✁ 3.9 ✄☎ ✂ ✆✝✄ ✞x(mN + n) = x(n) (1)IDFT ✂ DFT ✟✠] ✡ IDFT ✂ [ x ( n) = 1 N N −1 ∑ X ( k )e j 2πnk N ,n = 0,1,...N − 1 k =0 ☛☞✌✍✎ n = mN + n ✏☞✑✏ x(mN + n) = = N −1 1 N ∑ X (k ) exp{ j 1 N ∑ X (k ) exp( j k =0 N −1 k =0 2π (mN + n)k } N 2πnk ) exp( j 2πmk ) N ✒✒✓✎ exp( j 2πmk ) = cos 2πmk + sin 2πmk = 1 ✔✂✓ 1 N −1 2πnk X (k ) exp( j ) ∑ N k =0 N = x(n) x(mN + n) = ✏✔✕✎IDFT ✂✆✝✄ x(mN + n) = x(n) ✖✗✘✙✚✛ ✞ (4) ✜✢✣✤✥ x ( n + m) ↔ e −j 2πk m0 N X (k ) ✟✠] ✆✝ ✆✝✄✦✧★ ✙✚ ✏ ✛ x(n + m ) ✂ DFT ✩✎ x(n) ✖ N✂ [ 0 N −1 ∑ x(n + m 0 )e −j 2πnk N n =0 = x(m0 ) + x(1 + m0 )e + x ( N )e −j −j 2πk N 2π ( N − m0 ) k N + .... + x( N − 1)e + x( N + 1)e −j −j 2π ( N −1− m0 ) k N 2π ( N +1− m0 ) k N + ... + x( N − 1 + m0 )e ✪✫✫✬✭ x( N ) = x(0), x( N + 1) = x(1), x( N − 1 + m ) = x(m 0 N −1 = ∑ x ( n) e −j 2π ( n − m0 ) k N n =0 2πm0 k N −1 j N ∑ x ( n )e =e −j 2πnk N n =0 =e −j 2πk m0 N X (k ) ✱✲✳✭ x(n + m) ↔ e −j 2πk m0 N X (k ) ✴✵✶✷✸✹ 0 − 1) −j 2π ( N −1) k N ✮✯✬✭✰
© Copyright 2024 ExpyDoc