MIXED-TYPE SECRETARY PROBLEMS ON SEQUENCES OF

2−D−9
1999年度日本オペレーションズ・リサーチ学会
春季研究発表会
MIXED−TYPE SECRETARYPROBLEMS ON SEQUENCES
OF BIVARIATE RANDOM VARIABLES
吸口垣(’M・NORUSAKAGUCHり
0/2β(仲之阜
1易・御血血沃布由キピRZYSZTOFSZAJO、VSXiつ
ABSTR^CT.
Anemp】oyerinter、,iewsaRnjtenumberTtOfappucantsforaposition・Theyare
jntervje、Vedonebyonesequentiallyinrandomorder・Aseachappucantiisintervjewed,tWO
attribute5a∫ee、duatedbytムea皿Ou山方‘aれd)い沌ere弟maybe一一talent了・t●,(orquajity).
az)d11maybethe.[)00k”(ordegreeoEfa、,Orableimpression)oftheappucaJlt.Supposethat
(X‘)たII((れ)た1)isundertheconditjonoffuu(no)−inLbrmationsecreta,yPrOblemand
thatX‘1sand汀sa∫emutuauyindependent・11bconsiderthethreekiJ)dioftheemplo)・er,s
Object畠ndrbreachofthreecasestheprob)emisfbrmulatedbydymanicprograrnmlng,and
tbeoptim山poucyisexpucitIyderi、・ed.
⊥INTRODUCTION(■頚)
2.SELECTING GOOD QU^LITY UNDERTHE REQUIREMENT OF THE BEST LOOlく
「二
Let((Xi,れ))E=1)beasequenceofindependentbivariater・V・Sa5gi、・enintheprevious
SeCtion・Observingthesequence(X{,Yl・i=1,2,・・・,nIOnebyones
maximizeEX,,WhereTisthestoppingtime,undertherequiredconditionthat11=1and
2≦れ≦亡,hrT<f≦n.
11屯de6nestate(小串)whichmeansthat:nOStOphas)・eもbeenmade,andⅥ▼efacethei−th
obiectwhosesecondattributeisrelativelybest(i.e.羊=1),andthe6rstattributeisfbund
び弟=ご.
penotipg,byVL.i(ェ),theexpectedrewardobtainedbyemployingtheoptimalstoppingrule
forthen−Objectproblematstate(i,=1n).TreeaSilyllaVe
町(ェ)=mは{三エ,ブ芸1万㌔恥J㈲
n
(2・1)
i=1,2,.‥,叫‰,n(ェ)≡エ・
Theoreml・me呼出mαJ5£叩pf叩mJe/br班e叩出mαJe9℃α如n作・Jノ由ニ ′働叩α=加
eαr仏土叫ec£(ズi,Ⅵ)ぴん0∫er℃ねれem花川,血en加ppeα笹iβ∽軸αndβ8土iぴe5ズi>dれ,i”■
me呵ひenCe(d両)た1i∫de亡emれedby班erecur∫加
∫F(d扉吊)
d両=
+ん,汀l,
(2・3)
(‘=1,2,‥・,?−1′d叩=の祓「∼∫西)三年併∨け
me¢〆如ほJ叩eCねd柁Uαdfゆe几占yEF叫(ズい・e・響
iSELECTTNGGOODQUALITYUNDERTHEREQUIREMENTOFONEOFTHBT、VOBESTIN‘印ELOOk・終)
4.SELECT7NG GOOD LOOKUNDERTHEREQUIREMENTOFTHEBESTQU^LITY
Let(端)た1bean)]d去equenceofr.v.sobeyingunifbrmdistributiono、・ertheunitil、terVal
O≦3:≦1・Observiz)g thesequence((Xi,れ))た1,Oneby onesequentially,We Want tO
maximize∑た,P(Rr=rJ竹=y)ar,WhereTisthestoppingtime,andaristhereward
ObtainedwhentheabsoluterankRTOfthesecondattributeattimeT】isT・Iundertherequired
−200一
COnditionthatXT=maXl≦i≦nXf・Sotheproblemis7byfbllowlngthenotationintheprevious
SeCtion,
E(牝(れ,‥・,瑚;ズ丁=だ芝ズ‘)→ワ㌍・
Wea5Sumethatal≧a2≧‥.≧a,t≧0.
Definestate(=,yiIn)tomeanthatnostophas)・etbeenmade,and、、・eraCet・hei−thobject
(ェi,Ⅵ)withll=yiandズi=maX(ズ1,…,ズi)=ご・
Denoting,byvn.i(ェ,y),theexpectedrewardobtainedbyemployingtheoptimalstopping
rulefbrthen−Periodproblematstate(〇,yiJn),WeeaSilyhave
叫毎)=n一端姜(よ二北二よ)αr,
差等主上1un刷],
(4・句
Wherel≦yi≦り≦i≦m,0≦エ≦1,With町n(〇,y)=αy・
Wbdiscussthefollowlngt、、・OSimplecases・
Casel.al=1,a2=a3=…=an=0・
Letdn,i(i=1・2,・・・,n−1;d叩−l=n−1,dn・n≡0)beauniquerootin[0・1lofthe
equation
拘り
=1・
Fbrsomesmalln・We餌dthatd2・l=1/2・d3・2=1/3,d3,1=攣≒0・6899・dり=1/4,」
(≒研吟0・7755fbri=3,2,1respectively・d5,i=1/5,i土戸(≒0・462与),0・6591,0.8248for
i=4,3.2,1respectivelyandsoon.
Theorem3.meoptimalstoppingre9ionJorthe optimatity equation〃・2)inCasel,is:
‘地pα王統eeαr㍍錯り弟,Ⅵ)血t5α出5βe5Ⅵ=1αndズi=maXl≦t≦iズ亡>d恒,止ereeαC九
d再i∫クーue几♭y…ni9uerOOlq=九ee9Udf加イ・㌫
Case2・α1=α2=1,α3=α4=…
=8・n=0.
Fbrthiscasetheoptimalityequation(4・2)becomes
u両(ェ)=三”甘aX
2乃−トJ
エn ̄−,¢両(ェ)
n(れ−1)
叫(ェ)=maX〈粧矩‘
brstate5(ェ,yi=叫)、
・帰))如ates(ヱ,y‘=裾
(告JD)
where
帰〇)…ゑ芋上1仙)+叫メ肋
¶eor抽生し鴫) 文献:
1.J.P.GilbertandF∴Mostel】er,月e叩れ‘元叩血m血m叩巾叩e叫J・Å皿・Stat・Assoc・61(1966),
35−73.
2.S.M.Ross,^ppLiedpTVbabititymodetsw油optimizationappLicbtioTW.HoldenDay,SanFhcisco−CA−1970,
1970.
3.M.Sakaguchi,^noteonthedowT”TObtem・Rep・Stat・Appl・Res・UnionJap・Sci・Eng・JUSE20(1973)・
11−17.
4._,Aもe山九oiα叩抽爪ルrbiu血‘eu巾md油抽加・トIath・Japonica40(1994)・585−599・
Cor ectionin虚旦豊(19 5)・p・231・ 5.S.M.Samuels,SecTYlaT”TVbEeT u.Handbo kofSequentiaJAnalysis(NewYork・Ba5el・Honglくong)(B・l(・
GhoshandP.1く.Sen,eds.),MarcelDekkerIInc・.Ne、VYork・Ba5e川onglくong・1991,Pp・381−405・
−201−