙ̯
Ῑῖ
΅῏̯̯ ̰῍῏ῦῨ
Ύ
ῬΊῩῥ῜ῥ῜Ῐΰ̯Ὶ῜̯῞ῘΊ`ῤ̰῜Ὺ῭῎ ῕041ῌ8611 ῬΊῩ̰῝ῠ̯ῧ 3ῌ1ῌ1
Regional and inter-annual changes in the abundance, biomass and
community structure of mesozooplankton in the western
North Pacific in early summer; as analyzed with an
optical plankton counter
YJJ YD@D>, AIHJH=> Y6B6<J8=>῍ 6C9 THJIDBJ I@:96
Laboratory of Marine Biology, Graduate School of Fisheries Sciences, Hokkaido University, 3ῌ1ῌ1 Minatomachi,
Hakodate, Hokkaido 041ῌ8611, Japan
῍ Corresponding author: E-mail: a-yama@fish.hokudai.ac.jp
Abstract Abundance, biomass and size structure of mesozooplankton samples collected with
Norpac nets from 0ῌ150 m at 5ῌ13 latitudinal stations (35ΐN to 44ΐN) on 155ΐE in the western
North Pacific during MayῌJune every year (1993ῌ2004) was analyzed by using an optical
plankton counter. Zooplankton counts on 4096 size units (size range: 0.25 to 20 mm equivalent
spherical diameter [ESD]) were converted to biomass, and summed as the community biomass.
The data of each size class was combined with in situ water temperature data to estimate
production potential by Ikeda and Motoda’s method. Depending on the latitude, study region was
classified into subarctic front (SF: ῒ42ΐN), transition domain (TR: 40ῌ42ΐN), subarctic boundary
(SB: 38ῌ40ΐN) and subtropic current system (ST: ῑ38ΐN). Throughout the entire study period, the
regional variations were seen in most size fractions of the abundance, biomass and production,
ranging from 52,754 to 86,926 inds. mῌ2, from 2,656 to 10,183 mg dry mass mῌ2 and from 134 to
219 mg C mῌ2 dayῌ1, respectively. Among the four regions, TR was characterized by high
biomass and production but by least abundance. Inter-annual variations in the abundance,
biomass and production were largely due to those of 2ῌ3 mm ESD fraction (and 1ῌ2 mm ESD
fraction for the biomass). Thus, the 2ῌ3 mm ESD fractions (composed of Neocalanus spp.) were the
most important one a#ecting not only the regional but inter-annual variation patterns of
mesozooplankton. Apart from consistent importance of Neocalanus spp., gelatinous zooplankton
such as appendicularians, doliolids and salps were observed to form irregular peaks at ST and SB
regions in some years. It is suggested that the outbreak of gelatinous zooplankton is related to the
development of thermocline or halocline in the top 40 m of the water column, which may prevent
nutrient supply to surface layer, and improve food supply via microbial loop.
Key words: gelatinous zooplankton, Neocalanus, OPC, size, transition domain
2007 ̰ 0 ῟ 00 ̰ῡ̰῎ 2007 ̰ 0 ῟ 00 ̰ῡ῰
BPS82121ῌ ῌ (Mark2)ῌ ῌ ML9055CῐMark10
ῢ̯῍ῗ῱
῔
῔
Monῌ Decῌ 24ῌ 14:58:02ῌ 2007
̮̮̮̮̮̮ Pageῌ 1
QQ QQΌ῾QQQQ
2
̲ 55 Q
̲ 1 Q (2008)
ΊῨ΅̮ῧQQ QQΌ῾QῨΏ̱̲QQ῜ῤῨQῼ
1.
ῌ
῍
Q̱Q`̮ῧ̯῱ΊῤῩῧ῎Q῎ QQQῨ̱QῨQQ̮
`῞Qΰ̮῱ῧῬ̮̮ῳ`̯῎ ῘῌῧῩ῜QῦQῪῖQ
ῧ῎Qῧ̮̮ῢ῎ QQQQQ̮QῨQQ̳Ὸ ̲̳̱
ῳῲ̯ῧQQῧ῕ῠῢ̮῱῏ ̯ῨQQῤ῞ῢ̯ῨQῪῨ
QQ̯῱ΊῤῩQQQQῨQῡΰ̮῱ῖ῎ ̯Ῠ̯ΎῧῩ
QQ῝ῖQῚ`ῲ῱῏ ῝QῨQQQῧ΅῱QῪῧῩ´̲
QQQῨQ̮Qΰ̮῱QQ QQΌ῾QῨQῼQῧQ̯
ῦQQῤ̮Q῎ ̯῞ῢQQ QQΌ῾QῨQ̲QQῧῡ
῱ῢQ̱QQQ῎ QΏQ̮ῡ̳QQῧQQ̯῱ΊῤῖQ
̮ῢῨ῱QQῦ ̮ῖQQῤῦ῱῏ ̯Ῠ̯Ύ ̲῾QΊ
QQΰ̮῱῏ ῦ̮ΰῬ῎ Ώ̱̲Q̮῱̮ῩῚῐQQῨQ
ΰQ`ῲ̯QQ QQΌ῾Q̮QῨ̲QQῩ῎ ̳QQ̰
Q QQΌ῾QQῼQ̱QQ̯῱ΊῤῩ῎ QῨΏ̱̲ῖ
̯Ῡῖ῞QῨΌQῖQῳῲ῱ῨῪΰ῎ Ώ̱̲̮῱̮ῩQ
QQῨQῳ῿̰ῧQQ̱Q̰̯QQῤῦ῱Ίῤ (Shel-
QQ̱̰ῨQῪῖῦ῝ῲ῱ῨῩ῜ῘQQῨ̮QῧQ`ῲ
don et al. 1977)῎ QQ̰QῨῚ̱̰ῨQ̮ῖῑQῨ̰̳
ῢ̮῱ῨῖQΰΰ̮῱῏ Ί̮῞̯Q῾ῨQQ῍ῤ῞ῢ῎
ῤ̰ῐῧQQ̱Q̮῱Ίῤ (van der Meeren & Næss
῝QῨQQQῧ΅῱QῪῧQ̰ῢ̰Q῎ QQ̮ῡ ̮Q
1993) ῦῥ̮`῎ ῤῘῧ῞Qΰ̮῱ῤQ̮`ῲ῱῏
ῧΏ̱̲QQῨQῪῖQQῦQQ̮ QQΌ῾QῸῴQ
Q̲QQῧ̮Ῑ῱̳QQῦ QQΌ῾QQΌῤ῞ῢ῎
QQQῨ St. P (Mackas et al. 1998) ῭῎ ῸQ ῶQ ̱
QQQῨ CalCOFI  Qῼ῵Ό῾ (Ohman & Venrick
̲ῒ (OPC: Optical Plankton Counter, Herman 1988)
ῨQQῖ Q῝ῲῢ̮῱῏
OPC ῨΌQQQῩ̮Q̱QQQῧ̳Q῝̯῎ ̯Ῠῌ
2003)῎ QQQQῨQQQῧ̮Ῑ῱̳QQQ̳Q ΐ̯ ῧ̰῟῱QῨQῨ̱QQῥQῤ῞ῢῸ̮῎ ̱Qΰ 4096
1994῔ ῦῥῖ̮῰῎ Ίῲ̰ΰ´ῘῨ̮Q῭ῢQῖ Ύ῝
QῨ̲ῼ̲QΏ̱̲Q ̲῾ (DSU) ῧQQ῞Ώ̱̲
ῲῢῗ̯῏ ῞̮῞῎ QQ QQΌ῾QῨ̳QQQῧQ̯
QQQῧQΐῩ̱QQ̯῱ῬῨΰ̮῱ (Herman 1988)῏
῱QQῨ̲QῩ῎ QQ QQΌ῾QQΊ̱̲Ῠῖ῞Q̰
Q DSU ῨQΐῩ Herman (1992) ῧ΅῰QQ῝ῲ̯Q
̯Ῡ̳QQῤ̮ῠ̯QῼQῧQ̯῱ῬῨῖ̰ῤ̱ῥΰ̮
ῲQQQ̮̱Q̮ῢQQQQ (ESD: Equivalent Spheri-
῱ ΐQ̮̰ Sugimoto & Tadokoro 1997, 1998῔῏ QQΰ
cal Diameter) ῧQ῏῝ῲ῱῏ OPC Ῡ ESD ῖ 0.25 mm
Ῡ῎ QQ QQΌ῾QQΊQῷῧ̯Q̱̮ῢ̯̳QQQ
̮` 20 mm ῨΏ̱̲ῨQΐ̱QΌ̯῱Ίῤῖΰῗ
ῧQ̯῱QQῬQῳῲῢ̮῱ῖ (Tadokoro et al. 2005,
(Herman 1988)῎ QQ̲ῧ̱ῪQ̱ΰQῡQQῧ̮Ῑ῱
Chiba et al. 2004, 2006)῎ ̯ῲ`ῬῙQῚῧῡ̮ῢῨῪ
QQ QQΌ῾QQQῨ̳QῧQQQQΰ̮῱῏ QQΰ
QῪ̱Q̮ῧῤῥ̰ῠῢ̮῰῎ ̱QQQ̱QῪ῞ῢ̮῱
ῨῒQQῤ῞ῢ῎ Q̰Q̲̰Q (Herman et al. 1993)῎
ῳῙΰῩῦ̮῏ ῧ῎Qῠ῎ QQῨQ̮Qῤ̮̮QQΰῩ῎
̱̳Q̱Q (Nogueira et al. 2004)῎ ̱Q῿Q (Labat et
QQ QQΌ῾QῨΏ̱̲Q̮῱̮ῩῚῐQQQQῨQ
al. 2002, Gallienne et al. 2004) ῧ̮Ῑ῱QQῖ̮῱῏
ῼQ̱QQ̯῱Ίῤῖ῞Qΰ̮῱ῬῨῨ῎ Q̲QQῧ̮
̮ῢΊῲ`Ῠ QῨ ΎῩ̮̰̯Q῜Qΰ̮῱῏
̯̯῞῎ OPC Ῡ̯ῨQῷῠ῎ QΐῨ῞ῦ῰ῧ΅῱Qΐ
ῩῨQ̯QQ῭῎ QQ῭̲Q̲ ´QQ QQΌ῾Qῦ
QQ῎ QQQῤ̮̮QQῧ̮̮ῢῬQQ QQΌ῾Q
ῥQQῦQΐῧ̲̯῱Q̯QQ῎ ̲῾Q̱̲´ῧ΅῱̲
ῨΏ̱̲QQ̱Q`̮ῧ̯῱ΊῤῧῩ῞QῦQQῖ̮
Ύ Ῠ Q ̲ Q Q ῤ ̮ ῠ ̯ Q ῾ ̱ Q ̮ ῢ ̮ ῱ (Herman
῱῏ Michaels & Silver (1988) Ῡ῎ QῴῨQQ QQΌ
1992, Sprules et al. 1998, Zhang et al. 2000)῏ ῤῘῧ̱
῾QQΊῧῥῨ΅̮ῦQQQῖQ῰̯῱̮ῖQQQQῧ
῟ῨQQ̲ῧ̱ῪQ̱̯QQ̳QῨ΅̮ῦῡQ῎ Ίῲ`
̮Ῑ῱Q̳QῦQῗQῶQ̱QQ̯῱ῤ῔Q῞ῢ̮῱῏
ῨQ῾̱QQ̯῱ΊῤῩQ῞̮ῖ῎ ῘQ̮Qΰ̳Q̳Q
̰̯QQῧ῎ Boyd & Newton (1999) Ῡ῎ Qῴ̮`ῦῴ
QQQ̮Q̱QῪ̯῱ῡQῩQῬῧ̱̯Q̱Q̮῎ Q̰
̰ῨQΰQQ ̱ (POC) QῶQῩ῎ Qῴ̰̲Qῧ̮Ῑ῱
ῦQQΰ̮Qῖ OPC ̱̳Q̯῱΅̮ῧ̳̰̯῱Ίῤῧ
 QQΌ῾QQΊῨ ̱ῷ̳´ῤQQQ̱̰ῧ΅ῠῢQ
΅῰̰QῦΌQῖQQῤῦ῱῏
̰῱Ίῤ̱῔Q῞ῢ̮῱῏ Q̮̰QῴΰΏQ QῖQ῰
Ίῲ`ῨQ῾Q̱Q̰̮ῢ῎ Beaulieu et al. (1999)
̯῱ῡQ῎ ΏQ QῩQ̯ῦῤQ QQΌ῾Q̱῭Q
ῩῘQ̮Q OPC QΌ῵ ̱QQ῞̯῏ ΊῨ῵ Ῡ῎ ̱
῞῎ QQῤ῞ῢ̲QΐQ̯῱ΊῤΰQΐῨ̳QῺQ̱Ὼ
ΌQQ̲QQ ῒ̰ῨQQ̱̳`̯῱Ίῤΰ OPC ̱̳
Ύ῎ Qῴ̮`ῦῴ̰ῨQῺῦQῗQῶ̱QQῧ῞ῢ̮῱
Q̯῱QΐῩ ΐQQ QQΌ῾QQ̲Ῡ῔ ̱ῺQ῾Qῒ
(Ducklow et al. 2001)῏ ῡ̰῰῎ QQῧ̮Ῑ῱Qῗ̯Q
Qΰῗ῱̯Ύ῎ ̱῟ῨQΐῨ῞ῦ῰ῧ΅῱QQ̱QῙ῱
ῤ̮̮QQ̮`Ῥ῎ QQ QQΌ῾QῨΏ̱̲QQ̮῱
Ίῤῖΰῗ῱῏ ῝`ῧ῎ ῵ ῨQQQῧ̲῾Q̱̲´̯
̮ῩQQQQῷ̱Q`̮ῧ̯῱ΊῤῨ῞Q̰ῩQ̮῏
QQῨ ̱Q̲ῒ̱΅ ̯῱Ίῤΰ ̱̲̱̳Qΰῗ
BPS82121ῌ ῌ (Mark2)ῌ ῌ ML9055CῑMark10
̯Q῍QQ
῕
῕
Monῌ Decῌ 24ῌ 14:58:02ῌ 2007
ῺQ̳ῼ̲῾ Pageῌ 2
Q̳ῐQQῐ῔̮ῑ OPC ῧῪ῭Q̯ῤ῏ῠ̰ῨῙ̯̲ ̳̱Ώ̳QQQῌQQ
3
῭῏ ῝ῨQ̮`̰̰̯ΰ῎ CalCOFI ῤQQῐῢ῎῟΅ΰ
Q῎ Beaulieu et al. 1999 `̲ΐ῵ῥ̯ΰῗ῭̮ `Q̰
ῗ̯Q̮QΎ`QQ̯῎ ̲῱ῲ ῵ῥ Chl-a ῨQQῙῪ
̯῎ ῾ ̳Q̮QΎῨQQῙῪ̰̱῱ῶ῍̮ῨQῖ
̰̲῱ῲ ῵ῨQQῡῙῨQῧ (Beaulieu et al. 1999)῎
`QQ̯̯ ῕̱ ̲ ΐ̱ ̳̮῏ ̱ ̲ ΐ̱ ̳
̰̯Ῡ̱̳ῳ´Ό (Pacific hake) ῕QῨQ῜ῬῨQ̮
̰Ῠ̰Qῥ̯ΰ῎ ̱῱ῶΊQΐῨ 6 Q῭Ῠ̯ῘῧῦQQ
ῗῧQ̰῟΅ΰῙῬ (Mullin et al. 2000)῎ ̯ῨῩ̰QΊ
Q̲ΐῶ ῕̮Qῑ 0.29, 0.54, 0.80, 1.03, 1.62 ῙῪ̰ 2.38
Qῧ῟΅ΰῗ῭῏
mm̮ Q 10 Q`̰ῗ̯῏ QQῨΰQ ῕Herman 1988,
ῥQQῩ῎ Q̯ῤ῏ῠ̰ 155̮E QῨ 35̮N῔44̮N ῧ
Beaulieu et al. 1999, Zhang et al. 2000, Wood-Walker
Ῑῗΰ 1993 ῝ῚΎ 2004 ῝ῨQQῚΎQQῧQQ῟΅
et al. 2000, QQ 2003̮ `QQῧ῎ ̰QΊ OPC `̮Q̯
̯̯Q (0῔150 m) Ῑ̯̲ ̳̱Ώ̳QΎ`QQQQ
῭QῨQQ̰Ῥ` 10 L minῌ1 ῧ῎ ῍̮QῨ̰QῨῦῖ
OPC ῤQQ̯῎ ῚQ̳ῧῙ῜῭̱῱ῶ῞ῥῨῙ̯̲ Ί 10 counts secῌ1 ̳Qῧῦ῭ῪῘῧQ̮̯̯῏ ῝ῨQ
̳̱Ώ̳Q῎ῬῙῪ̰̱῱ῶQQῥQQQQ ῕0῔150
QQQῨQ῎ 6 Q῭ῨQQQ̲ΐῶQ 10 Q`̯΅̯΅
m QQῠQQQ̮ ῚΎQQ῟΅̯QQῬῨQQQῡῙ̲
5 Q̯ῢ OPC ῤ῍̮̯῎ ῍̮῟΅̯ ESD ῥQ̯Qῤ῍
Ὸΐ̳`ῧΎῚῧ̯῭῝ῥ`Ῠ̮ῥ̯̯῏
̮̯̯̲ΐῶῨ̮Q`῟Q̯̯῏ ̯ῨQQ῎ ῪQῩ̰̰
1 : 1 Ῠῒ`Q̯῎ QQQQῩ 99.7̮ ῤῖῡ̯῝ῥῚΎ
2.
̮Ῐ῎̮ῖ
OPC Ῠ̱῱ῶQQῨQῖῩQ̯Qῗ῝ῥΊQῧ῟΅̯
(Fig. 1a)῏
2ῌ1.
ῗ̮̮̮ῌ OPC ῏ῒ῔ῑ῕῍ῐΐ̮
Qῧ῎ ῾ ̳Q̮῟΅̯Ῑ̯̲ ̳̱Ώ̳QΎῧ
QQQQ OPC ῼῺΏ (Model OPC-1L: Focal Tech-
ῐ̯῭ OPC Ῠ῍̮ΊQ`ῧΎῚῧ̯῭̯̰῎ Q̯῭Q῎
nologies Corp.) `Q̰Q῰ῠ OPC QQ̰΅ ῕CT&C Q
῞̳ῑQῙῪ̰̱῱ῶ῞ῥῧῷΐΏ̯̯QΎ`̰ῗΰ̰
Fig. 1. Relationships between Equivalent Spherical Diameter (ESD) measured with OPC and Equivalent Circular
Diameter (ECD) determined microscopically. As test particles, calibration beads (a), copepods (b), chaetognaths (c) and
doliolids and salps (d) were used. The regression of (d) is of doliolids only. Vertical and horizontal bars acrossing
means denote ̮SD. For gelatinous zooplankton taxa (chaetognaths, doliolids and salps), the e#ect of staining was
also tested. Species abbreviation for (b): Eb̮Eucalanus bungii, Mo̮Metridia okhotensis (C6F), Mp̮Metridia pacifica
(C6F), Nc̮Neocalanus cristatus (C5), Np̮Neocalanus plumchrus (C5).
BPS82121ῌ ῌ (Mark2)ῌ ῌ ML9055CῒMark10
QQ῍Q`
̮
̮
Monῌ Decῌ 24ῌ 14:58:02ῌ 2007
̱̳῿ῴῺΏ Pageῌ 3
QQ̱ῷῺ̰ῲῺ ̲Q
4
Q 55 Q 1 Q (2008)
QQ̳ῩQ̯῟῏ QQ̯ῠQ̳ ̯QQ῿Ώ ΐ155̮E Q
ῤῦ ΰ῟῏ Ίῥ̯῎ ΰ῟QQ̯QQ (V ) ̯Q῜ῖQ
̯̲̯῟ 35̮Nῒ44̮N῔ ̯QQΊῨ῟̰̰̰ΎQ ΐNeo-
Q̯ ̯Q Ῡ̳Q ̲QQ ECD (Equivalent Circu-
calanus cristatus C5, N. plumchrus C5, Metaridia paci-
lar Diameter: ECD) ̯῜̯QQ
fica C6F, M. okhotensis C6F ῗῤῡ Eucalanus bungii
C5, C6F῔῎ ῶῴΎQ῎ ΅ῷ῰ῺQQQ̱ῷῺ̰ῲῺ ΐ̰
4 ῌBW῎2 ῌBL῎ 4 ῌECD῎3
p
̮
̮
p
3 ῍ 2 ῏ ῍2῏ 3 ῍ 2 ῏
̱`ῸQ , ῪῸῳQ῔ ῩQῖ῟῏ ῚῨῥῠ̳Q ̲̯̯
ECD̮3ῒ BW 2̮BL
QQ (Body Length: BL) ῗῤῡQQ (Body Width: BW)
̯ῤῦQQ῜῎ OPC ̯ῤῧ ESD ̯Q ῜῟῏ ῢ῟῎ ̱
ῩQQ῜῎ ῞̯QῤῦQ̲QῩ῾Q῜̯̯ῙῧQQ̯Q
ῷῺ̰ῲῺ̯QῘQQ̯̮ῧῚ̯̯ῤῦQ῝ῧ OPC Q
Q (V ) Ῡ Patoine et al. (2006) ῩQ̳̯῜̯QQ
QQ̯̲QQ̲Ῡ̳Q῜῎ ̰̰̰ΎQῠ῵῰ΌῺ̱Ὸῑ
2
V̮
4 ῌBW῎ ῌBL῎
p
̮
3 ῍ 2 ῏ ῍2῏
̯῎ ῶῴΎQῗῤῡ΅ῷ῰ῺQQQῠ̱ῷ῱̰῭̰ῑ̱
ῺQ´̯QQ῜῟̳῎ OPC ̯ῤῧQQ῾̯QQῩQῖ῎
Fig. 2. E#ects of repeated use (6ῐ7 times) and staining/non-staining of 6 copepods on the ESD measurements with
OPC. The measurement started with non-staining specimens (n̮10) three times, followed by stained same specimens
three-four times. Di#erences in average ESD values of successive measurements were significant only for Neocalanus
cristatus C5 (one-way ANOVA and Fisher’s PLSD, p̮0.05), which was due to breakage of body parts. Vertical bars
acrossing means indicate ῕SD. ῑ: p̮0.05 (Fisher’s PLSD).
BPS82121ῌ ῌ (Mark2)ῌ ῌ ML9055CῐMark10
Q̳῍ῼQ
̮
̮
Monῌ Decῌ 24ῌ 14:58:02ῌ 2007
̰Ὼ̱Ῥ῱ῲ Pageῌ 4
QQῐQQῐῡ̰ῑ OPC ̰ῲ̱̮῵̲̯ῼ ̰ῪῺ ̳QΏ῾QQQQ῜Q̮
5
ῖῐ̰ ̲ (stained, not stained) ̰ῲ̱QQῴ̱Qῠ
ῥ῏ ῤ̰QQ῎ Ῑΰ̱̰Ώ̳Q̰` OPC ̰ῲ̱ ESD ̰
QΏQῌ̱Q̰̰ῧῥ῏ ῢ̰̱ῦ῎ Όῶ῵̲̳̰̰Q̱
Q̰ῲ̱Q῝ῠ῝ῳQQῠῥ ECD ̰ 99.5ῖ῎ ̳ ̲̳
̰̰῿ 83ῖ῎ ῷ ̲̳ῐ´̳ ̳̰̰῿ 80ῖ ̰̰ῧῥ
(Fig. 1bῌd)῏ ̯῞Qῤ̯̯̮ : ̯Ὸ̱῞̯῟Ῑ̳ ̲̳
῰῎ ̯῞̮Q̰῝ῦῢ̰̲ ̰̯῏̰Q῏ῴQQῠ̰̯
Ῑῷ ̲̳̳̰῜ῙῩ῎ OPC ̰ῲ̱ ESD ̰ῲ̱Qῌ̱
Q̯̱̱QQ῞Qῳ̱ῥ̯̰῝ῳ (Fig. 1c, d)῎ ̯̱ῳQ
Ώ̳Q̰ῲ̱Qῌ̱Q̰ῧ̰̰QῙ̰Ώ̳Q̯̰̰Q̯
῜ῲῪ̯̰̮Q̯̰ῲ̱`̰̰QΊῳ̱ῥ῏
ῖῐ̰ ̲῰῎ ΎQQ̳̰ῳῷ῝ῦ̰ῲ̱ ESD Ύ̰
QQ̰Ῑΰ̱̰Ώ̳Q̰῜ῙῩ`Qῳ̱̰῝ῧῥ῞῎ ̳
Q̰ῠῩ̯QΌῶ῵̲̳̰ Neocalanus cristatus C5 ̰
̰ΌΐQ̰῝ῦῢ̰Q̳Q̯῞΅῟ῠ῎ ῤ̰QQ ESD
̰Qῌ̱Q῞Qΰ̰Qῳ̱ῥ (Fig. 2)῏ Beaulieu et al.
(1999) ̰ῸῺ῵ ̳̰ῲῚ̰̯QῪῺ ̳QΏ῾Q̰
QῦQ̳ῴ OPC ̰῝ῦῢ̱῎Q῎ Q῰ῴ῞Q῞̲̯ῲ
̱῰ ῠῌ QQῢ̱̯̰̰ῲῧῩ῎ ῪῺ̲̯ ESD ̰
Qῌ̱Q῜ῲῪ῰ ῌ Q̰ῲ̱ Qΐ̰Q̯̱Q῞Q
̯̱῰ῢῙ̰QῨῠῩῙ̱῏ Q῍̰ ̱QQ̰QQῴ̰
ῬΊῩ῎ ̲QQ̰̰QQQQ OPC ̰ῲ̱ῪῺ ̳QΏ
῾QQ̳ῴQ̮ῢ̱Q̰῎ Q̳̰ῖῐ῰ΌΐQ̰῝ῦ̰
ῙῧῥQ̳ῢ̰Q̯̰΅῟ῴῲῚΊQ̰Q̱ΰ῎ ῝ῦ̰
1 Q̳̰Ῠ῟ 1 Q̰῭QῚ`̰̰ῠῥ῏
2ῌ2.
ῖῗῒΐ῔ῐῑ῔̮̮
Q̮̰ ῙῥQ̳̰ 1993῔2004 ῭̰ 5 QQQ῝ῳ
6 QQQ̰ 155̮E ῗ῍̰ 6῔13 ῦ̰ ῕35̮N῔44̮N̮ ̰
῜ῙῩ (Fig. 3)῎ ̲QῬ̯Q̳QῘ ̮̲῕Q̮ ῕1993 ῭῔
2001 ῭̮ ῜ῲῪ ̮῜ῠ῱̱Q̮ ῕2002 ῭῔2004 ῭̮ Q
Qῢ̰QQ̯̱ῥ`̰̰Ῐ̱ (Table 1)῏ ῪῺ ̳QΏ
῾QQ̳̰ Norpac ῿̲῾ ῕QQ 45 cm, ῾QῙ 0.33
mm; Q̰ 1957̮ ῴ ῙῩ῎ ῒῑ 150 m ῝ῳ̱̲Ῥ̰
̰QῥQ῟̰ῲ̱QQῠῥ῏ ῿̲῾Q̳̰̰ QQ̮Q
ῒQῴQ̱ῴ̯῎ ῤ̰Q̰ΐῲ̱Qῒ̳ῴQ΅ῥ῏ Q̳
Fig. 3. The location of sampling stations (35̮Nῌ
44̮N) along 155̮E in the western North Pacific. The
stations were grouped into four regions in the present
analysis, e.g. SF: Subarctic Front, TR: Transition
Domain, SB: Subarctic Boundary and ST: Subtropic
Current System.
Table 1. Zooplankton sampling period at 35̮Nῌ44̮N
along 155̮E in the western North Pacific during 1993ῌ
2004.
Year
1st visit (mainly late
Mayῌearly June)
(n)
2nd visit (mainly
late June)
(n)
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
5ῌ10 June (13)
5ῌ11 June (13)
5ῌ10 June (11)
6ῌ11 June (10)
7ῌ10 June (5)
4ῌ10 June (9)
5ῌ11 June (7)
6ῌ9 June (9)
4ῌ9 June (8)
22ῌ27 May (13)
13ῌ18 May (8)
11ῌ16 May (12)
24ῌ30 June (11)
23ῌ29 June (13)
23ῌ30 June (13)
23ῌ29 June (11)
25ῌ29 June (13)
26 Juneῌ1 July (6)
27 Juneῌ2 July (9)
25ῌ29 June (13)
23ῌ28 June (9)
12ῌ15 June (6)
6ῌ12 June (11)
4ῌ9 June (11)
Number of zooplankton samples are shown in the
parentheses.
̰ 5ῖ ῢ῔ ̳ ̳Q̰Qῦῠ῎ ῍QQQ̰QῦQῧ
ῥ῏ Ῥῥ῎ QQ̰ΎQ̰ CTD ῕Neil Brown Q̮ Mark
QQ̰ῩQ̰Q ̳QΏ῾QΏQQ (Motoda 1959) ῴ
III B Q῎ Sea Bird Q̮ SBE-9plus Q̰Ῑῠ̰ SBE-19
ῙῩ 2 ΏQῠῥQ῎ ̲̲̰ῶQ̳ῴ῵̲ Qΐ̲ΐ̰
Q ̮Ῐ῱ῐQQ̰ῲ̱Q̰̱̮̮ ̰ῲ̱ῒQ̰QΏ̰῝ῦ
ῲ̱QQQ̰῾QῙ 0.1 mm ̳̲̲̳῍̰QῠQ̱῎ ̰
ῴQῧῥ῏ ῒQ̰QΏ̰῿̲῾QQῚ̰ 0῔150 m ῑ̰
QῩ`ῴ ῙῩ 0.01 g ̰̮̰̰ῤ̰QQ̳ῴ῝ῦῠῥ῏
ῨῙῩ̮QῼQῠῴQ΅ῥ῏
QQ̳ῴ῝ῦῠῥῶQ̳ ῕̯Ῥ̯Ῥ̰ῪῺ ̳QΏ῾Q
Q̮ ̰QQῺ̰̯Q̰QῡῩ 1/2῔1/32 ̰ΏQῠῥQ῎
2ῌ3.
̮̮ῘῌOPC ῍῎῏̮Ῑ῕̮
̳ ̳QQῦῠῥῪῺ ̳QΏ῾QQ̳̰῎ ῍Q
BPS82121ῌ ῌ (Mark2)ῌ ῌ ML9055CῒMark10
QQ῍QQ
ῗ
QQQQ OPC ῴ ῙῩQῪῺ ̳QΏ῾QQ̯ΐῴ´
ῶ̲Ώ̳̲ (ESD) ̰Ώ´ῠῩQΐῠῥ῏ ῙQ̰ ̱QQ
ῗ
Monῌ Decῌ 24ῌ 14:58:02ῌ 2007
ῼQ ̲̲῾ Pageῌ 5
Ῠ̱ ̳̳ῼ῿̳QQ῰
6
Ὶ 55 Q
Ὶ 1 Q (2008)
῭QQῸΰῲ῟῎ (1) ῤῪ ̳̳ῼ῿̳̯ OPC Ὸ̯Qῤ
̰Q̯ῢῩ (Ikeda & Motoda 1978)῏ ̯῭QQ̲ῸῗQ
῵Q῭´̲΅῵ 10 L minῌ1῎ (2) ̮̯Q῭ῤῪ ̳̳ῼ
̲̰QQ̱ῴQQῢ῎ QQQῺῸΌ῝̰ῑQ̲̰QQ῭
῿̳῭̱ῠ΅ 10 counts secῌ1 ̳Q῎ (3) ῤῪ ̳̳ῼ
῎Q̲ῸQ̯ῤ῵῱ῲ΅ῤῪ ̳̳ῼ῿̳QQ῭ῪQQ
῿̳Q̲΅῕Qῦῥ 1 Q῭ῳ῭QΌ̰ῤ῵῎ ῭̮̯QQ
QῬ̯̯῵ῴQῸ̯̲Qῤ῵῱ῲ̰ῢ̰QQQ̯Ό῝̱
Ὸῒ̯ῢ̰Q῏ῸQ̰Ῡ῏ ῲῩ῎ OPC Q῏ῬQῢῩQ̲
ῶ̰῝῵ ῕̲῟` Al-Mutairi & Landry 2001 ̱ Ro-
΅῎ ῶΐῢῩΎ̲Q̯̱῰QῸQ̰ΎQῴῥ̯ῢ῎ Q῿
man et al. 2002 ῸQQ̮῏ ῑQ̲Ὸ 1 ῨῡῩῴῬῑQῤ
ῢῩ῏
῵῜̮̰̰Qῤ῵̰῎ I (mg C ind.ῌ1 dayῌ1) ΅̳Q῭Q
̰̰ῦ῵῏
2ῌ4.
̮ῌ῕̯ῥ
I̮R̮
῟ῚΊῠ̯
2ῌ4ῌ1.
OPC Ῥ̱ῴQῌῡῶῩ 4,096 ̲Ό̲̳ ̲῿̱῭̲
12
1
1
̮0.97̮
̮
̮24
22.4
0.4
1000
ῤΎῷ̰῎ QQQ ([CO2]/[O2]) Ὸ 0.97 ῕̲̳ ῼQῙ
Qῌ (n) ̰QQ̲Ῥ̯̯῵ΎQῺ (s) ̯̱῰ Q̲ (F,
Q῎ Gnaiger 1983̮ ̰Q̯ῢ῎ ῜QΏ̲ 1 mol (22.4 L)
m3) ̯̱῎ Q̲Ό̲̳ ̲῿Ῥ̯̯῵ΊQQ̲ῡῩῴ῭
῞῭῜̮῭Q̲ (12 g) ῸQΰ῵̯̰Ῥ̱ῴ῜QΏ̲̰
QQQῗῌ (N: inds. mῌ3̮ ῸQ̱Ῡ῏
ῢ̰̰Qῡῶ῵῜̮̲ῬQQῢῩ̯̰ῬΎ῵῏ ῡ̱Ῥῥ
N̮
QQῺ̰̮῍̯QῺ̱ῴ I̮R/0.4 ̰ῢ῎ ΊQῸ mg ̯
n
s̮F
̱ mg ῱QQῢ (̮1000)῎ QQΊQ̱ 1 QQῡῩῴ̯
ῲῩΊQQ̲ῡῩῴ῭QQQῗῌῬQ̱QQ (150 m) Ὸ
Qΰ῵̯̰̰ΊQQ῟ (0ῒ150 m) ῡῩῴ῭QQQῗῌ
ῌ2
(inds. m
̱ 1 ῨῡῩῴ (̮24) ῬQQῢῩ῏
῍̯̲ (G: mg C ind.̮1 day̮1) ΅῎ ̮Q῭Q̯ ῕ῥQ
QῺῐ 70Ὶ, ̮῍̯QῺῐ 30Ὶ̮ Ῥ̱ῴ̳Q῭Q̰̰ῡ
) ῬQQῢῩ῏
ῶ῵῏
2ῌ4ῌ2.
ῒ῏῔̯̯῍̮῏ῐ̮ΐ
G̮0.3̮I
4,096 ̲Ό̲̳ ̲῿Ῥ῭̯̱ῶῩῤῪ ̳̳ῼ῿̳
̯῞ῢ̰ῦ̱ῶῩ 1 QῗῡῩῴ῭ G ῕̮῎Q̲̮ Ῥ῎ Ί
QQ῭QQ̲ ῕Wet Mass, WM ̰Qῼ̮ ΅ῧῶῨῶ῭̲
QQ̲̱ῢ̯΅ΊQQ῟ῡῩῴ῭QQQῗῌ ῕inds.
Ό̲̳ ̲῿῭ ESD (mm) Ῥ̮ῡῤ῵Q῭ῷῐῸQ̱῎
m̮3 ῲῩ΅ inds. m̮2̮ ῸQΰ̰῎ 4,096 ̲Ό̲̳ ̲῿
Q῝̰ῤῪ ̳̳ῼ῿̳῭̰Q΅Q῭̰Q̰ῢῢ῝̰Q
Ῥ̯̯῵ 1 ῨῡῩῴ῎ ΊQQ̲ ῕̱ῢ̯΅ΊQQ῟̮ ῡ
̯ῢ̰῎ ῷῐ̯̱ WM ῸQ̱Ῡ῏ WM ̯̱ DM ῕QQ
Ῡῴ῭ G ῕mg C m̮3 day̮1 ῲῩ΅ mg C m̮2 day̮1̮ Ὸ
̲῎ Dry Mass̮ ῱῭QQῬ΅῎ Yamaguchi et al. (2005)
ῦῩ῏ ̯῭̱῞Ῥῢ̰ῦ̱ῶῩ̲Ό̲ῠ̰῭ G ῭̮ ῭῰QῬ῜῵ῳῖῬῸ̳QῘῒ̳ῩῘ῭QQ 150 m ̳
̯QQ῎Q̲̰῜῵῏
῔̰QQῡῶῩῤῪ ̳̳ῼ῿̳Q̲῭QῬΎ̰῭QΎ
Q̲ (84ῒ96Ὶ) ῭῞Q῝ (90Ὶ) ῸΌ῝Ῡ (DM̮0.1̮
2ῌ5.
ῢΰ̮̮ῖῑ̮ῖῙ῞῎῝Ῐῗῤῢ
WM)῏ ̯῭Q̲Ό̲̳ ̲῿Ῥ̯̯῵ 1 QῗῩῡῴ῭
̯QQQῬ̯̯῵ῤῪ ̳̳ῼ῿̳QQ̯QQQ̯Ῥ
DM QQ̲ ΌῺ ̲Ῥ̮Q῭QQQῗῌῸQΰ῵̯̰
Ὺ῭̱῞Ῥ΅ῤῢ̰῝῵῭̯Ὸ̱̱̯Ῥῤ῵Ῡ̱Ῥ῎ Q
Ῥ̱ῴ῎ ΊQQ̲̱ῢ̯΅ΊQQ῟ῡῩῴ῭QQ̲ Ό
QQῗῌ῎ ΌῺ ̲῎ ῎Q̲ῧῶῨῶῬ̰῝̰῎ ῦ̱
Ὼ ̲ ῕mg DM mῌ3 ῲῩ΅ mg DM mῌ2̮ ῸQQῢῩ῏
ῶῩ 4,096 ̲Ό̲̳ ̲῿῭QQῸ 6 ̰῭̲Ό̲ῼ̳
̲ ῕ESD ̯ 0ῒ1, 1ῒ2, 2ῒ3, 3ῒ4, 4ῒ5 mm ̯̱῰ 5
2ῌ4ῌ3.
mm ̳Q̮ ῠ̰Ῥῲ̰̱῎ ̰̰̲QῸ 2 ῧΏ΅ῌ̰ῢ̰
̯῜ῦ῎̯ῡ
ῤ Ὺ ̳ ̳ ῼ ῿ ̳ 1 Q ῗ Ῡ ῡ ῴ ῭ Q Q ̲ Ὸ Ikeda
(1985) ῭῎̮QQ̰ῗQῸ΅ῌ̰ῢῩQQQ
ln R̮0.124̮0.780 ln B̮0.073T
two-way ANOVA Ῥ̱῵Q̯̰ Fisher’s PLSD Ῥ̱
῵ ̲῿ ̲ῼ῾̲῿ῸQ̰Ῡ῏
̯῭Q̯῭Ῡ̱῎ Q̮̯̯΅ῳ̱ῴ 3 ̯ῥ̰ῸQ̲Q
̯̱ῲῥQQῢῩ῏ ̯̯̰ R ΅QQ̲ ( ml O2 ind. ῌ1
̰ῢ̰QῠῬ̱ῴ`Q̯ῬQΎῢ῎ ῧῶῨῶ ΐ̳QῘ hῌ1)῎ B ΅ῗQ (mg DM ind. ῌ1)῎ T (Ῑ) ΅QQQ̯Ῥ
̳̳῿῔ (ῗ42ῘN, Subarctic Front: SF)῎ ΐQQ̲Q῔
̯̯῵ 0ῒ150 m Q῭ῐQῬQQQ̰῜῵῏
(40ῘNῒ42ῘN, Transition Domain: TR)῎ ΐ̳QῘQQ῔
QῬ῎ ῤῪ ̳̳ῼ῿̳῭ῑQ̲ (I ) ῸQQ̲ (R), Q
(38ῘNῒ40ῘN, Subarctic Boundary: SB) ̯̱῰ ΐ̳Ῡ
῝̰῍̯̲ (G) Ὸ I ̯̱Q̯ῢῩ῏ ῧ῭Q῎ ῥQQῺ
ῘQ῔ (ῖ38ῘN, Subtropic Current System: ST) ̰QQ
([G̮R]/I ) Ὸ 70Ὶ῎ ̮῍̯QῺ (G/I ) Ὸ 30Ὶ ̰῜῵
ῤ῵̯̰̰ῢῩ (Fig. 3)῏ ̯ῶ̱῭̲QQΎ῭QQ΅
BPS82121ῌ ῌ (Mark2)ῌ ῌ ML9055CῑMark10
QQ῍Q῾
Ί
Ί
Monῌ Decῌ 24ῌ 14:58:02ῌ 2007
´̳ ̲̲῿ Pageῌ 6
῿̲ῐQQῐQQῑ OPC ῦῪῬQQQQQQῧQQῶῸῺ῰̱ῺQQQQ Q
7
Favorite et al. (1976) ῤῼ̳̰Ί (1990) `QQῦ̯̯῏
῞῭ΎῧQ̲̳QῨQ̯̯̰QQ ̳QQ ῕Q ῐ῾Q
ῧ̲QQQῴ̱ΐῺ̮ ῦῪῬQQῧ̳Qῤ̲Q̯ῢῘῥ
Ῐ῜῎ Q ΰQ̰ῬῪῙῦ̯῭̯῭ῧQ̲ῦῡῘῢQQ
QQῨῗῬ̰ῧῧ῎ Ώ Q῵ΌῺ̱ (SF) ῚῪῩΏ Q
̳ (SB) ῧ´QῨ̯῭̯῭ῧ̲QQ̲ ῕Ώ Q῵ΌῺ
̱Ῠ ̮42̮N ΰΏ Q̳ Ῠ 38̮N῔40̮N̮ ῦQΎ῭῎
Q̳QQῧQQQ῜Q῟῭ῢῘῬ῏
̰̯QQQQῧQ῎ ̳QQQῧQQQῦῗ̯Ῥ 35̮N
Ῠ῎ ̳QῧQ΅῭ῥΊῠ̯Q῜QΊῠ̯̯̰ QΊΎQ
Ῐ̯῏ ̰̯῎ QQQQῧQΊῠ̯ ῕QQΰ 5 QQῧ̰῎
Fig. 4. Comparison of zooplankton wet mass estimated with OPC and those directly measured.
Zooplankton samples used were those collected with
Norpac nets, excluding those dominated by gelatinous
zooplankton (cf. Fig. 8).
Table 1̮ 1997 QῦῚ῝Ῥ 5 Q Q῔6 QQQῧ̱ΐ̱
Ῠ QΊΎQ ̯̯῏
3.
3ῌ1.
ῑ
῏
OPC ῌ῍῎ῒΐ῕ῐ῔
QQ̳ΰQQ̯̯QQῶῸῺ῰̱ῺQQῧῙ̯῎ ῳῸ
̱ῺQQQῶῸῺ῰̱Ὼ῜QQ̯̯QQ`QῘ̯̰ῧ
Table 2. Results of variance analysis (two-way
ANOVA) on the abundance, biomass and calculated
production for size-fractionated zooplankton at four
regions along 155̮E during late Mayῌearly June of
1993ῌ2004.
Source of variation
Fig. 5. Temperatures (top) and salinities (bottom)
averaged over the 0ῌ150 m water column at stations
along 155̮E during late Mayῌearly June and late
June of 1993ῌ2004. Solid horizontal bars across the
means denote ̮SDs.
SF: Subarctic Front, TR:
Transition Domain, SB: Subarctic Boundary and ST:
Subtropic Current System.
BPS82121ῌ ῌ (Mark2)ῌ ῌ ML9055CῒMark10
QQ῍̲Q
ῖ
Abundance
Total
0ῌ1 mm
1ῌ2 mm
2ῌ3 mm
3ῌ4 mm
4ῌ5 mm
̮5 mm
Biomass
Total
0ῌ1 mm
1ῌ2 mm
2ῌ3 mm
3ῌ4 mm
4ῌ5 mm
̮5 mm
Production
Total
0ῌ1 mm
1ῌ2 mm
2ῌ3 mm
3ῌ4 mm
4ῌ5 mm
̮5 mm
Year
Region
Year̮Region
NS
NS
NS
῍῍
NS
NS
NS
῍
῍῍
῍῍
῍῍
῍῍
῍
NS
NS
NS
NS
NS
NS
NS
NS
῍
NS
῍῍
῍῍
NS
NS
NS
῍῍
NS
῍῍
῍῍
῍῍
῍
NS
NS
NS
NS
NS
NS
NS
NS
῍
NS
NS
῍῍
NS
NS
NS
῍
῍῍
NS
῍῍
῍
NS
NS
NS
NS
NS
NS
NS
NS
NS
῍: p̮0.05, ῍῍: p̮0.01, NS: not significant.
ῖ
Monῌ Decῌ 24ῌ 14:58:02ῌ 2007
῱Ὼῷῲ̱̱ Pageῌ 7
QQΌ´̲῱῵̲̳ Q
8
Q 55 Q
Q 1 Q (2008)
(n῕234) ῤ̯̮̯QQ῝Ὺ̯QQQ (g WM mῌ3) ῡ
῵ (SF) ῡ̲̳QQ̳ (SB) ῤῖ̮̯῎ ̲Q῾ (TR) ῡ̲
OPC ῤ̰̰QQ ΐ4,096 ῳ`̱ῼῶ̱῵ῥQQ῔ ῗ̰Q
QQ῾ (ST) ῥ̯Ὺ̰̰̰ 2 QῨῢQῙῚ῎ QQQῤῖ
Q῝Ὺ̯QQQ (g WM mῌ3) ῭Q̳῞̯῎ OPC ̳Qῥ
Ί̰Q῾QΊῥQQQῘQ῝Ὺ̯῏ Q῿QQῤῖ̮̯ῦ
QQQῤ̯̮̯QQ῞̯ (Fig. 4)῏ ̯ῥQ ῎ OPC ῤ̰
5 Qῗ̰ 6 Qῤΰ̰ῤ̯Ὺ̯QQ ῎ Q Qῤΰ̰QQ
̰QQQῦQQῥQQQῡQ̳῞̯Ῥ̯ῗῤ QQ ῠ
ῘῡῚῤ̲Q῾ῠQ̰Ὺ̯῏ QῥQ῾ῠῦQQῤ̰̰Q
̮̯̯̰ῥῥ ΐQ 1.05 Q῔῎ QQῥQῤῦῙῬ̰̯Q̲
ῡ QῥQQῦQ̯῞̰QQῠῦΰῗ̯̯῏
ΰQQῘῩ̰Ὺ ( p̮0.0001)῎ OPC ῤ̰̰̳QῥQQQ
QQΌ´̲῱῵̲QQQQQ῎ ῷ`῰Ώ̱ῖ̰ῧQQ
QῤῖΊ̰̳Q῾ῖ̰ῧQQQQῥQQ῭ 5 Q Qῒ6
ῘQ῝Ὺ̯῏
QQQῥQQῴῑ̱ῤ̯̮̯ two-way ANOVA ῠ̳Q
3ῌ2.
ῘΊΐ῔῕ῑῒ῕̮̮῎̮῝῜Ὶ̮ῗῌ ̮ῖ῍ῐ
῞̯ῡ῜Ύ῎ QQQQQῠῦ 6 ῳ`̱῱´̱ (0ῒ̮5
῏̮Ῑ῞Ῐ
mm ESD) ῥῨῡ΅ῢῤῖ̮̯Q῾QῤQ̲ΰQῘQ̰
QQQQ῎ QQῖ̰ῧQQQQῥ̳Q῭Q̯̯ 1993
Ὺ῎ 2ῒ3 mm ῥῳ`̱῱´̱ῤῦQQQ̰QQ῝Ὺ̯
Qῗ̰ 2004 Qῥ 5 Q Qῒ6 QQQῖ̰ῧ 6 Q Qῤ
(Table 2)῏ ῷ`῰Ώ̱ῠ̰QῚῥῳ`̱῱´̱ῠQ῾Q
ῖΊ̰ 155̮E Qῤ ̯̯̳QQῥ 0ῒ150 m QQQQ
ῥQῘQ̰Ὺ̯Ῐ῎ ̳ῳ`̱῭QQ῞̯QQQΌ´̲῱
Q ῡQQQQ Q῭ Fig. 5 ῤQ῟῏ Q ῡ Qῡ̰
῵̲ῷ`῰Ώ̱ῤῦQQQ̰Q̰Ὺ̯῏ 0ῒ1, 1ῒ2 ῖ̰
ῤQ̲QῥQQῠQ ῎ Q QῠQ̲QῨῢQ ῎ Q ῧ 2ῒ3 mm ῥῳ`̱῱´̱ῤ̰Q̲ΰQQQῘQQ῝
Qῠ̮̯̯῏ Q ῖ̰ῧ QῥQQQQῦ̲̳QῸ̲̲
Ὺ̯῜ῡῗ̰῎ ῜Ὺ̰ῥῳ`̱῱´̱ῥQQQῘQQQ
Table 3. Between-region di#erences in the abundance, biomass and production of size-fractionated at each region
along 155̮E during late Mayῌearly June of 1993ῌ2004 tested by two-way ANOVA (“Di#erence”, see Table 2) and
Fisher’s PLSD. Any region not connected by the underline are significantly di#erent.
Region
Zooplankton
Size class
Region
(Fisher’s PLSD, p̮0.05)
Di#erence
Abundance (inds. mῌ2)
Total
0ῌ1 mm
1ῌ2 mm
2ῌ3 mm
3ῌ4 mm
4ῌ5 mm
̮5 mm
Biomass (mg DM mῌ2)
Total
0ῌ1 mm
1ῌ2 mm
2ῌ3 mm
3ῌ4 mm
4ῌ5 mm
̮5 mm
Production (mg C mῌ2 dayῌ1)
Total
0ῌ1 mm
1ῌ2 mm
2ῌ3 mm
3ῌ4 mm
4ῌ5 mm
̮5 mm
SF
TR
SB
ST
69,713
49,933
12,751
6,044
866
105
14
52,754
34,435
10,131
6,923
1,113
109
42
86,926
73,459
9,506
3,320
591
39
10
61,556
53,780
6,501
1,064
198
11
2
῍
῍῍
῍῍
῍῍
῍῍
῍
NS
TR
TR
ST
ST
ST
ST
ST
SF
SB
SB
SB
SB
SF
ST
TR
SF
SF
SF
SB
SB
SF
TR
TR
TR
9,249
558
2,271
3,977
1,848
442
153
10,183
371
2,093
4,515
2,287
474
443
5,927
602
1,576
2,306
1,189
162
92
2,656
470
938
776
365
48
59
῍῍
NS
῍῍
῍῍
῍῍
῍
NS
ST
SB
SF
TR
ST
ST
ST
ST
SB
SB
SB
SB
TR
SF
SF
SF
SF
TR
TR
TR
173
21
50
71
24
5
1
219
19
56
95
37
7
5
192
44
59
60
25
3
1
134
44
48
29
12
1
1
῍
῍῍
NS
῍῍
῍
NS
NS
ST
TR
SF
SF
SB
ST
TR
SB
ST
ST
SF
SF
SB
SB
TR
TR
῍: p̮0.05, ῍῍: p̮0.01, NS: not significant.
SF: Subarctic Front, TR: Transition Domain, SB: Subarctic Boundary and ST: Subtropic Current System.
BPS82121ῌ ῌ (Mark2)ῌ ῌ ML9055CῐMark10
QQ῍῿Q
̮
̮
Monῌ Decῌ 24ῌ 14:58:02ῌ 2007
ῲ̲Ὼ̱̱῵ Pageῌ 8
῎
῎
93
94
95
96
98
99
Year
00
01
02
03
04
45
4
3
3ῌ4 mm
4ῌ5 mm
ῐ5 mm
11
1
1
38
47
40
12
2
0
34
36
32
24
4
1
25
41
55
27
3
0
32
63
98
21
1
1
37
48
58
166
2,410
1,083
87
38
543
1,363
23
4
1
36
60
85
209
3,633
1,274
267
100
530
1,806
28
4
2
37
70
105
244
4,970
1,675
337
201
734
2,614
21
3
1
24
31
52
133
2,490
1,158
225
115
414
1,106
46
13
13
35
69
54
230
2,318
2,700
960
1165
527
2,218
13
2
0
32
62
43
153
1,938
779
151
42
521
2,145
NS
NS
NS
95
95
῍
NS
NS
῍῍
95
῍῍
NS
NS
NS
95
95
῍
NS
῍῍
95
NS
NS
NS
῍῍
NS
NS
NS
Di#erence
94
02
94
02
94
94
04
94
04
94
02
04
02
96
03
99
99
99
03
04
99
96
04
03
96
99
02
93
96
02
99
00
96
00
00
96
93
93
93
98
93
93
Year
(Fisher’s PLSD, p῏0.05)
00
98
00
04
98
00
98
03
98
03
03
98
Monῌ Decῌ 24ῌ 15:11:14ῌ 2007
ῒ̮̮ΐ῔῕ Pageῌ 1
01
01
01
01
01
01
9
BPS8212Yῌ ῌ (Mark2)ῌ ῌ ML9055C῎Mark10
̮̮῍̮̮
῍: p῏0.05, ῍῍: p῏0.01, NS: not significant.
22
58
78
223
151
0ῌ1 mm
1ῌ2 mm
2ῌ3 mm
4,588
1,697
263
28
2,703
1,570
304
83
522
2,075
2ῌ3 mm
3,601 1,659 1,517
3ῌ4 mm
2,306
631
771
4ῌ5 mm
250
55
200
ῐ5 mm
170
96
13
Production (mg C mῌ2 dayῌ1)
Total
209
138
117
508
1,353
355
1,375
357
1,791
495
1,066
0ῌ1 mm
1ῌ2 mm
Abundance (inds. mῌ2)
Total
43,751 85,892 62,500 53,593 65,756 74,583 73,973 91,877 49,893 71,609 71,682
0ῌ1 mm
27,234 74,897 52,863 41,438 46,680 62,080 57,000 68,910 39,273 54,422 57,124
1ῌ2 mm
10,011 8,140 6,955 7,220 11,071 8,570 10,962 14,281 6,328 12,185 11,223
2ῌ3 mm
5,286 2,531 2,257 4,090 7,127 3,329 5,298 7,790 3,661 3,446 2,904
3ῌ4 mm
1,149
303
376
760
808
579
637
811
567 1,229
393
4ῌ5 mm
59
12
48
76
67
22
66
77
52
215
34
ῐ5 mm
13
10
1
9
3
4
10
7
12
112
5
Biomass (mg DM mῌ2)
Total
8,476 4,303 4,062 6,390 9,173 5,523 7,611 10,530 5,507 9,888 5,575
Zooplankton
Size class
Table 4. Between-year di#erences in the abundance, biomass and production of size-fractionated at each region along 155ῑE during late Mayῌearly June tested by
two-way ANOVA (“Di#erence”, see Table 2) and Fisher’s PLSD. Any year not connected by the underline are significantly di#erent.
̮̮ῌῘῖῌ῞῟῍ OPC῏ῑῒῚ̯̯῝̯̯ῐ̯̯῕̮̮ΐ῔̮̮Ῑῗ῜̮Ί
QQ`ῳ̱̰῭̱Ὸ῵Q
10
Q 55 Ό
Q 1 ῿ (2008)
῱̰῭῰Ύ̰Ῥ̰῭̯ῡΰῶ̳Ὶ῜̯Ῐῦ῎ ̱̲Q̱
(TR) ̯̮̮῟΅Ῡ̰ῲ̰̯̳ Qῗ῾̮̯ῠῖῖῧῢ
Ί῎ ̲̲Q̳ῗ ῠ̳̯̮Ῐ̯ῗQῢῖ̯̯῝῜
(Table 3)῏ Ῐ̯ TR ̯̮̮῟΅Ῡ̰ῲ̰̯̳ Qῗ῾̮
̯ῠῖῖῧῢΊ ̲̲Q̳ῗ ῠ̳̯̮´̲̯῎ 11 Q
Fig. 6. Abundance (top), biomass (middle) and calculated production (bottom) of zooplankton (all left,
mean῔SD) and its size (ESD) composition (all right) at
the four regions (SF, TR, SB and ST) along 155̮E
during late Mayῌearly June of 1993ῌ2004. SF: Subarctic Front, TR: Transition Domain, SB: Subarctic Boundary and ST: Subtropic Current System.
`ῳ̱̰῭̱΅Ῡ̰ῲ̰̯QQQ̯ῼῴῚ῟̮ῤῘ̯ῗ
Ῑῥ῜ (Table 2)῏ ̳QQ`ῳ̱̰῭̱̳ Q̯ῠ
Q̱̯Q̱̮ῡ̯QQQῗῺ Ῑῥ῜῏ ῷ̰ῩῪ̰ῳ̰
̯῞̮῟̲ῤ̯῎ ESD ῗ 2ῑ3 mm ̯̰ῩῪ̰ῳ̰̯̮
̮῟Q̱̮ῡ̯Q̯ῠ̯Q̱̯QQῗ̲ῢῥ ( p῕0.01)῎
Ῐ̯̰ῩῪ̰ῳ̰̯QQῗ̳QQ`ῳ̱̰῭̱̳ Q̯
Q̱ ̮ῡ̯QQQῨῠ῜ῢῚ῜Ῐ̯ῗ̮ῖῗ̮῜
(Table 2)῏
Q̱Ώ̯QQ ῒ̳QQQΐ ῨῙῢ̯ Fisher’s PLSD ̯
BPS82121ῌ ῌ (Mark2)ῌ ῌ ML9055CῐMark10
 ̲῍̱Q
̮
Fig. 7. Year-to-year variations in the abundance
(top), biomass (middle) and calculated production
(bottom) of zooplankton in 0ῌ150 m water volumes
(mean῔SD), together with the size composition of
each, at 7ῌ13 stations along 155̮E during late Mayῌ
early June of 1993ῌ2004.
̮
Monῌ Decῌ 24ῌ 14:58:02ῌ 2007
̰̱῱̰Ύ῭ Pageῌ 10
῿ῐQQῐQQῑ OPC ῦ̰ΎQQQQQQῧQQῺ̲̲ῲῷ̲̳QQQ Q
Table 5. Results of variance analysis (two-way
ANOVA) on the abundance, biomass and calculated
production for size-fractionated zooplankton at four
regions along 155̮E during late June of 1993ῌ2004.
Year
Region
Year̮Region
῍
῍῍
NS
NS
NS
NS
NS
NS
NS
῍῍
῍῍
῍῍
῍῍
NS
῍῍
῍῍
῍
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
NS
῍῍
NS
῍῍
῍῍
῍῍
῍῍
NS
NS
῍῍
῍῍
NS
NS
NS
NS
NS
῍
NS
NS
NS
NS
NS
NS
῍῍
῍῍
῍῍
῍῍
῍
῍
῍῍
῍῍
῍῍
NS
NS
NS
NS
῍: p̮0.05, ῍῍: p̮0.01, NS: not significant.
̳ ῧ Q ̳ ΰ ̰ Q Q ῦ Ῑ ῜ ῝ Ὶ῎ ̯ Ῥ Ῠ TR ῦ Ί Ῐ ῢ
ESD ῝ 2῔3 mm ῧ̱῰̱ῲ̲̱ ῕̮Neocalanus plumchrus C5 ῧ̱῰̱῎ Fig. 1b `QQ̮ ῝Q῜ῠ̯̯̰ΰ
ῗΎ (Fig. 6)῏ ̰̯῎  Q ῧQQQῨ 134῔219 mg C
Source of variation
Abundance
Total
0ῌ1 mm
1ῌ2 mm
2ῌ3 mm
3ῌ4 mm
4ῌ5 mm
̮5 mm
Biomass
Total
0ῌ1 mm
1ῌ2 mm
2ῌ3 mm
3ῌ4 mm
4ῌ5 mm
̮5 mm
Production
Total
0ῌ1 mm
1ῌ2 mm
2ῌ3 mm
3ῌ4 mm
4ῌ5 mm
̮5 mm
11
mῌ2 dayῌ1 ΰῗῪ῎ ̲QQ (ST) ῦΊῘῢQ῜ῠ̯῏
QQQQ`̯̰ῦ Fisher’s PLSD ῧῼ̱ῷΏῴῲ῵
̱ῷῦ̰Ὺ Q̯̯ῤ̯῭῎ 1993 Q῎ 1998 Q῎ 2001 Q
Ί̰Ῡ 2003 QῦΊῘῢῸ῰῱´̱ῤQQQ῝QῘ̯ῤ
῝Q̰῜ῦῥῠ̯ (Table 4)῏ Ὸ῰῱´̱ῤQQQῧQ
QQQ`̱῰̱ῲ̲̱̯ῤῦQῢῘ῟ῤ῎ 2῔3 mm ̱
῰̱ῲ̲̱ῧQQΌ̱ΐ̲ῤ Q̯ῢῘῥῘQQQῺ̲
̲ῲῷ̲ῧQQQQῨ῎ ESD ῝ 5 mm ̲QῧQ̳̱῰
̱ῲ̲̱῝QQQῺ̲̲ῲῷ̲ῧQ ῦQ῞῟ ̳̯ῢ
ῘΎ̯ῤ῝Q̯Ῥ̯ (Fig. 7)῏ ̱̲Ὼ̲`̳Q̯̯ῤ̯
῭῎ 2003 QῨQ̳ῥ̱̲ΌQ (Salpa fusiformis) ῝ῤ
῟ῦ῾QQ (TR) ῦQ῟QQ̯ῢῘ̯῏
QQῦ῎ Q Ί̰ῩQQQῧQQ` 1993῔2004 Qῧ
6 Q Qῧῶΐ̱ῦῡῘῢ Q`Qῠ̯ῤ̯῭῎ 0῔1,
1῔2 mm ῤῘῠ̯Q̳ῥ ESD ̱῰̱ῲ̲̱ῦΊῘῢ῎
QQQQQ῎ Ὸ῰῱´̱Ί̰ῩQQQῧῘ̯Ῥῦ̰Q̲
ῥQQQQ (Year̮Region) ῝Q̰̰Ῥ̯ (Table 5)῏ ̯
ῬῨ῎ QQQQ῝Q̰Ῥῥ῜ῠ̯QQῧ 5 Q Q῔6 Q
QQῧῶΐ̱ QQ (Table 2) ῦQ̰ῢ῎ ῞΅̰ῢQ
QQΰῗΎ῏ QQQQῧQ̰Ῥ̯QQ ῕Total, 0῔1 ̰̯
Fig. 8. Year-to-year variations in zooplankton abundance (left), biomass (middle) and calculated production (right) of
“total” (a), “0ῌ1 mm ESD” (b) and “1ῌ2 mm ESD” (c) size zooplankton at four regions, along 155̮E during late June,
which significant “Year̮Region” interactions were detected (cf. Table 5). For prominent peaks, dominant zooplankton taxa are indicated.
BPS82121ῌ ῌ (Mark2)ῌ ῌ ML9055CῒMark10
QQ῍ Q
ῖ
ῖ
Monῌ Decῌ 24ῌ 14:58:02ῌ 2007
ῳ̲ῼ̱ῴῷ Pageῌ 11
῍ῗ̲ ῴ̲ QQ̮
12
Q 55 Q
Q 1 Q (2008)
̰ 1ΐ2 mm Qῶ̱Ὼ̰QQQQQ῎ ̲̱̱῾ΌῙῬ̰
QQ̯῕ ̰Q̯̳̰Ῑ῝`῎̮Qῳ Fig. 8 ̰Q̯῏ Q̮
̲ ῴ̲ ̰Ῐῡ῎ ΐQ̯῎ ̱῿ῼ ̯῎ ῶ ̲̯ῧ
ῗῢῠῙQQQῳQῡ῎ QΎῚ̰QQῐῑQ̯`Ώ ´
QQ̮̲ ῴ̲ ΊῌQ̰̯̳ῙῬ̰῎̰Q̯῏Q
̯῎ ̯̰QQ Year̮Region QQQ῞ΊῪῠ῭̯῰ῠῧ
ῐQ̯῰ῠ῏ QQQῩΏ ´ QQ̮̲ ῴ̲ ̰Q
̳̰ῬῢῥῌQῤ῝῭῰ῠ̰̰῎ 1994 ῎̰ SB ̰Ῑ῝
`ῶ ̲̯ῙῬ̰̱῿ῼ ̯῎ 1996 ῎̰ TR ̰Ῑ῝`
ΐQ̯῎ 1999 ῎̰ SB ̰Ῑ῝`̱῿ῼ ̯ῩῨῦῖ`
(Fig. 8)῏
̰ῠ῎ 6 Q̳Q̰Ῑ῝` t wo-way ANOVA ̰QQQ
Q (Table 5) ῳ 5 Q̳Qΐ6 QQQ̰QQ (Table 2) ῧ
ῒQ̯ῠῧ῟῱῎ 5 Q̳Qΐ6 QQQ̰̰̲̱̱῾Όῧ
QQ̯̰ῙῗῥQῶ̱Ὼῴ ΌQ̯ῦQ῎̮QΊQ῭῰
ῠΊ῎ 6 Q̳Qῦ̰QQ̰ῶ̱Ὼῴ Ό̰QQQQQῧ
QQ̯ῳQῗῥQ῎̮Q̰QQ̯῰ῩῚῢῠ (Tables 2,
5)῏
4.
4ῌ1.
ῖ
ῗ
῜῞̮̮̮ῒ῕̮ΐῑ῔ῚῘ῎̮Ίῌ ̮Ῑ῍ῐ῏
̮῝῟῜
ῗQQῦ̰ 155̮E Q̰̳ῢῠ 35̮N Ὶ῭ 44̮N ̰Q
ῳ Q̰Ῥ΅̮QQ̰ 4 Q̳̰Q̮̯ῠ (Fig. 3)῏ Q̮
Fig. 9. Relationship between “total” and “2ῌ3 mm
ESD” zooplankton, in terms of biomass (a) and
production (b), based on the data obtained during late
Mayῌearly or June of 1993ῌ2004.
̲ ῴ̲ QQ̰Q̮ ῔ Q῕ ̮῕̰ῌQῧ̯ῥQ῞
῭῰`̰̰῎ Q̯̳ (TR, 40̮Nΐ42̮N) ῦQQ̮̲ ̱῾ΌῧQQ̯̰Q῎̮Q̰ 2ΐ3 mm ῶ̱Ὼῴ Ό̰
ῴ̲ QQQQQΊ 4 ̯̳QῦQῪQῗ̰̰Q̯ῥ῎
̮Q̰ῬῢῥῪῠ῭̯῰ῥῗ`῟ῧΊQQ̯῰ῠ῏ ̯̰
̲̱̱῾ΌῧQQ̯ΊQῪQῗ῟ῧῦῖ` (Fig. 6)῏ ῟
ῠ̰῎ ̲̱̱῾ΌῧQQ̯̰ΰῗῥ῎ ESD Ί 2ΐ3 mm
῰̰ Fig. 6 Ὶ῭Ὶ῭ῚῩῬῘ̰῎ TR ̰Ῑῗῥ ESD Ί
̰ῶ̱Ὼῴ ΌῧQQ̮̲ ῴ̲ ̰QQῳQQ̯ῠ
2ΐ3 mm, 3ΐ4 mm ῙῬ̰ 4ΐ5 mm ῧῗῢῠQQῩ
ῧ῟῱῎ ῗ̯῰Ὺ῜ ῩQ̰QQΊῖ`῟ῧΊῲῚῢῠ
ῶ̱Ὼῴ ΌΊΊQ̯῎ Q̯̳ῦQ̳̯ῠQQῶ̱Ὼῴ
(Fig. 9)῏ Q῝῟ (r 2) Ί 0.65 Ὶ῭ 0.71 ῦῖῢῠ῟ῧῚ
ΌΊQῩῚῢῠῠ̰ῦῖ`῏ ESD Ί 2ΐ3 mm ῧῗῘ
῭῎ QQ̮̲ ῴ̲ ̲̱̱῾ΌῙῬ̰QQ̯̰Q῎
ῶ̱Ὼῴ Ό̰ Eucalanus bungii C6F Ύ Neocalanus
̮Q̰ 65̮ Ὶ῭ 71̮ ̰῎ ESD Ί 2ΐ3 mm ̰ῶ̱Ὼ
plumchrus C5 ῧῗῢῠ῎ QQQ̰QQ̱̱̱ῷ̯Ί
ῴ Ό̰῎̮Q̰ῬῢῥQῚῦ῜`῟ῧΊῐῚ̯ῠ῏ ΰ
QQ̯` (Fig. 1b)῏ ΰ̰΅῎ 155̮E Q̰̳ῢῠ 35̮N Ὶ
̰΅῎ 155̮E Q̰̳ῢῠ 35̮N Ὶ῭ 44̮N ̰Q̳̰Q̮
῭ 44̮N ̰Q̳̰῎ Q̯̳ (TR, 40̮Nΐ42̮N) ̰Ῑῗ
̲ ῴ̲ ̲̱̱῾ΌῧQQ̯̰Q῎̮Q̰῎ QQ̱
ῥQQ̱̱̱ῷ̯ΊQῗ῟ῧ̰ῬῢῥῌQῤ῝῭῰ῥῗ
̱̱ῷ̯̰῎̯ῧ̰QQ̰ῬῢῥQ̳̯῰ῥῗ`῟ῧ̰
`῟ῧΊῲῚ`῏
Ῡ`῏
Q῎̮Q̰ῙῗῥῪ῎ 5 Q̳Qΐ6 QQQ̰Q̯ῦ̰
QQ̰Q̮̲ ῴ̲ ̰Q̮̮῕ῙῬ̰Q῎̮Q̰
QQ̮̲ ῴ̲ ̲̱̱῾ΌῧQQ̯̰῜ Ῡ̮QΊ
5 Q̳Qΐ6 QQQ̰QQῦῖῢῠ῏ ̳ῖ 6 Q̳Q̰̰῎
Q ῭ ῰῎ ῗ ̯ ῰ Ὺ 1993 ῎῎ 1998 ῎῎ 2001 ῎ Ῑ Ῥ ̰
5 Q̳Qΐ6 QQQ̰̰Q῭῰ῩῚῢῠ Year̮Region
2003 ῎̰Qῗ῟ῧΊῚ῭ῚῧῩῢῠ (Table 4)῏ Qῶ̱
̰ ̮QQQ῞̮ Ί῔ῑ̰QQ̯῰ῠ (Table 5)῏ ῟̰QQ
Ὼῴ Ό̰Ῐῡ 2ΐ3 mm ̰῔ῑ̰῜ Ῡ῎̮QΊQ῭
Q῞̰῎ ̮Q῎̮Q̲ῼῒ ΊQ̯̳̰Ῥῢῥ Ῡ`̮ ῟
῰ῠ῟ῧῚ῭ (Table 4)῎ QQQQ̮̲ ῴ̲ ̲̱
ῧῳ Ῐ̯ῥῗ`῏ QQQ῞ΊQ῭῰ῠQ̯̰ΰῗῥQ
BPS82121ῌ ῌ (Mark2)ῌ ῌ ML9055CῑMark10
QQ῍̳̯
̮
̮
Monῌ Decῌ 24ῌ 14:58:02ῌ 2007
῵ ̲Ὸ̲̲ Pageῌ 12
῾̲ῐQQῐQQῑ OPC ῥ̰ῪQQQQQQῦQQῴῷΌ`̱Ό̳QQQ Q
13
Fig. 10. Vertical distribution patterns of temperature and salinity at the station/year when gelatinous zooplankton
were dominated (closed circles) as compared with those of 12-year means during 1993ῌ2004 (open circles). Horizontal
bars for the latter denote ̮SD. SB: Subarctic Boundary, TR: Transition Domain.
Q̯Ὺΰ῎ ̮̯Ύ̰ῳῷ̱ΌQQQῴῷΌ`̱Ό ῔῱Ὸ
̯῎ QQῥQ῞̯ ̳ῥῤΎῨQQῥ̰̰Q  ῥQQ
̱Q῎ ΅ῶ̱ῸQῗ̰ῩQQQ῕ ῙQQ῞ῡ̮̯ (Fig.
̳῭Q̰̯῝ΰῙῢῚῪ ῔Bone 1998 ῭QQ῕῏ ῝Ύ̰
8)῏ ̯̰̰῎ 6 ̳ QῦQQῴῷΌ`̱Όῧ῎ ̳QQῤῳ
ῳῷ̱ΌQQQῴῷΌ`̱ΌῙQῘ̯̯QῦQ῿ΰ̲Q
ῷ̱ΌQQQῴῷΌ`̱ΌῦQQῥ̰̯ῡQQῠ῜̰Ύ
ῦ̲QQQΰ῎ Q´Qῥῗ῜Ὺ 12 QQ̳ΰῦQ ῭
Ὺ῝ΰῙῬῘ̯̯῏ ῝Ύῧ 5 ̳ Qΐ6 ̳QQῦQQῢ
Q̯̯ (Fig. 10)῏ 1994 QῦῺ Q̳ (SB, 38̮Nΐ
ῧ̳̰ΎῤῘ̯̯QQῢ̮Ὺ῏ 6 ̳ Qῥῤ̯ῡῳῷ̱
40̮N) ῥῡ῱Ὸ̱Qΰ΅ῶ̱ῸQῙQῘ̯̯Qῧ῎ ̮̯
ΌQQQῴῷΌ`̱ΌῙ̳QQῥQQQ̯Ὺ̰̮ῥῤ̯
ΎῦQQ̰QQ̰̰QQ῿῎ Q̲Qῢ῎ QQ 40 m ΏQ
̯QQ῭Ώ ῥQQ̯Ὺ῏
ῥQQῙQQ῞ῡ̮ῪQQῙ̮ῘῙῖ̯῏ 1996 Qῦῼ
῱Ὸ̱Q῎ ΅ῶ̱ῸQῗ̰ῩQQQΰ̮̯̯ῳῷ̱Ό
QQQῴῷΌ`̱ΌῧQQQQΰΰ̰ῥQQQQ῭Q
BPS82121ῌ ῌ (Mark2)ῌ ῌ ML9055CῒMark10
QQ῍̲Q
̮
QQ̲ (TR) ῢῦQQQῦQ̲ῧQ̲QῢQQῠ῜̰
Ύ῎ Q῟ΊQQ 40 m ΏQῥQQῦQQῙ̮ῘῙῖ̯῏
̮
Monῌ Decῌ 24ῌ 14:58:02ῌ 2007
῰Ό῵ῲ̱̱ Pageῌ 13
QQῸ´̲῰ῴ̲  Q
14
Q 55 ̳
Q 1 Q (2008)
1999 Qῦ̲̳QQ (SB) ῡῧQQ̰̰̰QQ 20 m ̲
῝ΎῪ῏ ῜ῦ QῦQQῥῧ῎ QQῸ´̲῰ῴ̲QQQ
QῦQQῦQQῗQQῢ῞ῠ̳Ί̰ΎῪ (Fig. 10)῏ ̯̰
Q̯ῚῡῧῤῙ῎ QQῸ´̲῰ῴ̲QQQQῗQQQQ
̰῎ 6 Q Qῥ̱´̱̲QQQῸ´̲῰ῴ̲ῗQ῾῞̯
ῡ̮Ὺ῏
QQ ῡῧ῎ ̮̯Ύ̰QQ̰̰̰QQῗQQ῞ῠ̮Ὺ῜
ῢῗQQῢ῞ῠ̳Ί̰ΎῪ῏ ῜Ύ̰ῦQ ῖ̰῎ 5 Q Qῖ̰ 6 QQQῥῧQ̰Ύ̯῎ 6 Q QῦQQῗQQ῞
4ῌ2.
ῖῚ῞ῗ῜῟῎ῌ῍ῐῘΊΐ῔῕ῑῒ῕̮̮῏̮
̮̮῝ῘῙ̮
̯ῢῘῥῦ̰Q̰ΎῪ̱´̱̲QQQῸ´̲῰ῴ̲ῦQ
155῕E Qῥ῿̯̯ 35῕N ῖ̰ 44῕N ῦQQῸ´̲῰
῾ῧ῎ ̮̯̰Ῑ ΐQQῦQQ̮QQῩῦ̲Q ̳̳QQ
ῴ̲ῦῶ῭΅Ὼ̱ῐQQQῦQQQQ῎ QQQῦQQ
̮ῷ῱ῲ῭̱ῤΰQQQQῸ´̲῰ῴ̲ῦQQ̮QQQ
QQ̮̰ῨQQ 5 Q Qῒ6 QQQ̮̰Ῠ 6 Q Qῥῖ
QῬQQQῙQ̲ῡῘῪ̱´̱̲QQQῸ´̲῰ῴ̲ῗ
ῚῠῦQQQQῦQ̳QQῦQQQῬQ῟ (Fig. 11)῏ Q
QQ῔ ῢ̮̮ῼ`῵̱ΏῗQ̮̯Q ῡῧῤ̮ῖῢQQ
QῸ´̲῰ῴ̲ῶ῭΅Ὼ̱ῐQQQ̮̯ΎῦQQQQ̰
Fig. 11. Schematic diagrams showing year-to-year variations in zooplankton biomass and production as a#ected by
the abundance of Neocalanus (2ῌ3 mm ESD), and 3D images for spatial-temporal changes in zooplankton community
structure in the western North Pacific as revealed by OPC analysis.
BPS82121ῌ ῌ (Mark2)ῌ ῌ ML9055CῑMark10
QQ῍̲Q
̮
̮
Monῌ Decῌ 24ῌ 14:58:02ῌ 2007
῱̲Όῳ̱ῴ Pageῌ 14
QQῐ̮QῐQQῑ OPC ̰̱̱ῸQQ QQ̰QQ̳QQῼ QQῢQ QΌ
15
QQQQ (TR, 40̮N῕42̮N) ̰ΊῘῩ̳QΏῸῷ̲Q
Ί̯̱QQ̳QQῼ QQῢ̰̯΅̯΅̰̲´῔Q̰̰
̰QQ῝̳῞῟ (Fig. 6)῎ ΅ῥῤ̰QQQQῪ῎ ῲ῭
῞QQQQ̳῝Q̱῜̰̰̱̯̰῝Q̳̯̱̱῏
10῕40 m ̰̳QΏῸῷ̲Q Neocalanus cristatus ῲ N.
plumchrus C5 ῝ Ῐ̯̰῝QQ̰ῗ̱ ̮QQQQQ̮῏
6.
῏
῎
QQ̳QQῼ Q ῸῺ̳̲̰ῶ̮Q̰ῪQQQQ῝Q
̱̱῎ ̳QΏῸῷ̲Q Neocalanus ̰ Q̰̱ῧῩQ
QQῶῠῚ̱̰ῗῥ̱῎ QQQ̰῔ῠῩῳΐ̰̯ῨQ
QQQ῝Q῞Q̯̯̱ῩῘῥ (Fig. 9)῏ Q QQQQ̳
̰QQ̰̯ῌQῶ῝̱΅ῠῥQQQ̳Q̳QQῲ̮QQ
Q̰QQ̳QQῼ Q ῸῺ̳̲̰ΊῘῩ῎ ̯̱̱̳Q
QQQ̰Q
ΏῸῷ̲Q῝̯QQ̱Q̰ῗ̱̯̰Ὺ῎ ̯̱΅̰Ῐ῟Ῠ
̯΅ῡ῏ QQQ̰QῘῥΊQῲQ ῔ ̰ΐῢ̰῔
῜̰QQ̰Q̱῜̰̯̱ῩῘ̱ ̮QῚΎ Tadokoro et
ῠ῎ ῠῗ ̳̰̯QQῶῘῥῦῘῥQQQ̳QQῡ̲
al. 2005 ῶ῕̰̮῏ 6 QQῥ̰QΏ῝``̰Ῠ̱ῩQQ̳
̮ΊῠῳῴQ̮ Ί̱Ῥ ̮Q̱Q̮ ̰̲Q῎ ̰῾Q̰QΐΊ
QQῼ Q̰QῢQ Ὺ̳῞῟QQῠ῎ QῧQ̰῿Q ̱ῬQ̰̯̱ῥQQ̯QQ̰Ῥ῜̱QQ΅ῠ̰̯΅ῡ῏
Q῟QQ̳QQῼ Q̰Q´῝Q̱̱̱̱Ῑ̰̰̱
΅ῥ῎ OPC ̰̮Q̰῔ῠ῎ QQQ̱Q῰ῲ̮ ῍QQ῾
(Fig. 8)῏ ̯̰QΏ ̲̳̰ῠῩ ̮Q῿̰Q̳ῖQ῿῭̰
Q ῔QQῲ̮QQῧ̰Ῑ̲Q̮Qῖ̰Ὺῳΐ̰̯QQ
QQQQQ̱Qῖ̳̲̲Ὸ̲̰̰̰Q̰Q̳QQῼ Q
̰̯ῨQῶῘῥῦ῞΅ῠῥ῏ ῭῟Q̯Ῐῥῠ΅ῡ῏ QQ
̰Q´ῖ̰QQῘῶQQQ῟ῺQ̰῞̱῿Q Q῟QQ
QῪQQQQQQῨQ ̮QQQQ (S) 16108002̮ ̮QQ
̳QQῼ Q῝Q´̮ ̰ῘῙQῼῶQῩῠῥ῏
QQ̰῰QQQ̰QQῡ̱QQῶ̳Q̰Q̮QQ̲̰̰
ῸQQ QQ̲Q̰῵ῥῧῩ῎ QQῲQQῥ̱̰QQ
̳QQῼ Qῶ̮Q῎ ̰῟̰̰Ὺ̯Qῢ̰ῪQQQQῪ
Q̲ῶ̮Q̰ῴQQῡ̱̯̰῝Q̱̱ῩῘ̱ ̮Taniguchi 1973, QQ 1981̮῏ ῐQ῎ OPC ̰̱ῧῩQ̱̱ῥ
QQ̳QQῼ Q̰̲Ὸ̲῾̱῜̱Q̮̯̱ῥῶ̮Q
(134῕219 mg C mῌ2 dayῌ1) Ὺ῎ QQQ̰Ί̯̱QQ
̰ ῱ Q Q (107 ῕ 232 mg C mῌ2 dayῌ1, Taniguchi
1973) ̰QQQ̰ῗ̱῏ ΅ῥ̳Q̰QQ̳QQῼ QῪ
ῤ̰QQ῱̳Q̰ῥ῰῎ QQQ̰Q῟Q Qῶ Q̯ΰ
̱ (Ducklow et al. 2001)῏ 5 QQῥ῜̱ 6 Q̰ῥ̰῜̯
ῩῪQQQQ (TR) ̰ΊῘῩQQ̳QQῼ Qῶ̮Q῝
ῌῘ̯̰̰QῚῩ῎ ̳Q̰̲Ὸ̲ῼQ̲῝Q´ῡ̱̯̰
̰̱̱ (Fig. 6)῎ ῤ̰QQQ̰Q῟Q Q῝ Qῡ̱̯
̰῝῱ ̯̱̱῏
Q QQ ̮̯̰QQ̳Q̮ ̰Ί̯̱QQ̳QQῼ Q
ῸῺ̳̲̰QQQQ̰QQ̰ῠῩΏQ̳ ̳̲̰ Q
(Sugimoto & Tadokoro 1997)῎ Q̲῔̳̲̳ (Sugimoto & Tadokoro 1998)῎ ΌQ ῔ Q (Sugimoto et
al. 2001) ῲ῎ 10 Q῕ῳΰQ̯Q̰QQQQ (Chiba et
al. 2006) ̰̰῝Q῎̯̱ῩῘ̱῏ QQQ̰Ί̯̱QQQ
Q ̮ ῸῺ̳̲̰ῶ̮Q῝ 1993 Q῎ 1998 Q῎ 2001 Q
Ί̱Ῥ 2003 Q̰ῌῘ̮ Ὺ῎ Qῢῠ῱̯̱̱QQ̰QQ
QQ̰QQῠ̰῜ῧῥ῝῎ ῤ̱ῪQῒQQ῝ 1993῕
2004 Q ̮12 Q̮ ̰Q῟῎ QQQQQQ  ῔Q῝ΰQ
̰ῷQ̰Qῤ̯̱̰῜ῧῥQQ̱῱ῗ̱ ̮QῚΎ Chiba
et al. [2006] ̰ῪQ 50 QQ̰῜Q̰ῨῘῩQΌ̮῏ ῐ
Q῎ OPC ̰̱̱QΌῶ̯̱̰ ῟̰Q̮QQQ̳QQ
ῼ QΊQ̰ῨῘῩQῙ̯̰̰̱̱῎ Q̳̰Q QQ̰
BPS82121ῌ ῌ (Mark2)ῌ ῌ ML9055CῒMark10
ῦQ῍QQ
̮
QQQ̯̰ῚQQΎQ̯̰Q῟QQ΅ῠ̰
QQ ̮̳Qῑ Q
QQ̮̮ ̰̱Q̰QQ̰ῡ῏
ῌῑῐ῍
Al-Mutairi, H. & M. R. Landry 2001. Active export of carbon
and nitrogen at Station ALOHA by diel migrant zooplankton. Deep-Sea Res. II 48: 2083ῌ2103.
QQ Qῐ QQQῐ̰QQ̮ῐ̮Q̯QῐQ῏QQῐῑΐQ
̱Qῐ̳Q῵Q 1990. QQQ QQ 180 Q̲QQQQ̯Q
̰QQQ ̰ῤ̰QQ῏ Q̳ῲ̮QQ 41: 73ῌ88.
Beaulieu, S. E., M. M. Mullin, V. T. Tang, S. M. Pyne, A. L.
King & B. S. Twining 1999. Using an optical plankton
counter to determine the size distribution of preserved
zooplankton samples. J. Plankton Res. 21: 1939ῌ1956.
Bone, Q. 1998. The Biology of Pelagic Tunicates. Oxford
University Press, Oxford, 362 pp.
Boyd, P. W. & P. P. Newton 1999. Does planktonic community structure determine downward particulate organic
carbon flux in di#erent oceanic provinces? Deep-Sea Res.
I 46: 63ῌ91.
Chiba, S., T. Ono, K. Tadokoro, T. Midorikawa & T. Saino
2004. Increased stratification and decreased lower trophic
level productivity in the Oyashio region of the North
Pacific: A 30-year retrospective study. J. Oceanogr. 60:
149ῌ162.
Chiba, S., K. Tadokoro, H. Sugisaki, & T. Saino 2006. E#ects
of decadal climate change on zooplankton over the last 50
years in the western subarctic North Pacific. Global
Change Biol. 12: 907ῌ920.
Ducklow, H. W., D. K. Steinberg & K. O. Buesseler 2001.
Upper ocean carbon export and the biological pump.
Oceanography 14: 50ῌ58.
Favorite, F., J. A. Dodimead & K. Nasu 1976. Oceanography
of the subarctic Pacific region, 1960ῌ1971. Bull. Int. North
Pacific Fish. Comm. 33: 1ῌ87.
Gallienne, G. P., D. V. P. Conway, J. Robinson, N. Naya, J. S.
William, T. Lynch & S. Meunier 2004. Epipelagic mesozooplankton distribution and abundance over the Mas-
̮
Monῌ Decῌ 24ῌ 14:58:02ῌ 2007
̲Q̳̲ Pageῌ 15
̳Q̯ῡῢ῝̯ῢ̰ῨQ
16
carene Plateau and Basin, south-western Indian Ocean. J.
Mar. Biol. Ass. U.K. 84: 1῍8.
Gnaiger, E. 1983. Calculation of energetic and biochemical
equivalents of respiratory oxygen consumption, pp. 337῍
345. In Polarographic Oxygen Sensors (eds. Gnaiger, E. &
H. Forstner). Springer, Berlin.
Herman, A. W. 1988. Simultaneous measurement of zooplankton and light attenuance with new optical plankton
counter. Cont. Shelf Res. 8: 205῍221.
Herman, A. W. 1992. Design and calibration of a new optical
plankton counter capable of sizing small zooplankton.
Deep-Sea Res. 39A: 395῍415.
Herman, A. W., N. A. Cochrane & D. D. Sameoto 1993. Detection and abundance estimation of euphausiids using an
optical plankton counter. Mar. Ecol. Prog. Ser. 94: 165῍
173.
̱̲ ̱ 2003. ̯ῡῢ῝̯ῢ̯ῢ῟ῒῖῧ̮῜̮Ί̮ῌῺ̱
ῩQ̰Ῑ̱ ̮Ὶ῏ ̳Q̯ῡῢ῝̯ῢ̰ῨQ 50: 29῍35.
Ikeda, T. 1985. Metabolic rates of epipelagic marine zooplankton as a function of body mass and temperature.
Mar. Biol. 85: 1῍11.
Ikeda, T. & S. Motoda 1978. Estimated zooplankton production and their ammonia excretion in the Kuroshio and
adjacent seas. Fish. Bull. 76: 357῍367.
Labat, J. Ph., P. Mayzaud, S. Dallot, A. Errhif, S. Razouls & S.
Sabini 2002. Mesoscale distribution of zooplankton in the
Sub-Antarctic Frontal system in the Indian part of the
Southern Ocean: A comparison between optical plankton
counter and net sampling. Deep-Sea Res. I 49: 735῍749.
Mackas, D. L., R. Goldblatt & A. G. Lewis 1998. Interdecadal
variation in developmental timing of Neocalanus plumchrus populations at Ocean Station P in the subarctic
North Pacific. Can. J. Fish. Aquat. Sci. 55: 1878῍1893.
Michaels, A. F. & M. V. Silver 1988. Primary production,
sinking fluxes and microbial food web. Deep-Sea Res.
35A: 473῍490.
` Q 1957. Q̲̳Q̳ῶ̯ῡῢ῝̯ῢ̯̯̯Ῐ̮῔̮῏ ̳
Q̯ῡῢ῝̯ῢ΅QQ 4: 13῍15.
Motoda, S. 1959. Devices of simple plankton apparatus.
Mem. Fac. Fish. Hokkaido Univ. 7: 73῍94.
Mullin, M. M., E. Goetze, S. E. Beaulieu & J. M. Lasker 2000.
Comparisons within and between years resulting in contrasting recruitment of Pacific hake (Merluccius productus) in the California Current System. Can. J. Fish. Aquat.
Sci. 57: 1434῍1447.
Nogueira, E., G. Gonza
´lez-Nuevo, A. Bode, M. Varela, X. A. G.
Mora
´n & L. Valde
´s 2004. Comparison of biomass and size
spectra derived from optical plankton counter data and
net samples: application to the assessment of mesoplankton distribution along the Northwest and North Iberian
Shelf. ICES J. Mar. Sci. 61: 508῍517.
Ὸ Q̱ 1994.  QῩῥῘ῕̮Ί̳̳̯ῡῢ῝̯ῢῙ̳̲ῗ
̰Q̳Ῐ̰̮Ί΅Ὺ῏  QῺ΅Qῳ 56: 115῍173.
Ohman, M. D. & E. L. Venrick 2003. CalCOFI in a Changing
BPS82121ῌ ῌ (Mark2)ῌ ῌ ML9055CῑMark10
ῷ῱῍ῦQ
ΐ
῿ 55 ̰
῿ 1 ῲ (2008)
Ocean. Oceanography 16: 76῍85.
Patoine, A., B. Pinel-Alloul, G. Methot & M.-J. Leblanc 2006.
Correspondence among methods of zooplankton biomass
measurement in lakes: e#ect of community comparison
on optical plankton counter and size-fractionated seston
data. J. Plankton Res. 28: 695῍705.
Roman, M. R., H. G. Dam, R. L. Borgne & X. Zhang 2002.
Latitudinal comparisons of equatorial Pacific zooplankton. Deep-῍Sea Res. II 49: 2695῍2711.
Sheldon, R. W., W. H. Sutcli#e Jr. & M. Paranjape 1977.
Structure of pelagic food chain and relationship between
plankton and fish production. J. Fish. Res. Bd. Can. 34:
2344῍2353.
Sprules, W. G., E. H. Jin, A. W. Herman & J. D. Stockwell
1998. Calibration of an optical plankton counter for use in
fresh water. Limnol. Oceanogr. 43: 726῍733.
Sugimoto, T. & K. Tadokoro 1997. Interannual-interdecacal
variations in zooplankton biomass, chlorophyll concentration and physical environment in the subarctic Pacific
and Bering Sea. Fish. Oceanogr. 6: 74῍93.
Sugimoto, T. & K. Tadokoro 1998. Interdecadal variations
of plankton biomass and physical environment in the
North Pacific. Fish. Oceanogr. 7: 289῍299.
Sugimoto, T., S. Kimura & K. Tadokoro 2001. Impact of
El-Nin
˜o events and climate regime shift on living resources in the western North Pacific. Prog. Oceanogr. 49:
113῍127.
Tadokoro, K., S. Chiba, T. Ono, T. Midorikawa & T. Saino
2005. Interannual variation in Neocalanus biomass in the
Oyashio waters of the western North Pacific. Fish. Oceanogr. 14: 210῍222.
Taniguchi, A. 1973. Phytoplankton-zooplankton relationships in the western Pacific Ocean and adjacent seas.
Mar. Biol. 21: 115῍121.
῰ ῤ 1981. ̲̳Qΰ̰̲̲̲ῩῥῘ῕̮Ί ῴῼ̳ῼ̱
Ῑ̳ΏῗΎΌ̰Ῥ῏ Q῾Ὼ̱QQ΅῭´῵῎ ̳Qῲῐ 23῍35.
van der Meeren, T. & T. Næss 1993. How does cod (Gadus
morhua) cope with variability in feeding conditions during early larval stages? Mar. Biol. 116: 637῍647.
Wood-Walker, R. S., C. P. Gallienne & D. B. Robins 2000. A
test model for optical plankton counter (OPC) coincidence
and a comparison of OPC-derived and conventional measures of plankton abundance. J. Plankton Res. 22: 473῍483.
Yamaguchi, A., Y. Watanabe, H. Ishida, T. Harimoto, M.
Maeda, J. Ishizaka, T. Ikeda & M. M. Takahashi 2005.
Biomass and chemical composition of net-plankton down
to greater depth (0῍5,800 m) in the western North Pacific
Ocean. Deep-Sea Res. I 52: 341῍353.
Zhang, X., M. Roman, A. Sanford, H. Adolf, C. Lascara & R.
Burgett 2000. Can an optical plankton counter produce
reasonable estimate of zooplankton abundance and biovolume in water with high detritus? J. Plankton Res. 22:
137῍150.
ΐ
Monῌ Decῌ 24ῌ 14:58:02ῌ 2007
῞ῢῠ̯̯̯ Pageῌ 16