2−D−9 1999年度日本オペレーションズ・リサーチ学会 春季研究発表会 MIXED−TYPE SECRETARYPROBLEMS ON SEQUENCES OF BIVARIATE RANDOM VARIABLES 吸口垣(’M・NORUSAKAGUCHり 0/2β(仲之阜 1易・御血血沃布由キピRZYSZTOFSZAJO、VSXiつ ABSTR^CT. Anemp】oyerinter、,iewsaRnjtenumberTtOfappucantsforaposition・Theyare jntervje、Vedonebyonesequentiallyinrandomorder・Aseachappucantiisintervjewed,tWO attribute5a∫ee、duatedbytムea皿Ou山方‘aれd)い沌ere弟maybe一一talent了・t●,(orquajity). az)d11maybethe.[)00k”(ordegreeoEfa、,Orableimpression)oftheappucaJlt.Supposethat (X‘)たII((れ)た1)isundertheconditjonoffuu(no)−inLbrmationsecreta,yPrOblemand thatX‘1sand汀sa∫emutuauyindependent・11bconsiderthethreekiJ)dioftheemplo)・er,s Object畠ndrbreachofthreecasestheprob)emisfbrmulatedbydymanicprograrnmlng,and tbeoptim山poucyisexpucitIyderi、・ed. ⊥INTRODUCTION(■頚) 2.SELECTING GOOD QU^LITY UNDERTHE REQUIREMENT OF THE BEST LOOlく 「二 Let((Xi,れ))E=1)beasequenceofindependentbivariater・V・Sa5gi、・enintheprevious SeCtion・Observingthesequence(X{,Yl・i=1,2,・・・,nIOnebyones maximizeEX,,WhereTisthestoppingtime,undertherequiredconditionthat11=1and 2≦れ≦亡,hrT<f≦n. 11屯de6nestate(小串)whichmeansthat:nOStOphas)・eもbeenmade,andⅥ▼efacethei−th obiectwhosesecondattributeisrelativelybest(i.e.羊=1),andthe6rstattributeisfbund び弟=ご. penotipg,byVL.i(ェ),theexpectedrewardobtainedbyemployingtheoptimalstoppingrule forthen−Objectproblematstate(i,=1n).TreeaSilyllaVe 町(ェ)=mは{三エ,ブ芸1万㌔恥J㈲ n (2・1) i=1,2,.‥,叫‰,n(ェ)≡エ・ Theoreml・me呼出mαJ5£叩pf叩mJe/br班e叩出mαJe9℃α如n作・Jノ由ニ ′働叩α=加 eαr仏土叫ec£(ズi,Ⅵ)ぴん0∫er℃ねれem花川,血en加ppeα笹iβ∽軸αndβ8土iぴe5ズi>dれ,i”■ me呵ひenCe(d両)た1i∫de亡emれedby班erecur∫加 ∫F(d扉吊) d両= +ん,汀l, (2・3) (‘=1,2,‥・,?−1′d叩=の祓「∼∫西)三年併∨け me¢〆如ほJ叩eCねd柁Uαdfゆe几占yEF叫(ズい・e・響 iSELECTTNGGOODQUALITYUNDERTHEREQUIREMENTOFONEOFTHBT、VOBESTIN‘印ELOOk・終) 4.SELECT7NG GOOD LOOKUNDERTHEREQUIREMENTOFTHEBESTQU^LITY Let(端)た1bean)]d去equenceofr.v.sobeyingunifbrmdistributiono、・ertheunitil、terVal O≦3:≦1・Observiz)g thesequence((Xi,れ))た1,Oneby onesequentially,We Want tO maximize∑た,P(Rr=rJ竹=y)ar,WhereTisthestoppingtime,andaristhereward ObtainedwhentheabsoluterankRTOfthesecondattributeattimeT】isT・Iundertherequired −200一 COnditionthatXT=maXl≦i≦nXf・Sotheproblemis7byfbllowlngthenotationintheprevious SeCtion, E(牝(れ,‥・,瑚;ズ丁=だ芝ズ‘)→ワ㌍・ Wea5Sumethatal≧a2≧‥.≧a,t≧0. Definestate(=,yiIn)tomeanthatnostophas)・etbeenmade,and、、・eraCet・hei−thobject (ェi,Ⅵ)withll=yiandズi=maX(ズ1,…,ズi)=ご・ Denoting,byvn.i(ェ,y),theexpectedrewardobtainedbyemployingtheoptimalstopping rulefbrthen−Periodproblematstate(〇,yiJn),WeeaSilyhave 叫毎)=n一端姜(よ二北二よ)αr, 差等主上1un刷], (4・句 Wherel≦yi≦り≦i≦m,0≦エ≦1,With町n(〇,y)=αy・ Wbdiscussthefollowlngt、、・OSimplecases・ Casel.al=1,a2=a3=…=an=0・ Letdn,i(i=1・2,・・・,n−1;d叩−l=n−1,dn・n≡0)beauniquerootin[0・1lofthe equation 拘り =1・ Fbrsomesmalln・We餌dthatd2・l=1/2・d3・2=1/3,d3,1=攣≒0・6899・dり=1/4,」 (≒研吟0・7755fbri=3,2,1respectively・d5,i=1/5,i土戸(≒0・462与),0・6591,0.8248for i=4,3.2,1respectivelyandsoon. Theorem3.meoptimalstoppingre9ionJorthe optimatity equation〃・2)inCasel,is: ‘地pα王統eeαr㍍錯り弟,Ⅵ)血t5α出5βe5Ⅵ=1αndズi=maXl≦t≦iズ亡>d恒,止ereeαC九 d再i∫クーue几♭y…ni9uerOOlq=九ee9Udf加イ・㌫ Case2・α1=α2=1,α3=α4=… =8・n=0. Fbrthiscasetheoptimalityequation(4・2)becomes u両(ェ)=三”甘aX 2乃−トJ エn ̄−,¢両(ェ) n(れ−1) 叫(ェ)=maX〈粧矩‘ brstate5(ェ,yi=叫)、 ・帰))如ates(ヱ,y‘=裾 (告JD) where 帰〇)…ゑ芋上1仙)+叫メ肋 ¶eor抽生し鴫) 文献: 1.J.P.GilbertandF∴Mostel】er,月e叩れ‘元叩血m血m叩巾叩e叫J・Å皿・Stat・Assoc・61(1966), 35−73. 2.S.M.Ross,^ppLiedpTVbabititymodetsw油optimizationappLicbtioTW.HoldenDay,SanFhcisco−CA−1970, 1970. 3.M.Sakaguchi,^noteonthedowT”TObtem・Rep・Stat・Appl・Res・UnionJap・Sci・Eng・JUSE20(1973)・ 11−17. 4._,Aもe山九oiα叩抽爪ルrbiu血‘eu巾md油抽加・トIath・Japonica40(1994)・585−599・ Cor ectionin虚旦豊(19 5)・p・231・ 5.S.M.Samuels,SecTYlaT”TVbEeT u.Handbo kofSequentiaJAnalysis(NewYork・Ba5el・Honglくong)(B・l(・ GhoshandP.1く.Sen,eds.),MarcelDekkerIInc・.Ne、VYork・Ba5e川onglくong・1991,Pp・381−405・ −201−
© Copyright 2025 ExpyDoc