平成24年ダイバータおよびPWI合同研究会 日時: 平成24年7月23日(月) - 24日(火) 場所: 筑波大学内・筑波大学自然 B 棟 119 講義室 非接触プラズマ研究と課題 名古屋大学大学院工学研究科 エネルギー理工学専攻 大野 哲靖 高性能炉心プラズマの定常維持・制御に対する 周辺プラズマの役割 必要条件 - 炉壁の耐久性 - 燃料粒子,不純物粒子輸送制御 炉心プラズマの定常維持・制御の基 盤を与える 境界プラズマ 炉心 プラズマ X点 課題 プラズマ対向壁への粒子・熱負荷制御 - 非接触プラズマの理解と制御 セパラトリクス 熱・粒子流 磁気ダイバータ ダイバータ板 ダイバータコイル 2 JT-60SAでのダイバータ板への熱負荷評価 具体的な設計を行うと問題が顕在化 ‒ 過酷な熱・粒子負荷 部分非接触プラズマの 定常維持を前提とした 設計 Shinji Sakurai and JT-60SA design team, Proc. of Int. Sympo. on EcoTopia Science 2007, ISETS07 (2007) Japan Society of Plasma Science and Nuclear Fusion Research 非接触プラズマとは (1)ダイバータ部あるいはSOL領域からの強い放射損失 (2)ダイバータ板近くのプラズマ温度の著しい低下 The Japan Society of Plasma Science and Nuclear Fusion Research The Japan Society of Plasma Science and Nuclear Fusion Research (3)ダイバータ領域における中性ガス密度の増大 (4)ダイバータ板へのプラズマ粒子束及び熱流束の著しい低下 (5)ダイバータ領域において磁力線に沿ったプラズマ圧力の低下 高村秀一:プラズマ核融合学会誌1996 非接触プラズマの構造 Radiation Zone Ionizaion Front Ⅰ Hot Plasma Ⅰ Momentum Loss Region + e N N N N →放射冷却による N 電子温度の低下 + Divertor Plate B Wall Plasma Pressure ダイバータ領域の中性ガ ス圧の増加 →低温高密度プラズマ の生成 →体積再結合の発生 Plasma Temperature →プラズマの消失 Plasma Density →ダイバータ板への Distance along the Magnetic Field 熱負荷の減少 非接触プラズマにおける課題 (1)原子・分子過程 電子ーイオン再結合、分子活性化再結合(水素、炭化水素) (2)非接触プラズマ計測 NAGDIS プローブ計測の異常性 (門先生) MAP-II (3)非接触プラズマのエネルギーバランスの理解 TPD 中性ガス温度の影響、輻射輸送の影響 (4)非接触プラズマの動的応答 ELM様熱負荷への応答、接触-非接触-再接触遷移過程 (5)非接触プラズマ中の径方向輸送 Gamma10 非拡散的輸送現象(Plasma Blobs) (田中先生) (6)非接触プラズマの安定性 LHD 熱的不安定性、2次元効果(部分非接触) JT-60U(SA) (7)金属壁での非接触プラズマ生成 適切な不純物ガスの選定ーコアプラズマとの共存 (8)非接触プラズマの制御手法の確立 Puff&Pump, エルゴディック磁場(磁気島)(増崎先生) (9)先進ダイバータ配位への適用性 ーダイバータ幾何学構造への依存性 Super-X, Snow flake, Isolated divertor etc. 非接触プラズマにおける課題 (1)原子・分子過程 電子ーイオン再結合、分子活性化再結合(水素、炭化水素) (2)非接触プラズマ計測 NAGDIS プローブ計測の異常性 (門先生) MAP-II (3)非接触プラズマのエネルギーバランスの理解 TPD 中性ガス温度の影響、輻射輸送の影響 (4)非接触プラズマの動的応答 ELM様熱負荷への応答、接触-非接触-再接触遷移過程 (5)非接触プラズマ中の径方向輸送 Gamma10 非拡散的輸送現象(Plasma Blobs) (田中先生) (6)非接触プラズマの安定性 LHD 熱的不安定性、2次元効果(部分非接触) JT-60U(SA) (7)金属壁での非接触プラズマ生成 適切な不純物ガスの選定ーコアプラズマとの共存 (8)非接触プラズマの制御手法の確立 Puff&Pump, エルゴディック磁場(磁気島)(増崎先生) (9)先進ダイバータ配位への適用性 ーダイバータ幾何学構造への依存性 Super-X, Snow flake, Isolated divertor etc. 非接触プラズマの生成と電子-イオン再結合過程 . Attached Plasma Detached Plasma 接触プラズマ 接触プラズマ 非接触プラズマ Heat Flux (kW/m2) 200 プラズマの消失 ガスバッファ層の形成 50 0 5 テキスト 近紫外発光スペクトル 15 P (mTorr) 21S-61P 0.8 10 21S-71P 非接触プラズマ 100 0 Intensity [mW cm-2 sr-1 µm-1] .. プラズマ対向 材への熱流の 著しい低減 150 14 15 16 0.4 Continuum emission into 23P 18 電子-イオン体積 再結合によるプラ ズマ消失の実証 350 23P-p3D 0 330 340 Wavelength [nm] 3体再結合に伴う 高励起準位からの 発光線 放射再結合に伴う 連続スペクトル 17 20 20 分子活性化再結合過程 分子活性化再結合 MAR:Molecular Activated Recomination H2(v) + e → H- + H H- + A+ → A + H (荷電交換再結合) H2(v) + A+ → (AH)+ + H (AH)+ + e → A + H (解離性再結合) 振動励起水素分子を起点とした一 種の化学反応-�大きな反応確率 粒子バランス ∂ne + ∇⋅Γ = <σv>ionnenn - <σv>EIRne2 ∂t - <σv>MARnenH2 水素分子密度も重要! 3/s] Rate Coefficient [m3/s] 反応速度係数[m . 10-15 分子活性 化再結合 5x1019m-3 5x1018m-3 MAR 10-16 電子-イオ ン再結合 10-17 EIR 電離 Ionization 10-18 10-19 0 1 2 3 4 Te [eV] 電子温度 [eV] 5 分子活性化再結合過程の実験的検証 テキスト ヘリウム ガス導入 水素ガス 導入 イオン粒子束の減少 3体再結合線の消失 N.Ohno et al., PRL 81(1998)818 炭化水素分子活性化再結合の実証 CH4+H+(or He+) → CH4+ + H (or He) CH4+ + e → CH3 + H ダイバ 増加 →放射 電子 →低温 の生 →体積 MAP-IIでの 実験的検証 →プラ →ダイ 熱負 非接触プラズマにおける課題 (1)原子・分子過程 電子ーイオン再結合、分子活性化再結合(水素、炭化水素) (2)非接触プラズマ計測 NAGDIS プローブ計測の異常性 (門先生) MAP-II (3)非接触プラズマのエネルギーバランスの理解 TPD 中性ガス温度の影響、輻射輸送の影響 (4)非接触プラズマの動的応答 ELM様熱負荷への応答、接触-非接触-再接触遷移過程 (5)非接触プラズマ中の径方向輸送 Gamma10 非拡散的輸送現象(Plasma Blobs) (田中先生) (6)非接触プラズマの安定性 LHD 熱的不安定性、2次元効果(部分非接触) JT-60U(SA) (7)金属壁での非接触プラズマ生成 適切な不純物ガスの選定ーコアプラズマとの共存 (8)非接触プラズマの制御手法の確立 Puff&Pump, エルゴディック磁場(磁気島)(増崎先生) (9)先進ダイバータ配位への適用性 ーダイバータ幾何学構造への依存性 Super-X, Snow flake, Isolated divertor etc. Te[eV] B P[mTorr] 非接触プラズマにおける課題 (1)原子・分子過程 電子ーイオン再結合、分子活性化再結合(水素、炭化水素) (2)非接触プラズマ計測 NAGDIS プローブ計測の異常性 (門先生) MAP-II (3)非接触プラズマのエネルギーバランスの理解 TPD 中性ガス温度の影響、輻射輸送の影響 (4)非接触プラズマの動的応答 ELM様熱負荷への応答、接触-非接触-再接触遷移過程 (5)非接触プラズマ中の径方向輸送 Gamma10 非拡散的輸送現象(Plasma Blobs) (田中先生) (6)非接触プラズマの安定性 LHD 熱的不安定性、2次元効果(部分非接触) JT-60U(SA) (7)金属壁での非接触プラズマ生成 適切な不純物ガスの選定ーコアプラズマとの共存 (8)非接触プラズマの制御手法の確立 Puff&Pump, エルゴディック磁場(磁気島)(増崎先生) (9)先進ダイバータ配位への適用性 ーダイバータ幾何学構造への依存性 Super-X, Snow flake, Isolated divertor etc. almost constant. These results indicate that the Axial Positlon: X ( m ) electron energy is effectively lost by the FIG. 6 . Axial profiles of :(a) Te,T,.n. and plasma charge exchange and elastic collision pressure ; (b) ionization and charge exchange processes due.to a strong coupling between energy losses, energy transition by temperature electrons and ions in such a high density relaxation process and plasma energy flux in Fig. 4 NAGDIS, Nagoya Univ. plasma. In fact, the energy balance is 342 高密度 estimated from Fig. 6(b): ionization energy drops around X=0.9m. Ti is almost constant. Electron and ion energy loss rates are shown loss 22.8%of total energy input and charge in Fig. 6(b). Electrons mainly lose their energy exchange energy loss 73.6%. Please pay by ionization process near the plasma source attention that electrons have the energy more the 80% of plasma energy at X=Om. because T, is relatively high enough forthan ionization process. Above X-0.35m, the In a lower density case as shown in Fig. ionization energy loss becomes small due 7, to corresponding to Fig. 5, the axial profile of a decrease in T, and the energy loss with the 低密度 低密度 T, does not change so much because the energy 高密度 charge exchange and elastic collision becomes loss due to ionization process is small and the dominant. It should be noted that the energy relaxations mentioned above is loss rate of electron by energy exchange temperature with also of weak, so there is no way to lose the ions -K(T,-T~)has the same value as that electron energy. Therefore, Ti is found to be ions by charge exchange and elastic collisions. rapidly decreasing to a value around the is This is the reason why the ion temperature 0 0.2 0.4 0.6 0.8 1 neutral gas temperature To 0.03eV, almost constant. These results indicate thatambient the 低密度 A x l d Porttion: X ( rn ) Axial Positlon: X ( m ) the ions can not gain the energy from the electron energy is effectively lost bybecause FIG. 6 . Axial profiles of :(a) Te,T,.n. and plasma FIG. 7.Axial profiles of :(a) T, and plasma charge exchange and elastic collision the electrons. In this case, loss the energy lossexchange due gain N. Ohno CPP1996 pressure ; (b) ionization and chargeionization 1 collision is pressure ; (b) ionization and charge exchange energy 高密度 a strong coupling between processes due.to to chargeenergy exchange radiation losses, energy by temperature e transition losses, energy transition by temperature relaxation 電子ーイオン間のエ 3 electrons and ions in such a high density relaxation for process and plasma energy and flux inno Fig. 4 process and plasma energy flux in Fig. 5. not SO effective plasma Cooling, recombination ネルギー緩和が重要 is plasma. In fact, the energy balance detached plasma appears. Figure 6(b) gives energy relaxation estimated from Fig. 6(b): ionization energy N. Ezumi JNM1997 4 loss 22.8%of total energy input and charge charge exchange 中性ガス温度がイオ 2 exchange energy loss - 73.6%. Please pay i 非接触プラズマ生成 ン温度を決める elastic collision 3 attention that electrons have the energy more に密度の閾値が存在 recombination 非接触プラズマ中のエネルギーバランス - - - - B~~ - than 80% of plasma energy at X=Om. In a lower density case as shown in Fig. - 非接触プラズマにおける課題 (1)原子・分子過程 電子ーイオン再結合、分子活性化再結合(水素、炭化水素) (2)非接触プラズマ計測 NAGDIS プローブ計測の異常性 (門先生) MAP-II (3)非接触プラズマのエネルギーバランスの理解 TPD 中性ガス温度の影響、輻射輸送の影響 (4)非接触プラズマの動的応答 ELM様熱負荷への応答、接触-非接触-再接触遷移過程 (5)非接触プラズマ中の径方向輸送 Gamma10 非拡散的輸送現象(Plasma Blobs) (田中先生) (6)非接触プラズマの安定性 LHD 熱的不安定性、2次元効果(部分非接触) JT-60U(SA) (7)金属壁での非接触プラズマ生成 適切な不純物ガスの選定ーコアプラズマとの共存 (8)非接触プラズマの制御手法の確立 Puff&Pump, エルゴディック磁場(磁気島)(増崎先生) (9)先進ダイバータ配位への適用性 ーダイバータ幾何学構造への依存性 Super-X, Snow flake, Isolated divertor etc. 非接触プラズマと ELM の相互作用 (トカマク実験) •Two negative peaks ( negative ELM) appears in Dα emission. A. Loarte et al. Nuclear Fusion 38(1998)331. ELM熱負荷模擬実験 Divertor Test Region (~2 m) DC Discharge Region (~ 0.5 m) Cathode Floating Electrode Anode Baratron gauge Scanning Probes 2.03m Primary Gas (He) Target Probe X=0m RF Generator f=13.56MHz P=10kW Matching Box 1.06m 1.39m 1.72m Spectrometer PM HeI ( 2p-nd; 3<n<9 ) Digital Oscilloscope Secondary Gas (He) Isolation Amplifier 高周波加熱によりELM熱負荷を模擬 非接触プラズマへの熱パルス印加実験 Emission Intensity (arb. units) 100 1st negative peak Time evolution of Balmer series spectra at P ~ 9mtorr 2nd negative peak 2p-3d:T 10 2p-4d:T 1 2p-5d:T 0.1 2p-6d:T 2p-7d:T 2p-8d:T Negative spikes appear 2p-10d:T 0.01 0.001 rf pulse 0 0.5 1 1.5 Time (msec) 2 2.5 10 9 10 Recombining Phase Ionizing Phase (a)2p-3d;T 8 n e=5x10 19m-3 10 7 10 6 10 5 n e =1x1019m-3 10 4 ne =5x1018m-3 10 3 0 1 eq Te Te 2 3 4 5 Emission Intensity (arb. units.) 衝突輻射モデルによるNegative Spikeの解析 10 7 10 (b)2p-8d;T 6 10 5 10 4 10 3 10 2 10 0 Te (eV) 1 2 Te eq 3 4 Te (eV) Te Transition between the ionizing phase and recombining phase gives minimum points 5 1st Negative Spikeの詳細観測 1.5 0.6 1 0.4 Ion Flux 0.2 0 0.5 2p-5d:T 0 0 0.1 0.2 0.3 0.4 0.5 0.6 Time (ms) - Ion flux to the target plate is substantially increased near the 1st negative spike. 5 -10 4 -15 3 -20 2 -25 -30 1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 Time (ms) Ion Flux into the Target (a.u.) 2p-3d:T(587.5 nm) constant at 1st negative spike. End Plate Floating Potential (V) 0.8 - Floating potential remains almost Ion Flux to the Target (a.u.) RF Pulse 1 Emission Intensity (a.u.) P He =7.5 mtorr P rf =1 kW 2 Pump (b) P [mTorr] divertor test region Anode discharge region (i) Pump Cathode Gas Pump Gas Close a gate valve Pump Te [eV] (a) Volume 4, 000 (2009) Cathode Gas Gas 15 10 32 kHz CS(f) Fig. 1 Schematic illustration of the linear plasma divertor simulator NAGDIS-II. (a) attached and (b) detached plasma conditions. (a) Phase difference [ ] 0 -90 (iii) 30 20 10 0 6 4 2 0 0 (a) (b) (c) -5 8.5 kHz Detached (b) 12 8 4 0 16 8 0 -10 0.9 0.45 Attached 10 10 Fluctuation level of ne Vf [V] Anode (ii) Vs [V] ne [1018m-3] and Fusion Research: Rapid Communications (d) 0 -170 -180 -270 -360 0 Attached -18 -90 Transition -180 -270 (c) -360 -1 10 (e) Detached 0 10 1 2 10 10 Frequency [kHz] 3 10 Okazaki PFR2012 R(τ) -0.8 -0.4 0 0.4 ) Cross spectrum, CS ( f ), of ne and Vf under the attached and detached Frequency Fig. 2conditions. Experimental resultsdependence of triple probe measurement at the r = 15 mm. Time evolutions of the moving average 非接触プラズマにおける課題 (1)原子・分子過程 電子ーイオン再結合、分子活性化再結合(水素、炭化水素) (2)非接触プラズマ計測 NAGDIS プローブ計測の異常性 (門先生) MAP-II (3)非接触プラズマのエネルギーバランスの理解 TPD 中性ガス温度の影響、輻射輸送の影響 (4)非接触プラズマの動的応答 ELM様熱負荷への応答、接触-非接触-再接触遷移過程 (5)非接触プラズマ中の径方向輸送 Gamma10 非拡散的輸送現象(Plasma Blobs) (田中先生) (6)非接触プラズマの安定性 LHD 熱的不安定性、2次元効果(部分非接触) JT-60U(SA) (7)金属壁での非接触プラズマ生成 適切な不純物ガスの選定ーコアプラズマとの共存 (8)非接触プラズマの制御手法の確立 Puff&Pump, エルゴディック磁場(磁気島)(増崎先生) (9)先進ダイバータ配位への適用性 ーダイバータ幾何学構造への依存性 Super-X, Snow flake, Isolated divertor etc. 周辺プラズマ領域での非拡散的径方向プラズマ輸送 第一壁近傍に比較的プラズマ密度が高く平坦 化した領域(2nd SOL)が存在する → 第一壁でのリサイクリングの増加→ 不 純物発生の増加 2nd SOL 径方向拡散によるプラズマ輸送のみでは説明 が困難 dn Γ⊥ = − D⊥ + nV⊥ (r ) dr 磁力線を横切る対流的プラズマ輸送? € → Plasma Blob輸送 プラズマの塊(Blobs)が最外殻磁気面付 近で生成され, 磁力線を横切って第一壁 に向かって飛行する現象 M. V. Umansky et al. Phys. Plasma 5, 3373(1998). 第一壁 ne 1st SOL Blobs 2nd SOL セパラトリクス Plasma Blob Plasma Blob S.I. Krasheninnikov, Phys. Lett. A 283 (2001) 368. Plasma Blob E B ExB E R E E E P ITER P P NAGDIS-II NAGDIS-II ne<1020m-3 Te~10eV P=3.6mTorr probe plasma column P=9.0mTorr P=13.6mTorr 2 NAGDIS-II Plasma Blob P P 2 N. Ohno et al., J. Plasma Fusion Res. (Rapid Communications) 80 (2004) 275. 128x256pixel (~54x108mm2) Probe 30000fps P=11mTorr B=0.05T ExB Plasma column B ErxB direction ~20mm f=4.1kHz, 8.2kHz B=50mT 非接触プラズマにおける課題 (1)原子・分子過程 電子ーイオン再結合、分子活性化再結合(水素、炭化水素) (2)非接触プラズマ計測 NAGDIS プローブ計測の異常性 (門先生) MAP-II (3)非接触プラズマのエネルギーバランスの理解 TPD 中性ガス温度の影響、輻射輸送の影響 (4)非接触プラズマの動的応答 ELM様熱負荷への応答、接触-非接触-再接触遷移過程 (5)非接触プラズマ中の径方向輸送 Gamma10 非拡散的輸送現象(Plasma Blobs) (田中先生) (6)非接触プラズマの安定性 LHD 熱的不安定性、2次元効果(部分非接触) JT-60U(SA) (7)金属壁での非接触プラズマ生成 適切な不純物ガスの選定ーコアプラズマとの共存 (8)非接触プラズマの制御手法の確立 Puff&Pump, エルゴディック磁場(磁気島)(増崎先生) (9)先進ダイバータ配位への適用性 ーダイバータ幾何学構造への依存性 Super-X, Snow flake, Isolated divertor etc. 熱的不安定性-X点MARFE 非接触プラズマは不安定→容易にX点MARFEに移行 N. Asakura et al. PSI18 X点MARFEによるコアプラズマ閉じ 込め特性の劣化 ダイバータ配位およびダイバータ排 気量制御による非接触プラズマの定 常維持・制御の実証が必要(高性能 炉心プラズマとの両立性) the Heaviside function H , which is unity for 0 L . The Braginski fluid equations are the Due to the spatial separation of the fronts caused by n H n the combined ion and electron momentum balance equation the temperature dependence of dierent atomic pro, (21) n ion rec cesses, power balance in the SOL (involving the power t n ionization source and recombination sink ion particle continuity equation, with coming into the SOL from the core, Q , impurity ra- 非接触プラズマの熱的不安定性(1次元解析) imp nm 2nT 2 nm at rec t the combined ion and electron momentum balance equation n n t nm n H ion , rec n and the combined ion and electron energy balance equation nm nm 2nT nm 2 at rec t the combined ion and electron momentum balance equation t 1 nm 2 3nT 2 52 0T 1 nm 2 T 3 5nT and the combined ion and electron energy balance equation nm 2 nm 2nT nm Q H 3 2 at rec n f z Lz t nT at nE ion , 2 SOL diation loss in the SOL, Qrad , and QH ) can be written as imp QH QSOL À Qrad . We will see that the eects of imNagoya Univ. impose repurity radiation plasma recombination (22) and NAGDIS, strictions on the power sources, QSOL and QH , which are needed to sustain a high recycling (21) SOL plasma at a given upstream plasma pressure, Pup . Both QSOL and QH must exceed values which À critical Á À Á depend on Pup , QSOL > ^ rec Pup , and associated, respec^ imp Pup and QH > Q Q tively, with impurity radiation and plasma recombination. Of course, in (22) experiments, the eects of impurity radiation and plasma recombination in the recycling region may be strongly coupled. However, to emphasize the dierences in the physics of these instabilities, our theoretical model can treat them separately by, for example, turning o the impurity or plasma recombination (23) eects. (22) E 1 1 52 T nm 2 nm 3 5nT 0T 2 2 t and the combined ion and electron energy balance equation 3nT 3 nT at nE 2 1 3nT nm 2 2 t n 2 f z Lz Q H ion (23) , E 5 38 2 0T 1 nm 2 T 3 5nT 2.2. I (23) n 2 f z Lz 3 nT 2 at nE Q H ion E , R(T) TR so Since nR % increa Co with (y L condi q2div > const this is cause exam dealin tion ( Ref. [ (as a Ho heat t is im vertor that comp the ra lous h [7]. T crease shape ations q qR j plasm 32 in a tokamak diFig. 1. Schematic view of dierent regions vertor. He the i plasm sults rap (nv)div sin θ + nn,div,aux vn , (9) ecycling rate, (nv)div is the plasma partiinr target, and nn,div,aux is the auxiliary Volume 6, 2403098 (2011) g. gas puffing, near the divertor plate. e n and λ are the values of n and λn at the mesh n, j n, j n eat and , θ relevant to the neutrals are η j, respectively. At the divertortrap target and we adopt the Volume 6, 2403098 (2011) 部分非接触ダイバータ構造による安定化 ma and Fusion Research: Regular Articles the dess-field wing condition: plasma. n,div vn = ηtrap (nv)div sin θ + nn,div,aux vn , alnResults (9) is the recycling rate, (nv)div is thewere plasma partieis, ηtrap moveITER-like plasma parameters ing is the auxiliary inux the atparticle divertorinputs target, from and nn,div,aux and the core to the Fig. 2 ematic d neutrals, e.g. gas puffing, near the divertor plate. 23 −1 ndflux 1.5 × 10 s , respectively. The surwo t aparameters relevant to the neutrals are η , θ and ∼par640 m2 and the SOL width ∆SOL istrap exam. ,aux erefore, the cross-field and par- Articles Plasma and Fusionenergy Research: Regular plasma, Fig. 1region, The schematic pictureand of the multi-layer ein outer the SOL Q⊥SOL S ⊥SOL , 1D model. widths −3 −3 −1 and 1021 On mparameters , hand,were be 2.67analysis, MWm count only in the5.0 SOL× region. thes other effects plasma In our ITER-like plasma of the cross-field source terms in the divertor region, S ⊥div equathe detached tube width tothe the .tratio The of power and particle inputs from core to the and Q⊥div , on stability of the detachment front had not been ansport 23 −1 /∆SOL = studied 1/3. The distance from the The Dare s , we respectively. sur80 MW and 1.5 × 10 so far. Recently, showed that Q ⊥div can des terms zsarea to crease the target = front L) isupstream, the the detachment is ∼divertor 640speed m2 ofand the(zSOL width ∆SOL but is in ASOL in=the0) Q⊥div is given an assumed value uni−2 ube, S ,point e×X is previous set at zwork = 80 m. As for in- and parm; our therefore, the cross-field energy 10 formly in the divertor region [22]. sourcetoterms in SOL region, Qsimulation andstudy; S ⊥SOL = 0.8 evant the neutral particles, ηtrap ⊥SOL We the extended our previous we ,an−3 21 −3 the attached and and detached tubes 5.0 ×de10simultaneously, m s−1 , toalyzed be 2.67 MWm estimated auxiliary neutral densities in the (1) andthe Q⊥div are modeled as follows; where S ⊥divof (det) ectively. The ratio detached tube width = to the d tubes at the divertor plate is n (2) n,div,aux (det) n − n(att)from the D⊥div distance 1/3. width (att) is ∆DD /∆SOL = Γ⊥div 19 −3 The dcxnn,div,aux = 3.5S×⊥div10≈ ∆m ≈ ,−respectively. , (4) div divertor∆target DD ∆Γ nation point (z = 0) to the (z = L) is Numerical Results (det) Plasma and Fusion Research: Regular Articles time dependent analysis of t plasma. We employed the PDD plasma one-dimension field particle and heat trans prevent the detachment fron such cross-field transport c of a PDD plasma. It is al the detachment front in a st ble against the neutral densi Finally, we make quali Snapshots of the spatial profiles of n and T in the attached ulation results reported her tions. In many tokamak exp ((a) and (b)) and detached ((c) and (d)) tubes in the case accompanies a high radiati (5).X point (for example [ of S ⊥div = 0 and the non-zero Q⊥div expressed in Eq. the Fig. 4 Snapshots of the spatial profiles of n and T in the cases of = 2403098 Q⊥div =shown 0 in Figs. 2 (e) and (f) a The n and T theprofiles in and the ofVolume S ⊥div (b))case and the non-zero S ⊥div 6, ((c)-(f)) zero S ⊥div ((a) (2011) (accompanying the radiation in the detached tube. The time step of each curve is the are also shown ((e) and (f)). The detachment fronts that same as Fig. 2. beyond the X point in the time dependent of the detachment fronts inThe a PDD transport. Such move upstream in the analysis detached tube are simulated. cross-field perimental plasma. the ML1D model2.4 to (blue), describe a observations. O time of each curveWeis employed at t = 0 (red), 1.2 (green), in interpreting such ex PDD one-dimensionally. We found that thethat cross3.7 4.9plasma (turquoise) andprofiles 6.2 (yellow) Fig.(pink), 2 Snapshots of the spatial of n ands.T in the attached vertor detachment, it is imp field particle and heat transport in the divertor region can transport ((a) and (b)) and detached ((c) and (d)) tubes in the casein the divertor regi (att) χ⊥div − T As for inq⊥div 100 m, and the XQ point is set at z n¯= T80 m. ≈ ≈ − . (5) the cross-field energy transport ⊥div ∆divof ∆DD ∆q ofηn and=T 0.8 4 Snapshots the spatial profiles in the cases of arameters Fig. relevant to the neutral particles, trap p, we ⊥div (b))on andbethe non-zero S ⊥div ((c)-(f)) theeffects zero S ⊥divof((a)Qand (3) examined ◦ prevent the detachment fronts from moving upstream, i.e. of S ⊥div = 0 and the non-zero Q⊥div expressed in Eq. (5). such transport cancase hamper instability [1] M. Shimada et al., Nucl. The ncross-field and T profiles in the of S thermal ⊥div = Q⊥div = 0 [2] D.J. of aalso PDD plasma. It is(f)). alsoThe found that the position of Ward, Plasma Phy are shown ((e) and detachment fronts that (2010). the detachment a steady tube stateare is thermally unstaITER Physics Expert Gro move upstream front in theindetached simulated.[3] The 2391 (1999). ble against neutral at the1.2 divertor plate. time of eachthe curve is atdensity t = 0 (red), (green), 2.4 (blue), [4] L. Loarte et al., Nucl. Fu Finally,4.9 we(turquoise) make qualitative K. Tobita et al., Nucl. Fu 3.7 (pink), and 6.2comparison (yellow) s. of the[5]sim[6] H. ulation results reported here with experimental observa-Kawashima et al., Nuc [7] S.I. Krasheninnikov et a tions. In many tokamak experiments divertor detachment (1999). [8] D.E. Post and R.V. Jense accompanies a high radiation peak which stagnates near M. Nakamura PFR2011 397 (1977). Fig. 5 Snapshots of the spacial profile of the cross field particle the Xsource point [27]). the other hand, [9] E.as Hinnov and J.G. Hirsh in the divertor region ofOn the detached term(for S ⊥divexample [10]front Yu. Gordeev et al., Pisma the2cross-field particle diffusion coefficients of showntube in with Figs. (e) and (f) and Fig. 4, the detachment 2 −1 2 −1 非接触プラズマにおける課題 (1)原子・分子過程 電子ーイオン再結合、分子活性化再結合(水素、炭化水素) (2)非接触プラズマ計測 NAGDIS プローブ計測の異常性 (門先生) MAP-II (3)非接触プラズマのエネルギーバランスの理解 TPD 中性ガス温度の影響、輻射輸送の影響 (4)非接触プラズマの動的応答 ELM様熱負荷への応答、接触-非接触-再接触遷移過程 (5)非接触プラズマ中の径方向輸送 Gamma10 非拡散的輸送現象(Plasma Blobs) (田中先生) (6)非接触プラズマの安定性 LHD 熱的不安定性、2次元効果(部分非接触) JT-60U(SA) (7)金属壁での非接触プラズマ生成 適切な不純物ガスの選定ーコアプラズマとの共存 (8)非接触プラズマの制御手法の確立 Puff&Pump, エルゴディック磁場(磁気島)(増崎先生) (9)先進ダイバータ配位への適用性 ーダイバータ幾何学構造への依存性 Super-X, Snow flake, Isolated divertor etc. Stored energy (MJ) ne,baar (1019m-3) S 2.1 1 0.8 0.6 0.4 0.2 0 6 Ne Prad/PNBI 0.7 0.6 0.5 Pradd/PNBI 4 2 0.4 0.3 Prad (M MW) 0 Prad,max 0.2 4 0.1 2 0 P 1 2 3 4 rad before Ne puffing 5 6 19 ne,bar before Ne puffing (10 m ) ne, div (1019m-33) 0 0.6 Peterson et al., PFR 1 (2006) 045. • : 60 • : 30 0.3 0 20 Tee, div (eV) 7 -3 10 0 3.4 3.6 3.8 4 4.2 time (s) 4.4 4.6 P rad, P NBI (MW W) Ar seeding 1 08 0.8 0.6 0.4 0.2 0 6 4 2 Ar • • 10 0 10 PNBI 5 Prad 0 8 n e (10 19 m -3) W p (MJ) 2.2 4 4.5 Time (s) • 30 • 10 10 to divertor plates 共鳴摂動磁場を用いた非接触プラズマの制御 Edge surface layers 0.6 w/o Island 5 (a) 0 10 1 Radiation (a.u.) 20 10 (b) 0 15 2 1/3~1/10 3.5 4.0 4.5 (d) 0 • • • 1 3400A 3000A 2500A 1900A 1500A (collapse) 0A (collapse) Lower: with the n / m = 1 / 1 resonant magnetic perturbation field. The inner part with long field lines ͑bright/white scale͒ is called stochastic region, the 1.500 s 2.000 s outer part with mixture of2.900 long ͑bright/white s Detach scale͒ and short ͑dark scale͒ is 3.800 s called edge surface layers. The perturbation field creates remnant island in 4.300 s 3.966 s Collapse the stochastic region with the O-point located at outboard side in this sec19 m-3)legs are stretched from the tion. The divertor in- 19 and out-board sides toward ne (10 m-3 ) ne (10 target plates, which are not shown. 3 Collapse inside the island with Ͼ10 eV. LCFS is located around R = 4.55 m. The ͑a few eV͒ plasma is formed outsideWITH the LCFS. dense ͑ϳ1020 m−3͒ and III. cold DETACHMENT SUSTANMENT N/M=1/1 ͑No. 85946 for withISLAND island and No. 85948 for without island.͒ Gas puff (1021 H/s) 2 3 4 time (s) 5 6 7 Figure 3 shows the time traces of plasma parameters the sustained detachment ted in Fig. 7. Inobtained the case inwithout the island ͓Figs. 7͑a͒shot andwith the n / m 14 = 1 / 10perturbation field ͑shot number: 85946͒. 7͑b͔͒, the Te monotonically decreases at the entire edge The discharge was initiated t =21.3 s bythe neutral beamtoinjection ͑NBI͒ 4theplasma 6goes 8 10 region as the density is 0 raised,atand finally heating, ramped up by gas puff graduradiative collapse at the and lossthe of density density was control. In19 the case n (10 m-3T) current, Fig. e other ally. The particle flux ͓ion hand, saturation with the island ͓Figs. 7͑c͒divertor and 7͑d͔͒, on the e 3͑b͔͒ measured by the Langmuir probe as a sum of 39 all continuously decreases with increasing density at thearrays, outerFIG. 11. ͑Color online͒ Evolution of radiation intensity measured by the probe tips, increases linearly with respect to the density rise most region, Rresistive Ͼ 4.75 bolometer m, untilasthe detachment a function of line transition. averaged density, for different until detachment transition without exhibiting high circles= 3400 A, openrecycircles / m =transition, 1the / 1 perturbation Icoil: closed However, after nthe it iscurrent, stabilized around a few =cling 3000 regime A, triangles= 2500 A, diamonds=with 1900the A, square squares=scaling 1500 A,asand that is characterized eV, while keeping almost same T at the inner region M. Kobayashi PoP2010 FIG. 6. ͑Color online͒ Time traces of ͑a͒ line averaged density, ͑b͒ radiation intensity measured by AXUVD, ͑c͒ divertor particle flux, and ͑d͒ gas puff rate, respectively. Thin lines: sustained detach with n / m = 1 / 1 island; thick lines: radiative collapse without the island. ͑No. 85946 for with island and No. 85948 for without island.͒ 18 5.0 tion length inside island. Since the island is embedded in the stochastic the separatrix is no longer clear. The 2 region, (b) LCFS (d) LCFS 1 X-point of the island is, therefore, visible 4.4 4.5 4.6 4.7 4.8 Sustained 4.9 4.4 4.5 4.6 4.7 not4.8 4.9in the plot. By R(m) strict definition,detach it may not R(m) be called so. In the following, however, we may keep the term “X-point” representing the FIG. 7. ͑Color online͒ Radialwhere profilesaof Te and ne at thewould edge region ͑a͒ region clear X-point havefor existed without the and ͑b͒ without the island, where the plasma goes to radiative collapse at stochastization, or just poloidally opposite side to the t ϳ 4.0 s, ͓͑c͒ and ͑d͔͒ with the island, where the sustained detachment was realized at t Ͼ 2.900 O-point. s. The 1latter case is characterized by the Te flattening (c) 2 0 10 Iis (A) 0.5 0 4 3.0 (c) Te (eV) Te (eV) FIG. 2. ͑Color online͒ Connection length ͑LC͒ distribution in poloidal cross Attach section at horizontally elongated section. Upper: without perturbation field. Radiation intensity (a.u.) • • • • • 100 (a) Xw/ Island ne (1019 m-3) 10 14 Phys. Plasmas 17, 056111 ͑2010͒ R (m) 056111-8 Kobayashi et al.detach Radiative collapse (w/o island) Sustained (w/ island) 15 10 q// (W/m2) Magnetic island O-point 0 -0.6 2.5 (b) ne (m-3) (c) 177 -0.2 Detachment stabilization with n / m = 1 / 1… 10 19 10 10 -0.4 056111-5 Inboa 0.2 6 10 5 10 20 (a.u.) n/m=1/1 / 1/1 n/m=1/1 perturbation X point 0.2 divertor NAGDIS, Nagoya Univ.0 Wp (kJ) Z (m) 0.4 (a) 0 (d) Radiation (by AXUVD) 10 Phy (e) 0 500 200 100 0 5 Te (eV) LHD 5 0.4 0 Hγ / Hβ 3 Stochastic region ne (1019 10 Iis (A) 10 to divertor plates 10 400 (f) Radia 300 gas puff (102 (g) 200 0.1 (h) 100 0 0 1 2 3 4 LCFStime(s) (without island) 0 online͒ Time traces of variou FIG. 3. ͑Color 4.2 shot with4.4 sustained detachment n / m = 1 / 1 islan and ͑b͒ divertor particle flux at upper and inbo R separated toroidally by ϳ160°. ͑c͒ Electron temperature ͑open squares͒ at the inboard div FIG. 12. T profiles during attachment p muir probe, ͑d͒e power flux to inboard divert cation for three different configurations. T Langmuir probe, ͑e͒ radiation intensity measu theemission configuration islands. ͑broken the line͒, ͑f͒ sto andfor line of H␣ without the each probe, configuration is indicated withl diamagnetic ͑g͒ net NBI heating ͑solid detachment was of realized for the con H measured by line͒, and ͑h͒ ratio H␥ to only circles.toroidal locations indicated by toro different detachment occurs at t ϳ 2.9 s and was sustain terminated by stop of NBI heating ͑No. 85946 detachment case and nearly 200 e 非接触プラズマにおける課題 (1)原子・分子過程 電子ーイオン再結合、分子活性化再結合(水素、炭化水素) (2)非接触プラズマ計測 NAGDIS プローブ計測の異常性 (門先生) MAP-II (3)非接触プラズマのエネルギーバランスの理解 TPD 中性ガス温度の影響、輻射輸送の影響 (4)非接触プラズマの動的応答 ELM様熱負荷への応答、接触-非接触-再接触遷移過程 (5)非接触プラズマ中の径方向輸送 Gamma10 非拡散的輸送現象(Plasma Blobs) (田中先生) (6)非接触プラズマの安定性 LHD 熱的不安定性、2次元効果(部分非接触) JT-60U(SA) (7)金属壁での非接触プラズマ生成 適切な不純物ガスの選定ーコアプラズマとの共存 (8)非接触プラズマの制御手法の確立 Puff&Pump, エルゴディック磁場(磁気島)(増崎先生) (9)先進ダイバータ配位への適用性 ーダイバータ幾何学構造への依存性 Super-X, Snow flake, Isolated divertor etc. SlimCS # # Ip=16.7MA, β_p=2.5, l_i=0.6 fsxd=0.99 SlimCS (No.20, 21, 22) 6 先進ダイバータへの適用に関する課題 先進ダイバータでの安定な非接触プラズマの生成は可能か #熱不安定性 #磁場構造(エルゴディック領域の影響) #中性ガス(温度)の影響 #径方向輸送(特にblob輸送) NSTX snowflake experiment (V.A. Soukhanowski, USBPO E-News, #42, p. 3, 2010; V.A. Soukhanowski et al, PSI poster P1-28, Monday 24 May 2010) Heat flux reduction by a factor of ~3 Easier detachment (no need in gas puff) Carbon content in the core down by a factor ~ 2 Radiation from the core down by a factor ~ 2 Radiation from divertor up by a factor of a few No noticeable adverse effect on core plasma density and temperature 非接触プラズマにおける課題 (1)原子・分子過程 電子ーイオン再結合、分子活性化再結合(水素、炭化水素) (2)非接触プラズマ計測 NAGDIS プローブ計測の異常性 (門先生) MAP-II (3)非接触プラズマのエネルギーバランスの理解 TPD 中性ガス温度の影響、輻射輸送の影響 (4)非接触プラズマの動的応答 ELM様熱負荷への応答、接触-非接触-再接触遷移過程 (5)非接触プラズマ中の径方向輸送 Gamma10 非拡散的輸送現象(Plasma Blobs) (田中先生) (6)非接触プラズマの安定性 LHD 熱的不安定性、2次元効果(部分非接触) JT-60U(SA) (7)金属壁での非接触プラズマ生成 適切な不純物ガスの選定ーコアプラズマとの共存 (8)非接触プラズマの制御手法の確立 Puff&Pump, エルゴディック磁場(磁気島)(増崎先生) (9)先進ダイバータ配位への適用性 ーダイバータ幾何学構造への依存性 Super-X, Snow flake, Isolated divertor etc.
© Copyright 2024 ExpyDoc