krヶJl<巾軒mhUni仰,−一旬′冊∫

D。くf〆謀 P如YでオJm一
㌔krヶJl<巾軒mhUni仰,−一旬′冊∫
On t0七81eonformal eurvature
OB弧Ⅹ01乳ya血i
Introduetlon.
Let 軋(M)d.enote the space of all snooth Rienannian metrics
On a eOmp乱et n−dimenslon81manlfold二虻.We eon8まder a funetional
v潮抽)すRde加東吋V(g)‡J拙n/2加g,血reVgi8tbeW町1
COnformal eurv8允We ten$Or Of g.エtis eaSy tO See tbat V(g)
d・epen由only on the conformal c18SB Of g.Chw main Sub3ectin
七山S p叩eriS to detemineinftvくg);gG間(M)1,Wbiebvllもe
denoted simply t)y V(M).Thisinvariant v(M)is nontrivi81.In
fact,if SOme Pon七rjagin nl血ber of MiS nOt ZierO,then v(M)>Q.
=npeLrticular,ifdimM=一,Vehavev(M)≧h8汀2lsgn(M‖・More一
〇Ver,if M a由良もS a h81f eonfomはユ1y flモ止metrie,tbenヽ)くM)=
拗218gn(M)I.miBgivesusB。neC。nP血ableex。nPle$。fM,e.gり
Vくけ2)三㌦8㌔,e七占.工na組iti。nt。七摘i。叩息1ity,伽で。11m血g
is often very u£efl止for eompu七ing v(M).
皿的remA・(i)望Sl空也望加地,迦V(M)±0・
(鼠)V(生が㌔)≦V(生)+V(㌔)・
−1−
From(i),Ve get exanpies of Mvith v(M)=O but Vhich has
no confornaiiy flat metrics.From(五),Ve have,for exanpie,
V(CP2…P2):961∼・Thereals。eXistMlandM2f。rVhich
V佃1#㌔)−<V(MJ+V(㌔)・
To d.eternine v(M)for general M seems tO be not SO eaSy.
EVenforM=S2ⅩS20rCP2#−CP2,V(M)isnotknown.Forth叫
もhe由止血OrhopesthatV(M)ispositive.AsforS2ⅩS2,Vehave
the f0110Ving resuit vhich partiaiiy supPOrtS this conjecture.
TheorenB・迦funCtionaiv:Ⅶ(S2ⅩS2)+】R j彗星玉虫Ef0lioving
propertieB:(0)V(go)=256T2′3塾生坐聖旦塾重畳建造
go;(i)望gisaKahiermetricforsome盤辿坐S2ⅩS2,
迦V(g)≧V(go);(五)go塾生一一strie七万目迎旦Crltieal蓮生
壁迦nmctionalvi(出目V(g)>6hT2,室生坐eWⅤ如we坐
giB.nOnneg8・tive・
Fron(i),VeCanSeethahV(g)≧V(go)fora町PrOduc七metric
g;gi+g2,gi‘刑(S2)・Zn(艶)・thenⅦ血er6h2israhterun,
satisfactory,Since6hT2<256¶2/3,butfromthisvecanexpect
醜1easttbepositivi毎OfV(S2ⅩS2).
=tisate叩tingqpestiontoaskvhetherv(S2ⅩS2)=256¶2/3
0r nOt.The positive ansver■WOuid be a very nice resuit sinceit
aiso gives a positive soil止ion tO a Wiil皿Ore type prol)iem for
s2ⅩS2.Foranl皿erSionゆ:S2ⅩS2+S5(1),VeSet W(中)=
/S2ⅩS2甜dvg・Where芸isthe血ceiesspartofthesec。ndfundB−
mentaifomof中,andgistheinducedmetriconS2ⅩS2.By
¢ciiffordVedenotetheCiiffordenbeddingS2(1/摺)ⅩS2(1/YQ)
⊂S5(1).
−2−
TheoremC・蓮生¢:S2ⅩS2+S5(1)聖堂imersion壁S2ⅩS2
塾生壬生望生5−鹿・坐聖聖些V(g)三256¶2/3,壁g立
玉垣吐望S2ⅩS2廻吐〇・些竺竺垣望(i)両)三
Ⅴ(¢cllfford)堅迫(五)Ⅴ(¢)=Ⅴ(¢cllでford)望旦垣堕塩生¢=
aら転ifで。rd丑竺竺三廼!竺至生transf。rmati。na廷Sう・
A duaiized version of Wiilmore probiemis aisointeresting,
foritreiatestothequestionvbetherv(Mi#M2)=Oimpiies
V(Ml)=V(M2)=0・WeshaiigivesomediscussiononitinS6・
To prove Theorem B(五三),Ve make use of the Ya皿abe constant
u(g):=inf{/MRgdv云′(∫Mdvg)n/(n−2);菖isc。nfomit。g},Vhere
R is the scaiar curvature Of g. One of vays toimprove Theorem
B(Bi)istodetemineu(S2ⅩS2):=SuPh(g);g (S2ⅩS2)).
Byvayoftrial,VeShaiicomputeu(Sixsn−1)insteadofu(S2ⅩS2).
TheoremD・望n≧3,迦u(Sixsn−1)=U(Sn)・
This result hasind.ependentinterest,becauseitis knovn
that U(M,g)<tl(Sn)un1ess(Mn,g)is confomaitothe stand.ard
n−SPhere.
We use the method of the pr00f of TheoremI)again to shov
Theorem E・塾生望ヱr>0堅娃聖正巳>0,迦三eXistS旦
聖生主ヱg9fSn(n≧3)坐土建生Voi(Sn,g)=1,Rg≧r望迫
m2ⅩRg(X)/m主nRg(Ⅹ)≦1+E・
Most part Ofthis paperis based.on separate paperslir],
[ル]and口7].
ー3−
Sl.I)efinition and.二畠血Properties.
For a Riemamian metric g∈′帆(M),the curvature tensor
《Rl脚力・
theRiccitensorRic=《Rij》=《㌔ikj》,andthescaiarcurvature
g
Rg=glJRij
are d.efined.. The Weyi confomai cur’V’ature tensor W =
g
《正脚》is加f加d吋
く1・1)㌔脚=Ri脚一言≒(Likgj九・giklj九一㌔由一gl鵡k),
Where
(1・2)一Lij=Ri了言て缶gij・
We put W =Oif n=dim M < 3.From the second・Bianchiid・entity,
WehaveRi助i=Rj抽−Rjk;且,andhence,
(1・3)正脚;i=豊玉C脚・
(1・k)cijk=Lik;了Lij;k・
I)efinition1.1.We d.efine a・funCtional v‥吼(M)→R by
v(g)=iMIwよn/2dvg,VhereIwgln/2=(gi,gjqgkriswijk,WPqrs)n/h
F。raSdbsetU。fM弧dgくn(M),WeⅥitev(g;U)=与。Iwgln/2dvg・
Lemai・2・(i)V(e2fg)=V(g)室生盟f∈Cq(M)望迫g∈凧M)・
(且)V(中骨g)= V(g)坐工盟diffeomorphism4)三三M・(Bi)V(g)=O
jヱ堅迫望虹jヱeither dim M532三g主已旦COnformally fiat metric・
Pr00f.Let W■and Vl be the Weyi tensorB Of the metrics g and・
2f
gt =e gI reSPeCtiveiy・Since the Weyi tensorisinvariantund,er
一年 ̄
a confoma.i change of metric,Ve have
くW−,W一㌔−=く叩ち・=
e彗W,W㌔・Hence,fromdvT:en㌔v f。rthev。1ⅧeeiementS,
W。get tW・tn/2且,一=回n/2且,,Which,T。VeS(i).(五)istriviai,
ana(剋)is vel1−knoⅥ1. 口
Using the confornaiinvariance ofヽ),Ve Can reWrite v(g)
in some other forms.
器[S可静gisconf。mltogH昔・
(正)V(g)=i可
Vol(叫還);言is eonformal to g弧d
惇Ⅹ)巨1forallxそMU
生壁・(i):WeputJ(g)=(3fWgt2dvg)′(Sdvgfn−h)/h
ThenbyH31d.erineqpality,Vehave,for官confonaltO g,V(g)=
V(i)≧(J(!))n/h・Hence,・V(g)≧[sIQfJ(苫);冨isconfomait04]n/h
Onthe。therhand,Puttingg。=(fwgin/2・E)2/ngf。rP。SitiveE,
Wehave n ∵小塙 n n_ト∵∵∵ 「
J(g。)=車g恒かg円く扉・E)丁匝撫:
cieariy,1imE十〇(J(gE))n/h=V(g)・
(且):V(g)≦in串up吋n/2)Ⅴ。1(最);言ise。nformalt。gi
=in中01(M芯;言ise。nformalt。g,ahd悔(Ⅹ)圧1forallxそMl・
Onthe。therhma,takinggcasabove,WehWe tWg。L=
(twgln/2′(twgIn/2・E))2/n<1・M。re。Ver,1ime叫Voi(M,gE)=
1im洲。J(lwgln/2・!)dNg=V(g)・□
一g−
Remark・=n the case of(i),the suprem皿is achievedif and,
Oniyif eiもher W≡o or wis novhere zer0.=n the case of(五),
theinfi 皿is achieved.if and.oniyif Wis novhere zero.
The expression(i)of the aboveiemmaisiike the Yanabe
COnBtanセリ,Whichis d.efined.by
(1・ら)両,g)=再gi=inf
倉篭;首
比か済’
gis eonformal to g
Forthe Yanabe c。nStant U,itis kn。Vn(cf・[7】)that
inf行くM,g);gモ咄(M)i=−00,ifdinM≧3・C。rreSP。ndingiy,
Pr叩Sltionl・k・生血M≧互,迦S叩卜(g);g∈叫呵=・00・
聖望旦・LetTn=Rn/2Znbethen−dinensionalt0ruS・工fn≧h,
七hereexIsts ametric ge明(Tn)Withc:=V(g)>0.Then,官塁間(Rn)
d,enOting theiift Of g七〇七he universai covering,Ve have
v(盲;[0,丸】n)=見。for丸∈乱
Now,iet(Uル)be achart OfMsuchtha.t O(U)=:Rn.Then,
foreach且モ甘,VeCantakea=metricg丸OnM地主chcoincides
血b盲in[0,㌦⊂Rn冨U,i・e・,(幅誹[0,踏=笥軌姐聖地∴
仙shavev(g九号V(g妄;U)≧(軋g且;[0,L]n)=Lnc,andhence
limか㌔(g見)=十∞・ロ
mis proposition notivates us tO the f0110Ving d.efinition.
Definitioni・5・V(M):=inffv(g)ig6m(M)†・
一‘−
Zf M carries a conformally fiat metric,then obviousiy v(M)
=0・HoveverI the converseis not true・To see thisIVe nOte
the f0110Ving.
Pmpo81tlonl・6・塾生旦COnBtmten旦印en弘喝望n=
出mM旦望生王迦堕」V(M)≦cn阻nVol(M)辿丑望盟望望聖聖追堕
聖法皇M,鹿MinV。1(M)=infivoi(M,g);tSeCti。nalcurVature。fgJ
≦11・
迦⊆星.From Leml.3(五),Ve have v(M)=
inf巨1佃,g);lwgl]i
We ean cboose a eonstant e so that
n
巨g巨1WheneverlsectionalcurvatureOfg巨cn ̄2/n・Th叫
V(M)≦in中01(M,g)itSeCt・cm・悠cn ̄2/ni:
inffcnv。1(M,g);lsec七・cm・l≦11=CnMinV。1(H)・□
=七isknownゥforexampieナthatifSiactSfreeiyonM,
then 阻n Voi(M)=0(cf.[10]).Hence,Ve have
cor011aryl・7・望Sl延追望M地,辿聖V(M)=0・
坤・1・A compact sinpiy connected・COnfornaiiy flat
n−nanif01d工肌はtbeSn([削).Eence,V(g)>Oforang∈qn(S2ⅩS3).
Hovever,fromtheabovecoroiiary,Vehave v(S2ⅩS3)=0.
2・Theuniversai covering space of a conpact confornaiiy fiat
spacevithinfiniteAbeiianfund・anentalgroupis:Rn or]RxSnこ1
([20])・Hence,V(g)>OforaligG叫(SPxTq)vithp,q≧2・
Hovever,V(Spx鱒)=0.
ー 7−
Ⅳext,We re皿息でk that there are nontrivial topoiogicaiiover
b01mds for v.
Propositioni・8・堅竺旦証Pontrjagin nⅦぬer p,塾生皇
盛望吐epdependipg2匹p望塾建立lp(出場epv(れ
Pr00f. Let P be the corresponding Chern−Weii p01ynomial,i.e.,
P(M)=Sp(Q)・Where。nisthecm血ef。m・血SWaBPOintedby
AvezlZ],P(n)=P(Q)・Where品ij:;wijkkek^et・Hence,fp(M)l」≡
伸銅≦cpv(g)で。ra王Lg)モ明くM)・ロ
=n particuユar,if some Pontrjagin nl血ber of Mis not ZierO,
then v(M)>0.=f dimM=h,We have the foiiowing more precise
加p。Sitionl・9.望弘mM=吐,迦抽2ls融M)l≦V(M).
望M些旦生壁壬COnfon肥止1y蓮生壁且,塾生V(M)=拗21呼(M)1.
聖望珪・TakeametricgeⅦ(M)・men・fsgn(M)巨引pi(M)l
=書く去)2踏朝三号離2日腔j菌i〉加g国吉)2(21)錮2加g
:*2(2!)(喜)2かgI2加g=毒V(g)・Hen可sg叫≦V(g)/h8T2
f&allgeq(M),andeqpaiity。CCnrSifand。niyifSl:土一着E2.ロ
塾鱒pies・1・TheFdiniStudymetricofCP2ishaifconfomany
flat.Eenee,V(CP2)=h8¶2.
2. A Ricci fiat metric of K3 Surfaceis aiso a haif confornaiiy
fiatmetric,Hence,V(K3)=768¶2.
一g−
=n dimension f01r,the Gauss−Bonnet formuia also gives some
pm卯Sitionl.10.塾日没亘旦主題吐出mM=む,望追g∈拙M)並生
起望塾丑盗塁型生麺Stmcture旦EM.men
v(g)≧拗2lsgn(M)巨争2ninf2X(M)−6sgn(M),2X(M)・3sgn(M)j・
垂望呈X(M)立並辿ebaraeteristie三三m 望塗equality塾
生聖堕望辻堂g並旦旦Einstein盛辿註聖更生.
聖望生.Bythe h一dinensionai Gauss Bormet formuia,
(1・6)V(g)=32T2X(M)・ヲ揮cgl2dvg−iSRg2dvg,
0 0 R
Vhere Ricis thetraceiess part ofthe Riccitensor;Ric=Ric一軍・
Let Pbethe Ricci fomofthe撼hiermetric g([け]).Then,
itis easiiy seen that
(1・7)p∧P=(喜R2−2lR;車)れ
Since the first ChernCiassis represented.by p/hTr,Ve have
巨人P=162Cき軒=162(2X(M)・3sgn㈲・
This,tOgethervith(1.6)and(1.7),yieids
(l.り V(g)=−16¶25g刷・争2X(M)†与匝12か,
vhich proveS the assertion.J
旭扉鴫仙spropositiontOS2ⅩS2,VebaveV(g)≧256T2′3
ー9−
foranyKahiermetricgofS2ⅩS2,because sgn(S2ⅩS2)=0and
x(S2ⅩS2)=互.Forexanpie,takeanarbitraryproductmetricg
=gi+g2,giGT叫酌,then v(gi+g2)≧256T2/3・=nthiscase・
(1・9)V(gl・g2)=苧古書Js2感2(㌔−K2)2如,
WhereKiistheGaussianCumtureOfgi・Inparticuiar,V(gi+g2)
=256¶2′31で弧do正brLFKl=K2=COnS七・≫0・
We give another appiicaもion of Gauss−Bonnet formuia.
打OpOSition Lu・SuppoBe塾生d土mM=九・望望生,旦望∴聖駐
V(g)≧32¶2X(M)一計(g)2
辿・迦equality bolas主三雲旦皇室吐j王g j旦COnfonmaユ立至注
Einstein metric.
Proof. S0ive the Yanabe problem for g,and ve get a metric
g confornal tO g for which the scaiar curvature R−is constant,
andR−Voi(M,;)1/2=U(g).ThenfromtheGauss−Bonnetformuia∴ノ,
g
v(g)=V(喜)=32¶2X(Hトか㈲2・2鮭亘悔
≧32¶2X(Mトかほ)2・
=tisciearthaも亘isanEinsteinmetricifv(g)=32¶2X(M)−U(g)2/6.
Converseiy,if gis conformal tOanEinstein netric gt,then,by
atheoremof Obata[ir],g.is a s01ution ofthe Yanabe probiem,
−Jo−
i・e・,Rg・isconst鋸止,8皿dRg・Voi(M・g一)1/2三U(g)・Therefore・
V(g)=3釦2X(M)・山g)2/6.ロ
FortheYanabeconstantu,itisknownthatU(Mh,g)<
U(Sh・go)=8YqTuniess(M,g)is confornaitothest弧d肝d
sphere(Sh,go)([(],[27】,SeeaisoST)・So,Veget
Coroll象ryl・12・三ddmM=恒蛮川畑,g)≧0,迦
V(g)≧32T2(も2(M)−2㌧(M)),
垂望三㌔主星迦1世坐璧追坐坐M・望生equality望聖望旦
望珪已互塾生(M,g)並eOnfomal迫堂泣Stmぬrdk鹿・
F。reX弧pie,ifg色珊iS2Ⅹ二線‖鹿n。nnegativescalarcurVature,
then,U(g)≧0.ThuB,forthismetric,V(g)>6hT2・
$2・Proof ofでbeorem A・
=n this section>Ve Shall prove Theorem A}and・also mention
SOme renarks onit.
Aithoughthe part(i)of the theorem haS aiready been seen
inthe preceding section(see coroiiaryi・7),Ve give a d・etaiied・
PrOOf for compieteness・
一日−
Pr0Of。f(i)・Let Kdenotethevector fieid.。nM血ich
generatestheSiaction・SinceSiiscompact,thereisanS1−
invariantRienemnianmetric h onM,forvhichKis akiiiing
VeCtor fieid・Since the actionis free,h(K,K)is n。Vhere
zero,hence,g=(h(K,K))−1h aefinedaRiemamianmetric.
Then ve have
(2・1) ∠Kg=O and 如,K)=1.
Nov>COnSid・er a faniiy of Riemannian metrics
頼七);0く二七≦15
(2・2) gij(七)=gi・(1−t2)αiαj,
Whereαis thel−formass。CiatedvithKwithrespectto g=g(1),
i・e・,αi=gijKa・TheinversematrixgiJ(七)iseasiiyseento
be glJ−(1一七一2)KiKJ・Then,uSing(2.1),Vegetthereiation
betveen the Christoffei sy血01s of g(t)and.g:
(2・3)r矩)−r千・=−(1一七2)(㌔;iα了㌔、溝),
1J
雨lere the covariant d・erivationin the right hand.sid.eis taken
aS One Vith respect tO g・Fromthis and.(2.1),We have
(2・吊 Rl脚出−Rl脚
=−(1−も2斬謝長一(ノ㌔溝);丈・㌔R土地鵜十毎。;kヰkα。;丸1
・(1一七2)2Ki溝(㌔隼えーα武k)・
ーIZ−
℡hen,aga,in using(2.1),Ve have
(2・5)gjb(t)(Rl脚(七)−Rl脚)
=−(1一七2)世b畑k一(㌔甑;九・㌔武k一㌔武史!
+(1−㌔)巌jRi脚・
gjh(七)Rl脚=Rihkえー(1イ2蛾jRi脚・
(2・6)gjh(七)Rljk拒)−Ribk且
=−(1一七2)軽;h畑k一正甑;九・㌔武kヰk㌔詔・
ⅣOtethat(2.6)doesnot containtemsoftー2and.thatbothsid.es
Of(2・6)aretensors oftype(2,2)・S。,thereis a constant c
suchthat!R・・叫2(七)くc forall“(0,1]・Inpart山鹿,
fw(七昭t)<C・Ontheotherhana・thevoiⅧefom dv(t)reiative
tO the metric g(七)is easiiy computed as dv(七)=t dv.mus,
Vegetii㌔+。V(g(七))=0・Hence,V(M)=0・ロ
We have actuaiiy proved.the foiioving:・V(M)=Oif M ad皿its
a Riemannian metric for vhich thereis a nonvanishing Kiiiing
VeCtOr field.
For the pr00f of part(且),Ve need the f01lovingie皿a.
ー13−
lem182・1・蓮生gぐ珊(M)虫塵ヱ望・塾生,史竺旦聖生C>0上
垣室生言ぐ軌(M)望生辿堕卜(g)−V(研く∈聖旦官立塾生
主星皇註三匹聖Sl止Set三三M・
空望三・Let(Uル)be a chart ofM suchthat ゆ(U)つ
巨蛾回くり
and・in the c00rd.inate expression of the
metric gfU=gij(Ⅹ)dxidxj,
(2・7) gij(0)=6‥
hoids・TakeanonnegativesmoothfunCtion n:RnウR suchthat
n(Ⅹ);1if回≦1/2,and n(Ⅹ)=oif回≧1・Weset nt(Ⅹ)
=n(Ⅹ/t)・Thesupportof ntiscontainedin Bt=fx‘Rn;回<t3・
F。rO<七<1,VedefineametricgE職(M)by紳\U= glM\Uand
(2・8) 琶ij=(ト∩再1了情j
inU.We shaii showthat官has the d.esired_PrOPerties for
Ztf0110VSfrom(2・7)andthedefinitionof ntthat
(2・9)恒i膏j車elt,1両<e了1∴笹七巨1七 ̄2,
for some constant ci・Ⅱence,
悔巨e2 and 巨2掃くe2(七 ̄1・1)
for some c2・Then,Puもting
ft=諦扉(det(ちj))2,
∼=巨
甘e Can eaSiiy see that
(2・10) ft<e3(もー1+1)2・
mus,Ve get
(2・11)J㌔ft血≦e3(t ̄1・1瑞七飯
=Ch(七 ̄1+1)2一七m=C距2・七)2・
tv(g)−V(糾 =lv(gi√㍉Bt》−V(紬 ̄1(㌔Dl
≦V(g;√bt》瑠Btft血・
Therefore,from(2・11),VeCOnCiudethatIv(g);V(g)卜乍Ef。r
asuffieient1y smallt.工tis obvious from(2.8)tbat宅is flat
i叫−1(Bt)・□
Proof of part(五)of Theorem A.
Let EbeaLnarbitra町POSitiven血ber・Taよegi<朝(Mi)so
thatV(gi)≦V(Mi)+C,i=1,2・Bytheaboveiema,VeCan
ehoose乾く叩くMi)sucbt旭V(ち)≦V(Mi)・2Eand竃iisnaも
insomeneighborhood・OfMi・Supposethat forsomer>Oand・Pie Mi,
ちisflatinUi(pi;[0,2r》;vhere
Ui(pi勅2かい彗沃(Ⅹ,pi)∈【0,2可,
Where d・・isthe distance functionofthemetric gi,i=1,2・
Wedefineadiffeomorphism かUi(pl;(r/2,2r》→U2(p2;(r/2,2r》
by
ーげ−
by
2
中(expplX)=eXpp2( ̄野中0(Ⅹ)),
Wbere¢0:TpIMi→Tp2M2isaiinearisometry,andexppidenotes
theexponentiaimapqtpi∈MiVithrespect七〇ち・〉Thenvecan
reg訂d生純2aSモ隼Ul(plれr/2】)?項M2\U2(p2;恒/2叶
∴ ̄ Let fibeapositive smoothfunctiononMiSuChthati
fi(Ⅹ)=(芭(pi,Ⅹ)) ̄21f招くろくpl,Ⅹ)<2r・men,瑞is
a・RiemamianmetriconMi,and・isconfornaiiyfiatinUi(pi;[052r))・
肋e。Ver,¢;(卑pli(r/2,加)),fA)→(U2(p2;(r/2,2r)),f糸)
becomes anisometry.Eence,Ve Can d.efine a Riemian metric
g匡\Ui(pl;[0,号】):=瑚Ml\Ui(piれ…]),
V(g)=V(f鼠;当\Ul(pl;[0,号])…(fみM2\U2(p2れ2r])
=V(fA)・V(f其)
=V(ち)+V(ち)
≦V匝1)十V(M2)+hE・
merefore,両1約2)≦V(MJ+V(M2)+厄‥ forarbitra町E>0・
matis,Vq約2)≦V(町+V(M2)・ロ
璽三並主聖とヱ・買.・望V(旦)=V(㌔)=0,辿聖V(旦紺2)=〇・
ーJもー
As ve can see from this coroiiary,○ur:reSlユ1tis ciosely
reiated.to a theorem of二Kulkarni[il,22,23]Which assertS that
COnneCted.SumOf tvo conformally fiat nanifoid,S adnits a fiat
COnfomai structure.The author d.oes not know■any COunterlT
ex餌lPie to the converse of the above cor011ary(or mユkarni−s
theorem).Thisi盲〉aVeryinteresting question,forif the con−
verseisaffirmative,thenve二C盛iget,forexanpie,V(CP2#TpCP2)
>0・CP2#−CP2as・WeiiasS2ⅩS2is,inasense,akeytofurther
understand,ing of V.We shaii againtake upthis probiemini‘.
Exa皿Pies・1・ Althoughour fonnula−r for connected,SunSis an
ineqpよ1ity,Ve Can get the exact Vaiue of v(M)in some cases.As
atypicaiexample,WeShovv(CP2#CP2)=96¶2:FromProposition1.9,
V(CP2#CP2)≧h8T2tsgn(CP2#Cp2)仁=96¶2.0ntheotherhand,
V(CP2#CP2)≦2V(CP2).sincevehaveaireadyseenV(CP2)=48¶2
inii,COnSeqPent1ywehave v(CP2#CP2)=96T2.
2・mere eXistMland・n2for■Whichthe strictinequality
V(Mi#M2)<V(Mi)+V(M2)hoids・=nfact,itisthecaseifMl
=CP2#CP2andM2=−CP2・Toseethis,Wefirstnotetha七
cp2#CP2#−CP2isdiffeomorphictOCP2#S2ⅩS2〉([刹上 Hence,
V(Ml約2)≦V(S2ⅩS2)+V(CP2)=V(S2ⅩS2)+V(Mさ)・
≦苧而2…(M2)<96㌔…(M2)
=V(Ml)+V(M2)・
一17−
月旦・Variational formuユa∋in dimen或on h.
=n this section,Ve Shali shov the first and.second.variational
fonm止as ofV‥触(M)→R for eomp批t hⅧ8血fold二的.mrouかOut tbis
SeCtion,Ve uSe the f011Oving abbreviation for shortnessI sake;
1・OnittingthesⅦm醜i。nSigns,e・g・,Ci3k;k・㌔ヂijk一一
standsfor ∑k,且gkLcijk;九・㌔,且,mgk且hWnij且;
2・id・entification throughthe du息iity d.efined by metric e.g.,
S芸=喜師彗舶−bl。;k)st弧由forS芸=餌伍拘i・甑。
−hiji見)・
The first Variationai fornuia hasかeady appeared.in an
aれiele[5]by R.Bachin1921.
Proposition3・1([3])・SuppoSe壬 生M 且皇且主 もt manifold.
坐dinension h・Then for a snooth cuⅣe g=g(七十塾側畑),望如
意V(g)=2J跡g),お〉如g,
塾Ⅹ室生地主2麺聖堂三主空色吐Ⅹij=Cij抽・塩でijk
(三三三(1.1),(1.2)望追(1.h)坐臥室生W,1聖迫C).
聖更・Weset hij=苗gij andS芸=怠惰・Then,
(3・1) S芸=喜(bjk了b鋸−bij;k)・
(312) 怠㌔ijk=S品;了環;k
Then,f卸(1・1)andeiementaryalgebraic properties。fcurVature
tensor,Ve have
へI冨−
㌔ijk(怠㌔ijk)=㌦ijk(2b獅m・khij)・
Theref。re,uSing怠gij=−hijand怠dv=喜hiidv,Weget
主意V(gト=伊ijk(2bi錘・㌔㌔i。)一㌔粛㌔振九・喜W㌔ijか
=匪jbij−(㌔ij濃j見一昔W2㌔見)㌔か,
Vhereve use Stokes−fornuia and.(1.3).Thus,Ve have oniyto
prove㌔ij謹ijA=帥2g餌・
=tis knovn that a.syⅦmetriciinear transfornation on the
spaceof2−foms A2comutesviththeEodgestar鷺:^2ぅ^2
(since the argl皿ent hereisiocai,Ve need.not assume Mis
Orientabie)if and・。niyifits Ricci contractionis proportionai
tog(cf・[L7;The。remi・3])・Vievedas as四metrictransfomation
onA29theWeyltensorcomtesviththetheHodgestarIbecauぷe
the Ricci contraction of Wis zero・Hence} VoW aiso coEnutes
Vith the Hodge star}and・hence●the Ricci contraction of WoWis
PrOPOrtionaltOg・Thatls,WikabWabjk=入gijfors皿eSCal甜入1
血ehimplles㌔ij謹ijA=帥I2gk見・
That Ⅹis symetricis not difficuit tO See from Bianchi■s
ldentities. ロ
Comllary3・2・望d主mM=互,生垣Ⅹ塾生fqu。VIpg
PrOperties;(i)もrace X=0;(且)divX=0;(jii)Ⅹ⑳gj旦COnfornaiiy
invariant.
Proof.Easy conseqpence of Lem1.2. ロ
、門−
坐mll鮎7三・三・三d土mH=k望迫gG凧(M)且且 pnfonn中主旦
聖Einsteinmetric,迦gj旦旦Criticai由良坐り:朝(M)一ナ丑.
Pr00f・Obviousiy,Ⅹ=Oif gis an Einsteinmetric・Thus,
the assertion f0110VS from Coroiiary3.2(鮎). ロ
Zt may be哉pPrQPriate tO Shovthe principai sy血boi of X(g)
in this piaceI Sinceiti88180a Principai part of the second.
Variational formula.
塾王達・塑迦出盛星口∈‥62押すS2響,∈∈響ノ
廷堅生nOniinear車型壁吐P哩differentiai坤gト}Ⅹ(g)
牢h)=喜田hh一書が(h(∈)か∈・∈恥ほ))
・喜伽(∈,)い(trh桐侮◎∈
・喜(h(∈,∈)−(trh)l引2)国2g・
呈 pp rtieuユ早手,室生∈≠0,
(i)血ロ∈=恒S2叩;trll≡0弧d昭)=0右
(五)馳r彗=恒S2州;h;ag・卸”〇日orsomeaを紬d惟叫;
也)C∈(h)=封鍋飯b∈加㌔=(Ker㌔上
空望三・Straigbtforward calculatlon. 口
ⅣOW,We Shali compu七e the second.variationai fornuia.To d.〇
七his}We reViev the Lichnerowicz Lapiacian and・d・eCOmPOSition of
the space of symmetric2−tensor fieids(cf・[隼]).
)20−
Definition3・5・ThetangentspaceTg価M)of椎M)atg
is naturaiiyid.entified.vith the space of sm00th sy皿etric 2−
tensorfieidsonM・TheLichneroviczLapiacianAL:Tg凧M)→
Td鶴M)isdefinedby
(Alh)ij・
・=(Ah)ij+hik;kj−hik;jk+hjk;ki−hjk;ik,
血ere A:Tg硯(M)→Tg搬M)isthe空也Lapiaciem;(Ah)ij=
hij;kk(our・SignconventionofLapiaciansisopposite七〇七hat
usedln[牛]).
壁空し主旦・(1日Alb)ij≡(△h)ij−hik㌔−Ri鵡5−2塩㌔ijk・
壁聖呈,室呈dhM=互,迦
(ALh)ijこく△h)i了2(hikEkj+Eikhkj)・くE,h〉gij
・恒h)(Ei了誌jト車bi了2㌦ijk,
垣Eij=Rij−(R州gij・
扇!M〈h・,△もh−ウ加=一最中・,鈷・戸(h−ij;k−h・ik;j)Ⅹ
(h一一ij;k−h一一ik;j)・2h■ij;jh”ik;ktdv迦h一,h”GTgPL(M)・
(弘)SMくb一,△lh一・沖=揖h・ij;k呵ki・h・一雨−b一一ij;k)
一2h・ij浩k;k巨 迦b・,b一一島でg帆(M)・
Proof.Easy and.0mited.. 口
通ma3・7・望M室生望盟主聖塾生,り仰)迦聖
辿垂迫decompositi。niTg価M)=諸。(g)eA1(g),悪望望
■ヱト
}。(g)=fheTg佃);trh=0,divh=01壁31(g)=
恒でg湘M)ih=gug‥g室生盟主u鴫(M)坐錐♂(M)・
Thisdecom卯Sition並_grthog?nai建迫望萱盟生垣迦L2史些三
塑・Put P(u):Jug−(1/n)(tr∠ug)gf。raVeCt。r
fieid・u・ThenIitis ea・Sy to check that the principal synboi
OftheiineardifferentialoperatOr P詫(M)→Tg明M)is
injective・Hence,T♂(M):KerP*OInP(cf・[牛]),Where
P兼is the fornai adjoint OPeratOr Of P.P#is computed.as
P*(h)i=−2(hij−(1/n)(trg)gij);j・Fromthis,Ve加ve
KerP兼=J80¢COO(M)・g・Then,PuttingJ81=COO(M)・g+InP,
We get the d.esired.d.ecomposition. 口
ReMks・1.Let G be the senidirect product Of the
diffeomorphismgroup A(M)and.C’’(M)vithznuitipiication;
く恒fl)・(¢2,で2)=(¢lO¢2,flO¢2日2)for町中2‘かM)and
fi,f2eCP(M)・Then,Gactson吼(M)ontherightasf0110WS;
(g,(中,i))けe2f¢第g,ge喧(M),¢eA(M)弧dfCCLP(M).Lezma1.2
saysthatVisc。nStantOneVeryG−。rbitin仰(M)・31(g)inthe
aboveleⅢmais regard.ed.a.s the tangent SPaCe at g of the G−Orbit
2・Usingtheorthog。naiitybetveen範emdj1,Wehave
anisomorphism/名(g)e/Ji。(e2fg)ihりei2−n)fh・lndinensi。n2,
thisreduces七〇七hatJ20(g)=J30(e2fg)foranyfそC”(M)・More−
0Ver,Xo(g)isfinite弘mensionalifdinM=2,anditisvell−
knovnfromtheRienann−Rochthe。renthatdimメ。(g)=Oifx(M)≫0;
ー22−
血ノ。=2ifM=㌔;血メ。=11fM=mein−sbott1ei
血ガ。=−3X(M)ifx(M)く〇・王草地M≧3,』。(g)isa加ys
infinite dimensiona1.
The foild甘ingis themin resultin this section.
聖PfOBltlo乱立旦・卓叩p些些H虫旦型鱒止ギ些旦廷
d土mensl。n h,坐gG朝(M)虫旦eritieal迦正坐V:州(M)→丑.
塾㌔生旦塾生望辿生g辿迫g。=0,望迫h生月。(g)
望聖望望L廷(dg/呵弼∈ワg竹(M)・辿,
(怠)2V叫弼≡JHk△もh・争,付争〉
・くE叫屯h・3hEセ馳〉・図2回2・回2−号如ヂ
・S紳‰bi。);k−争ijR;m→(丑。b−h。E)血;了hi轟k−2㌔j?址ち
−2hijh血Cijk;
Eij=Rij一誌j,(E。h)ij=Ei鵡j 坐
S昌=書くbjk;1・ ̄㌔i;j−bi。;k)・
聖望三・Fromthe first variational fomuユa(Proposition3.1),
(dv(gt)/dt)=SM(X(gt),(dgt/dt)hdvt・SinceX(gt)’メ。(gt)
(CQrOiiary3・2),Vehave(dv(gt)/dt)=SSⅩ(gt),hadvt,Where
㌔isthe.go(gt)component。f(dgt/dt)・Thus,SinceX=Ⅹ(g。)=
0,Ve get
一23r
(3・3)(怠)2V(gt)lt=。=2J無血〉れ,
Where:me弧S(d/a)七=Oii・e・:i”dX(gt)/d巧七=0・Ifwe
write X=(DX)(畠),We Can See X=(I)Ⅹ)(h),beca.use thatⅩ=O
is a conformaiinvariant PrOPerty by Coroiiary3.2(Bi).Eence,
it Suffices tO PrOVe the fornuia・:und.er the assumption tha七色=
h強くg)・S。,WeaSSumeinthefoiiovingthahhij=畠ijand
b‥=0,hij;J=0・
From the d.efinition of X,
射)支‥=(gkmcijk訂・(gkhk㌦ijk)●
三(eijk);k一塩Cij抽一堤Cmjk−S芸Ci血
・i定㌔ijk・工血甲ijk一㌔九㌦ijk・
From the d.efinition of C,
(3・5)cijk=(Llk);j−(もij)ik・S芸㌔j一環塩・
From the d.efinition ofI}a.nd.the Lichnerovicz La.piacian,and.
(3・6)ii。ニー書くAlb)ij−軋了帥頑gij・
(3・7)(もij);k(hij;k−hik;j)主封ム詞2・恕b・△lh〉
・書く里方h〉弓酔,言草,
dlerethemeaning。fthen。tation主isasf。110VS;f。rfiandf2e♂玩),
■之隼−
vewr摘fl主で2ifJMflか=侵2dv・
Then,fron(3.5),(3.6),(3.7)and.Le皿a3_.6(i),
(3・8)】宰土j轟hi了定㌔ijkbij
圭一Cijkhijik・甜ijkhij
=肛ij);k・環塩)(hijik−bik;j)十定㌔ijkbij
主音鶴bl2・封h,頼〉・古顔Lh,宣中豊描h〉
・S芸転(hij;k−bik;j)
弓(△1h)ijbk㌔ijk−翫轟でijk
=喜仏1可2・艶,ALb〉・恕2回2
・く叫△1b・斡・環塩(bij;k−hlk;j)・
From(1.1)and.(3.6),
(3・9) hijがijk
=b土j凄ijk一書(㌔凸k・毎ik一㌔㌔蛸k・症k
一塩blj−kgi了㌔見1地類一弘i詞
=hljk伊ijk一書(巨。牢・2〈M直上く1・b,皿〉
一回2回2−号軋り)
=hi㌔k㌘ijk−′恕h軒〉・車叫払lb・唇E・討〉
一之ぐ−
・皇国2畔一鉢可2−麺や2・
FromIJe皿a3.6(i),
(3・10)−bij魁㌔謹ijk
=雛,△もb〉一計最h〉・妄R2回2−麺。滝h〉
・くE叫喜△Lb・b。E・討〉弓叫2一拍,ザ・
From(3・2),Bianchi−sidentityLij;j=R;i/3andusing
(3・11)環塩(hijik−hik;j)・hi轟k許ijk
=環(khij);k一環塩詔ij−S芸i(khlk);j
・草加hik・bijk賎;j一環;k)
主張(kbij);k一挙かi凸m
一報(㌔㌔ik・㌔㌔比);j一報(kbik一㌔㌔紘);j
・S芸毎;jhik−S毘塩;jbi了S芸声i轟k);k
=2環(khlj);k−hiij(khik・塩1ik);3
−S;(hjR;m・!(E・h−h。E)mi;3−hikCm。k)
主2環(‰bij)ik・撞(Rhlj);k弓やh,言ゆ
−S抽ijRm・書くE。h−b。封mi;j−blkCmjk)
一之畠−
主封h,頼〉・麺。最h〉・か,言h〉
・S芸瀬‰bij);k守ijR;m一書(E。b−h。E)血;・hikC。品
Stming up(3.8),(3.9)and.(3.10),then s血stitu七ing(3.11),
We Obtain from(3.4)the foiioving;
草津ij
主封△㌔12・泰阜,ALh〉・忘R2回2
・卓。h,2Alh・を。E・可・喜IE円bl2・錘・hl2−如,bプ
・朝2(‰hij);k一事ijR;m一書(E。h−b。E)由j
・2hik㌔jk一塩C址1
−hijh加Cijk;m
Thus,from(3.3),We have the d.esired.fornuia. ロ
Cor011ary 3.9. Under the seLne aSSl皿Ptions and.notaions as
in Proposition3・8,坐SeCOndvaria・tionai fornuユa生望Einstein
metric g(三三・Coroiiary3・3)生望foiiovs:
(怠)2V(㌔)七朝≡伊lh・昔h,△上目号b〉れ
ー27−
_§_互,Pr。Of。f Theorem B.
工n this section,Ve Shall prove Theorem B.Parts(0),(i)
and・(鮎)of the theoremhave aiready shovninii.So,Vhat we
Shouid−dois proving part(且),i.e.,Stabiiity of the stand.ard
阻nsteinmetric ofS2ⅩS2.
We begin with the d.efinition of stabiiity.
Definition h.1.Let gも凧(M)be a criticalpoint Ofthe
funCti。naiv:刑(M)→R・Then gis said.tobe辿if
(k・1)(怠)2V里t=。≧O
foraiLSnOOthvariationgtwithgo=g・Moreover,gis said
tO be strict1y stabieif gis stabie and.if equa1ity of(互.1)
b。1ds。nlyvhen(d中呵七=。∈β1(g)(cf・Le鱒3・7)・
Remark・=t f0110VS from Lem1.2thatif gis a(strictiy)
Stabie criticai point Of v,then soisany metric confornal to g.
軸1es・1・如eonfomユ1y flat metricis staゐ1e.
Any half eonformally flat metric of a eompae七一一maエ止foldis
stdble(cf.Propositionl.9).
2・Setting the scaiar curvature R=Oin Coroiiary3.9,
We See that any Ricci flat metric of a compact h,4anifoid.is
3・Letg叫(Sh)bethestandardmetricofconstant
CWVature L Then,gis strict1y stabie.
一之才一
Proof・Since gis an Einstein metric,Ve have oniy to
Js互くALh・号h,△Lh・号h〉加か
f。rauh6J80(g)andthatequalityhoidsonly血enh=0
wehweR=12弧dALh:gh−8h forhGB。(g)・
(cf.Le皿a3.6,(i)).Eence,
5仏工b・書h,△もb・号h)か
=5くZb−2hふ一旭)か
=揮hl2−6くh,飢〉・8時か
=5(馴2・6回2・8lhl2)dv20・
Ot)Viously,e耶息1ityimplies that h=0. □
打00f of meorem B(五).
=n this proof,Ve denote by g the standmd.Einstein metric
ofS2ⅩS2・Wevriteg三g一十g一一wheregtandg.一areRiemamian
metrics ofS2vithconstant GaussiancurVaturei.Thenthe cur−
仇2)RhLijk=(gTnjg−ik−gIijg一km)+(g”mjg”ik−g一一ijgI.kn)・
Forhを・80(g),Vedefinef∈C(S2ⅩS2)anah・,h一・,首
即g刑(52ⅩS2)asf01lovs:
{ユデー
f=軒jg−ij=一書bijg・・i。,
h−ij=gTikhkng一m3−fg.ij,
(l.3)
hH‥
1J=g−fikh血g−rnj+fg一.ij,
hij=g−ikhkng一一mj+g一一ijhkmg,mj
Then,g=h’+hTT+h+fg■−fgT;andthisdecompositionis
Or地ogonal.町(互.2),Ve have
往・互)Aij=h−ij+h一一ij−fgtij+好一ij,
vhereAij=脾㌔ijk・Then,aStraightforWardcompl加tiongives
回2=回2+帖2+止2,
hij謹㌔ijk=回2+回2−hf2,
(し.う)
(録1㌔平㌔ijk=〈b−,芸bウ・くb一一,Zb・−トhfAf,
搭可2=lghtl2・l芸b車+互(△f)2+広畔,
しい呵2=l∇叫2・圃叫2・叫∇評・幽2
ThuS,uSing Lemma3.6(i),(h.2)and.(h.互),We get
(九・6)∫く△Lb・2b,Alh・書中
=狛Al2・担転k一也(紺jh㌔jk・桝2・号榊2巨
=5桝l2一項,左hウ・号佃2・・阿2
・讐回2−中一,鉱一〉十号け叫2・lgh−平
一才0−
・号圃2・l富津
†号古16f△f・号困2・h嗣2ちか
=封書(回2・回2)・普く阿2・呵2)
・(断・i2・断−l2)・号畔2・園2
・号(△‥2f)2十号Af(Af・2f)巨
?0,
becausethefirsteigenvaiueoftheLaplacian−A。f(S2ⅩS2,g)
152,andheneeJAf(Af・2f)か≧0.
Ⅳext,Ve COnSid.er vhen the eqJlaiity of(h.6)h01d.S.
Ot)Viousiy}the e甲11iaty h01d・Sif and・Oniyif hT =hll=0}
▽冨=Oand Af+2f:0.Since divh=0(seethed.efiniti。n
。f,80(g)inLe皿a3・7),theconditionshT=h・一=0and∇冨=O
yieid f=COnStanも.Then from Afl2f=0,Ve have f≡0.
matis,h=首弧d吼=0・エnpar出血r,屯h=Ah=0・
ThenfromLema3・6(i)弧dRij=gij,Weget
(l・7)hl了が㌔ijk=0・
Ontheotherhand,fron(h・h),bmk㌔ijk=0,Sinceh=h・
Hence,from(4.7),Ve have h=0.Thus,the equaiity of(h.6)
bolds only雨Ien b=0.
Ⅳ0■the assertion f■0110VS from Corollary3.8. □
トJ/−
;E:.Additional remarks.
From Theorem B,it seens tO be reasonabie to conjecture that
v(S2ⅩS2)=256¶2/3・=fthereshouidexistacounterexampie七〇
七heHopfconjectureOnnOneXistenceofametricofS2ⅩS2vth
POSitive sectional curvature,thenit night be a candid.ate of a
COunterexa皿pie tO OurCOnjecture. Thisisl〕aSed on theid.ea that
Verylarge conformai curVature prevents positive(or negative)
SeCtionai clmature・Since ourinvariant V(g)is given byinteg−
ration,it misses aiot Of fineinfornation on conformai curvature.
Soitis not so ciear to see the connection betveeniarge V(g)
and positive(or negarive)sectionai curvature.in this section,
Ve give a fev ot)SerVationson this topic.
Le血a H・軸ppo紙土建生む血M=一望堕g∈帆(M)室生metric
建生nonnegative(望望聖PqSitive)sectionai cumature・塾
生辿迫幽重出辿;3慢2≦甜g2・
塾生・Letiei,e2・e3・e直eanorthonomaiframe・Then,
fi=ei^e2+e3^eh・f2=ei∧e3+eh^e2,
f3=ei∧e互+e2∧e3,fh=ei^e2−e3∧eh,
f5=eiへe3−eh∧e2andf6=ei∧ek−e2∧e3
forman。rthonornaifrauof疋(in。urCOnVention,ei^ej=
去(ei◎ej−ej⑬ei))・WeregardthecurVaturetensorasaiinear
transfomati。nOf/ピ・Then,Withrespectt。thefreLneh右ve
have the f0110Ving matrix representation of the curvature tensor;
ーJ2−
(七:…),
Vhere A and C are3Ⅹ35ynmetric matrices vith tr A=tr C=
Rg/2,and
Ell十五22 E23−E11Eh2+E13
B=(㌔β)=
E23+Eh1Ell+E33 Eh3−E21
E始−E13 Eh3+E21Ell+E仙
血ereE‥=R・・−(R/h)gij・ZtisknovnthatAandCcanbe
diagonaiizedf。rSOmeOrthonomaifrane feil([27;meOrem2・1])・
So,Ve Write
昔・入10 0
A =
0 昔‥20
0 0 昔・入3
昔・畑
men,入1十人2十人3=リ1+リ2+い3=0弧d
(5・1)履2=∑;去1人α2傘∑…=1リβ2・
A2−fom correspond・ing tO a Piane sectionis of the foとm
∑;=1∈αfα・∑
β=1鳩十3
Vitb
∑∈α2=∑nβ2;喜・
ーJ3−
TheTefore,if sectional curVatureis nonnegative(resp.non−
(5・2)専らα2(昔・入山苓購・吋・2宗冊や≧0∴
(resp・≦0),
f。rall履頑車β卜ith∑∈α2=∑¶β2=1/2・蝕omth毎
itis easiiy seen tha七
号・入α・リβ≧0(resp・≦0)無血1α,β・
3Rg2三‡(号・入1・吋・(号・入2・り2)・(号・入3・吋う2
・博・入1・い2)・(号・入2†吋・増・入3・吋!2
・勘入1・専・(号・入2・り1)・(号・入3・リ2巧2
≧芸(号・入α・吋2
=R2・3(∑入α2・∑Vβ2)・
Therefore,from(5.1),Vehave2R2>3W2・]
Cor011ary5.2.辿M生皇COnPaCt k−dinensionaimanif01d・,
望迫g∈帆(M)曇生Einstein地建生nonnegative(望n。npOSitive)
sectionalcuⅣahure,圭迦聖.V(M)≦128T2X(M)/5・
聖望三.Fromthe Gauss−Bonnet formi1a(1・6)and・the above
iem,We have
′J午−
V(g)=32¶2X(M)−封㌔加
≦32T2X(M)−かくg)・
Hence,5V(g)≦128T2X(M).ロ
Corollary5・3・蓮生M壬生旦eOmpaet hm餌11で01d・
(i)望MadnitS旦生Einsteinmetric虫主生nonnegative sectional
望三重望,迦庫(叫≦泰(M)く5・
(ii)主EMadnits旦已Einsteinmetric壁生nonpositive sectional
望望互望,望聖Isgn(M)t≦み(M)・
空望三.=neachJOfcaSeS卜五七iseasytoseethahlsgn(M)L5
8X(M)/15でrom Propositlonl.9弧d Corollary5・2・
=f gis an Einstein metric with nonnegati’V’e SeCtional
CurVature}then we get from Coと011aryi・12
32¶2(X(M)一2)≦V(g)≦竿T2X(M)・
Hence,X(M)≦10・Moreover,fromthe eqJlality condition:Of
Cor011aryi・12,We have x(M)≦9・恥enthe nⅦ血er ofpos畠ibie
pairs(X(M),Sgn(M))is finite,andve caneasiiyseeIsgn(M)I
≦X(M)/2・ 口
迦聖生.でhispropositionsiigh七1yinproves Theorem2。fl川,
where8/15isrepiacesby(2/3)1・5(>8/15)・
ーjr−
S6.A WilhlOre t e roblem.
Let¢‥Mn+Sn+1(1)beanimerSionofacompactn−nanif01d
intO the Euciid・eanunit(n幸1)−SPhere,and h the second.fund.eunen_
tai foヱm Of 4)・By h we d・enOte the traceiess partノOf hi.e.,
h=b一書(trgb)g,
血eregisthemetricon㌦ind.uced.by中.I)efine甘(¢)by
叫)=J㌦帖vg・
=tis ea.sy to see that W(4))is a.conformaiinvariant Of the
i皿erSion中,thatis,Ⅴ(¢)=甘くao¢)for弧y M8bius tramfor−
mationa∈Conf(Sn+1).
The famous Wiilmore conjectureis stated as foiiovs.
TheWiiinoreconjecture.Foranyimer$ion¢:T2十S3(1)
Of2−dimensionai torusintO theunit3−SPhere,the foiioving
(i)V(.)≧甘く¢clifford),Vhere¢ciifford:T2+S3(1)is
tbeClifforde血由姐喝Sl(1/招)ⅩSl(1/摺)CS3(1);
(正)W(¢)=Ⅴ(¢clifford)土fandonlyif¢iseonfon脈止七〇
¢ciifford,thatis,thereexistsaMSbitutransfornaJ=ionae
Conf(S3)suchthat¢=aO¢ciifford・
地this section,We Sha.11consiaer the sa皿e PrObiem for
SPxsP・町中ciifford‥SPxsP+S2p+lwedenotetheCiifford
e血beddingSP(1/YQ)ⅩSP(1/招)Cs2p+1(1)・Bygo’勺肌(SPxsP),
一j‘−
ved・enOtethe stand・ard・Einsteinmetric ofSPxsP}i・e・9
(SpxSp,go)=Sp(1)ⅩSp(1)・
The f0110Wingis a generaiization of Theorem Cin
meorem6・1・辿¢:SpxSp十S2p+1(1)生盟hmersion,望追
gG咄(SPxsP巨二更生辿迫壁三・坐望聖旦塾生p≧2望娃
(6・1) V(g)≧V(go)・
塾生,(i)Ⅴ(¢)≧Ⅴ(¢cllfford);
(正)Ⅴ(¢)=Ⅴ(¢cllだord)韮望迫延塩生中立COnformaユ
生壁Ciifford・edbed・ding¢ciifford.・
Proof.From the Gauss equahionクもhe curvature tensor of
Ri脚=gikgj九一gi見gjk+hikhj九一hiAhjk・
Hence,the Weyi confornai curvattue tensoris compl止ed・tO be
Wi脚=hi㌔j丸 ̄hi鵡k
・歪(芸。芸)Oi動†gik触)評−(hob)璃k−gi見(h叫jk)
1
豆缶渾gi和一g璃k),
Vhere n=2p and.
hij=blj一三(trh)glj,
0 0 0
(hoh)ij=ら薫一拍2gij・
ーj7←
So,We get by a simpie caicuiation
(6・2日wl2=2号ヨ冊一言警戒0紆†2≦学芸玉砕・
(6■3)…)≧(紡)p/2V(g)・
Zt f0110甘S from(6.2)that the e甲lalityin(6.3)occurs oniyvben
(hoh)≡0.This eqpaiity conditionis equivaient tO that at
ea.ch point,either4)is unfbiiic or q)has tWO d・istinct Principai
curvatures each of vhichis of ml止tipiicity p.Thus the a・rgument
usedbyCeciiandRyanlb]showsthahw(.)=((2p−1)/h(p−1が/2V(g)
if and.oniyif4)is conformai七〇七he e血bed・ding
¢α:SpくJ宗)ⅩSp倍)⊂S2p+1(1)・
=nparticuiar,fortheClifford・ehbedd・ing中ciifford.=¢1・
(6・k)叫。云ff。r。)=増請)p/2V(g。)・
Hence,from(6.3),(6.互)and.the assumpti。n(6・1),VehaNe
…)≧(紡)p/2V(g)≧鴎請)p/2V(g。)=甘く中。1iff。r。),
vhichproves the assertion(i)・
Ⅳow,SuPPOSeV(ゆ)=Ⅴ(ゆciifford)・Thenbytheabovea叩皿ent,
中mstbeconformait0㌔forsomeα・Moreover,thenV(go)=
V(SP(1/.GTT)ⅩSP(vb/(α+1))should.h01d・・Byad・irect Calculation,
Ve have
←Jg㌧
V(Sp(
義士) ⅩSp倍))
=il塙巧蠍
℡herefore,Ve COnCiud・e thatα=1.Conseqpent1y,¢is confoma.1
七〇¢cllfford・ロ
Remark・=f pis od.d.,then the a.ssⅦ叩tion(6.1)is t00
restrictive,Sinceweknowv(SPxsP)=O forod.d.pfrom
Theorem A(i).Hovever,in the case when p=2,甘e Can eXPeCt
tha尤the assumPtion(6ユ)土息P血neごモ日昌afy;eerta.iniy,thisis
nore piausibie conjecture than that mentionedin S5.
Remark.We remark here that a duai of the Wii]皿Ore
PrObiemis n01essimportant than the onginal one・Roughiy
SPeaking}the Wiiimore probiemin the aboveis a probiem to
findanj血merSion¢‥dl十Sn+1(1)With一一smaii一・h=h(¢).Ⅳov,
vevanttoconsideritinthesituation中:Sn−1十㌔.Ⅳaneiy,
theprobiemistofindanimerSion¢:Sn−1+Mnvith.・snaii一一
h(¢).
For simpiicity,VeaSSume㌦is conformaiiy fiat.Let
¢E:Sn−1Ⅹ[一己,こい㌦
be the E一七ubuiar neighborhood.0f中.Mis confomaiiy fiat,
andSn−1Ⅹ[−巳,E]issimplyconnectedifn≧3・Eence,Wehave
a conformai deveiopment(cf.[け])
de叫E:Sn−1Ⅹ[一己,主上+Sn(1)・
ー∫デー
工f¢is tOtallyl皿もllie,h(中)≡0,tben
輌‥=如駈Ⅹ{。}:Sn ̄1+Sn(1)
is aiso tOtaliy血biiic・=n particuiar,d.evo4)isan embed.ding.
Wevant to define the smilness ofh(4))viththis property,that
is,Ve SaUh(¢)七。be塾主ifthe assc・Ciatedconfomainap
devoOニSn−1→・Sn(1)isanezhbedding(thenゆisalsoaned)edding).
1em6・2・互生当紺2坐旦注COnf。m慮り草呈聖生m虹止fold坐
生垣堂堕室生n≧3,望迫¢:Sn−1十里聖堂望些王追虫垂辿
当#㌔立坤坐聖堂追聖・聖生,望b(¢)生壁主,
聖堂娃M2迦塁生eonfom始ユstmetWeS・
塑・C血比ngaiong中,Wehave竺1#M2=M+U軋SuChthat
Mrisananif01dvithboundaryO(Sn−1)andthatM+(resp・M)
con七山S¢C(Sn−1Ⅹ[0対日resp・¢E(Sn−1Ⅹト印]))・S址1arly,
dividingSnaiongtheembeddingdevo.,VehaveSn:D…UDn・
Sincedevo¢cisaconfornaimap,itiseasytOSetha尤Mi写
生UDn弧d生きMUD:地veflateonf。m弧stmetwes.ロ
Thus,the converse of nユ1kami−s theoremin$2is red.uced.
七〇七he dual Wiil皿Ore PrOt)1em・Sois the converse of Coroiiary
2・2(in this case,Ve need additionai argl皿ent1ike Lezma2.2).
一半クー
J. On YamabeIs constant.
As YamabeIs prot)1emis affirmativeiy and・cc町pieteiy soIved
([/】,【zC]),Weheveametric ginanyconforma1ciass such
thatthescaiarcumtureRisconstant,andRVoi(㌦,g)2/n=
U(M,g)(see(1・5)forp(M,g))・=tisknown[HthatU(Mn,g)
≦U(Sn,go)hoidsingenerai,Vhere(Sn,go)istheEuciidean
unit n−SPhere・Moreover,reCentiy,Schoenli訂]haS PrOVed.
thatU(#,g)=U(Sn,go)ifandoniyif(M,g)isconformaiiy
equivalen七七〇(Sn,go),血chvastheunS01vedpartofYanabe・s
problem.
リ(M):= Suptリ(M,g);ge朝(M)1.
M adnlits a metric of positive scaiar curvatureif and oniyif
u(M)>〇・AIso,U(M)≦U(Sn)=U(Sn,go)frontheaboveineqJlaiity
ty Alぬin.
ぎromPropositionl.11,ifitistmethatU(S2ⅩS2)=
U(S2ⅩS2,go)forthestandardEinsteinmetricgo,thenvehave
av叩pleasantres山ttbatV(S2ⅩS2路)≧Vfs2吏S2,go)fora町
g vith nonnegative sca.1ar curvahure. However,the author thinks
this hypoth岳Sisis probabiy not true for some reasons.We may
expectthatU(S2ⅩS2)<U(Sh),Whichvillslightlyimprove
でbeorem B(五i).
王nthissection}WetakeupSlxsn−1insteadofS2ⅩS2I
andshowtha七・V(Slxsn−1)=V(Sn)ifn!3(meoremD)・
−¢ト
We beginwith some preiininary caiclilations,Vhichvilibe
used.againin the next section・
Let(Ⅳ,gⅣ)bean(n−1)−dimensionaicompactRimennianmanif01d
vhose scalar curVa,七ureis positive constan七(n−1)(n−2).ve
alvays assl皿e n∼3.
Suppose that fis a positive funCtion on R vhich satisfies
(7.1)2(n_1)ff_n(n_1)を2+(n−1)(n−2)f2=n(n−1).
Then,(丑ⅩⅣ,f(t)−2(dt2+gN))hasconstantscaiarcurVature
n(n−1).(1.1)isint,egrable,and.ve have
(7・2)を2ニー1日2−空言fn,
vhere cis anintegrai constant5Vhich reiates七〇七he Ricci
(7・3)RIcg(。)一転。)g(C)=ef(七)n ̄2(gⅣ一(n−1)胱㌦
vherevepl止g(C)=f(七)−2(dt2+gⅣ)withfsatisfying(7・2)・
From(7.2),Ve Observe that,in ord・er for f tO be d・efined−On
vh01e丑,the constant c must bein theintervai
(7・h) oie≦(誓)2=:C。・
Then,Ve bave
f(七)=COSb(七+七0)forsomet01fc=0;
fis a peTiod_ic funCtionvith prime period・T(C)
ート之−
ifO<C<eo;
f(七)=(言㌔)至ifc=C。・
Hence,ifO<C<co,g(C)istheliftofametric(aisodenoted
by g(C))of(R/T(C)2Z)ⅩⅣ.We d.enote by V(C)the voiume Of
((R/T(C)2Z)ⅩⅣ,g(C)).Remark that(丑ⅩⅣ,g(0))isisometric
tO Sn\(antipod.aitWO POints)viththe stand.ard.metrie,if
(Ⅳ,gⅣ)=(Sn−1,go)・
Lema,_礼T(C)望堕Ⅴ(C)望皇COntinuous fl皿Ctions主監C,望吐
くi)山C十0的)=∞;11m。十。。壇)三島・
(正)11m。詔e)=Vol(嘲艶;
1ime十C。Ⅴ(e)=2(n−2)(n−1)/2n胡Ⅴ。1鴨)・
聖建・Weconputeoniyiimc+coT(C)andiimc+coV(C)・The
Other assertions are easy to prove.
ForO<C<Co,1et0<a(C)<b(C)bethetWOPOSitive
rootS Of the equation
(官・6)1−人2・蓋入2=0・
We d.efine a poiynomial F(入,C)in大町ith parameter c as
(7.7)theieft Sid.e of(7.6)=(入−a(C))(入rb(C))F(入,C).
=七iseasytOSeethatlimc十Coa(C)=limc+Cob(C)=入0:=
一再−
(n/(n−2))至.Thenby a.d.irect caiculation,Ve Obtain
(7・8) 11m(入,e)→(九〇,eo)F(入,C)=n−2・
工t follovs from(7.2)that
d入
(7.9)で(e)=2
−(入−a(e))(入一七(C))
‡;:;「;F(入,e)一芸
且入
(7・10)Ⅴ(C)=2V。1(可三:;十的詔
’′〉皿’Ja(C)_ ̄▼  ̄’− ̄’▼‘√行二示。))(入二も房寺
These co血bined・Vith(7.8)and.七he eiementary formula
d入
ん(入−a)(九一吊
for a<b,give the d.esired.foTmuias. ]
Remark. From the second,Variation fomユa for the funCtional
g局Rgdvg′(Sdvg)(n ̄2)/n,itfoliwsthah,ifT>2T/ym,
theproductmetricgT=dt2+gNOfSixⅣwithiength(Si,dt2)=
Tis not a s01ution of Ya正labe−s probiem(ve cali a metric g
a soiution生地mal)etS prOblem,if the scaiar curvahure R is
eonstmt,弧dRVol(g)2/n=山は).),弧tho喝b拙smetricbas
g
COnStant scalar curvature(cf.ll]).mis fact correspondB t0
0urCOmpl加tionlimeナCo的)=2¶仙−2・
The f0110Wingis a coroiiary of the aboveieⅢma.
加p血tlon7・2・姓(SlxⅣ彗)生空也・空で>
21Tk/浣=す丑聖堂空皇integerk,thenthere are at1east(k+1)
ー仏字−
眠trics conformal主立生垣壬生坐望彗星辿竺旦堅生玉蓮生地迩
Constant scaiar curvatures but are notisometric t0 0ne anOther.
聖望三.From Lemma7・1(i)and・the asslmPtion on T,Ve find・
ej∈(0,Co),j=1,…,ksuehtbatMej)=机・町地enatu門止
3−f0ld.covering(R/T2Z)ⅩNう(R/(T/j)za)ⅩⅣ,Veiift the metric
g(㌔)七〇(R/T2Z)ⅩF・Thentheiiftedmetric,denotedbygj,is
COnfomaito gT・ⅣornalidngthevoilmeS OfgT,gi,・・・,gkby
homothetical changes,Ve get the d.esired.metrics. 口
LetgTbetheproductmetricofSlxsn−ivithiength(Si,dt2)
=T・LetfbeapositiveftmctiononSixsn−lSuChthahf−2年
is a s011止ion of Yanabe−s probiem with constant scaiar cmture
n(n−1)・Weiiftthemetricf−2gTtOthemiiersaic。Vering
RxSn−1・Sincef−2(批2+go)=(rf)−2(dr2+r2go),r=e,
弧ddr2+r2goistheEhclideanflat肥tricofRn\0号丑ⅩSn−1,
pl止ting
u=(畢)T(rf)丁,
Ve have
更生
△u睾㌔ ̄2=0,
血ere△istheLa,1acianoftheflatmetric dr2・r2g。・More−
over,u→・CDa層コトす09andrn−2u→のaSr→鉾}because minf>O
and.max f<ク0.Then,Ve Can aPPiy a theorem of Gi血S,Ⅳiand
Nirenberg(meorenh ofl?]),and.conciudethat fdependB。niy
一頃ト
ont;f=f(七)・Hence,f−2gTISOneOfthemetricsdescribed
inPropositi。n7・2・Ⅳ0V,itiseasyt。SeethatifT≦2T/亮=巧,
thenfisc。nStant,andthatifT>2¶/Ymtakec色(0,Co)
suchthatT(C)=T,thenf−2gT=g(C)for(Ⅳ,gⅣ)=(Sn−1,go)・
Thus,forT>2¶/Ym,U(Sixsn−1・gT)=n(n−1)Ⅴ(C)n/2・There−
linTiJl(Sixsn−1・gT)=n(n−1)iimc+Oy(C)n/2
=n(n−1)voi(Sn,go)n/2
=山Sn).
matis,いくSlxsn−1)≧山Sn),50両Slxsn−1)=山Sn).口
$8.Large scaiar cuⅣatWe On Sn.
Ve shall give another appiication of the coznputationin the
PreCeding section.The purpose of this sectionis to prove
TheoremEonahost constant1arge scalarCmture ofSn・So}
this sectionis somevbat differentin character from previous
SeCtlons.
We consider the f01loving question:For a.given constant C,
d.0eS there exist ametric gofSn(n之3)suchthatV01(Sn,g);1,
euldthatthescaiarcurVatureRg=C?・:fcミ巨(Sn),VeCanget
such a.metric by soIving Ya皿abefs problem・Othervise}Yanabels
tl砧−
。i_.←−rJ_一す義一一、−___′一厨、−」
methodiosesits pover. So,七he probiemis foriarge c. The
difficuユty of this qpes七ion may be seen from the f0110Wing facts・
Fact8.1(肋軸[革r]).望gg椚(Sn)立COnfomal立退迫
長髪聖堂建望奴∃宣go,Rg立盛望吐,望旦Ⅴ01(g)=1,迦
Rg=再n)・
ThusゥVe CannOt find・alarge constant scaiar curvaturein
the stand_ard.confornai class of sphere.
塾生運送・姓Ke射S蝕+1)吐更生塾生主王退塾生壁旦
芝生生望主1ength虫垂主 星ind・uCed・史聖堂些空三fPering
s2k+1/Si=CPk.Letg(七)∈価(S2k+1)bedefinedby
g(七)ij=gij−(トも2)KiKj,
垣gj旦堅泣Stand・ardmetric坐COnStant curVaturei・塾生,
Rg(七)立eonst弧七,望旦
Rg(七)Vol(g(七))2佃岨㌦いくS2k+1),
生壁・N。tethatKi;jk=Rijkh㌔・Then,nSing(2・6)inS2,
Rg(七)=Rg(0)+(トも2)困2
=(n−1)(n+1一七2),
☆here ve put n=2k+1・肋Ce}We have
ト 隼7−
(七)Vol(g(七))2/n
=≡t)t芸
山Sn)
g(0)
=吉(n・1一七2)tn≦1・ 口
We prove the existence o王−large scalar cur寸atureunder
a siightly reiaxed condition on constanCy.
Letf:五一十二R+,CE(0,Co)bethesolutionof
e
;。(七)2ニー1‥(七)2一念f。(七)n
(8.1)
fc(0)=a(C),
Vherecoanda(C)areasinS7・Let n:B+】ミbeasm00th
funetion slユehthat吊七)=O fort≦0,吊七)>O fort>0,and
吊七)=1f。rt≧1・Wepl止
恒0+(1一冊e)(C)for−瓦的)三七
(8・2)㌔(七)
((1一冊0+げC)(七十㍍(e)+1)fort≦−k的),
融lere T(C)is asin§7,and kis aninteger satisfying
(8・3)k+1>(r(1+E)′n(n−1))n/2′vol(Sn,go)
Then,theRiemamianmetricgc:=Fc−2(批2+go)of=RxSn−1・
sm00thiyextend・able七〇七hetvopoint COmPaCtificationSn・=tB
SCalareurvatureR =Rc(七)isglvenby
C
一年デー
(8・h)Rc(七)=2(n−1)Fc(t)Fc(七)−n(n−1)fc(t)2+(n−1)(n−2)F(t)2・
Fromthed・efinitionofFc,Vehave
(8・5)Rc(七)=n(n−1)fort≠[0,1]∪トk壇)−1,−k恒)]・
Ⅳ〇七ethatfcTl0,1]C。nVergeSunif。叫tof。Il0・1]up一二七O
SeCOndd・erivatives as c+0・Hence,Rc convergesmiforniy
tOtheconstantn(n−1)・Therefore,thereis asmaiicl>O
(8・6)mRcl血R <1+C・
el=
AIso,fromLezmaT・1(五)in$7ana(8・3),takingasmailerci
(8・7)Ⅴ01(gel)≧(r(1+E)′n(n−1))n/2
Ⅳow・Vedefineame血gofSnbyg:=Voi(gcl)−2/ngcl‥Then,
Cieariy,Ⅴ01(Sn,g)=1・andnaxRg/ninR<1+蔓,from(3・6)・
F血hRg=Vol(gel鍋声(r(1・E油(n−1))血Rcl≧千・口
el=
We canaiso sh。Ⅴthatifu(M)>O andn=dimM≧3,there
exists,forany COnStant r,a metric g of M for vhich V01(M,g)
=1and・R >r・But thisis notinteresting.AjeaSOn Why ve
g
SticktO(E−)constancy of scalar curVatureisin the foiioving
result.
Propo已ition8・3,Suppo紙土建吐室生望猛COnSt弧t r望娃
E>0,塾生旦metric g(r,∈)空室生玉塾生Vol(M,g(r,∈))=1
聖迫IRg(r,E)(Ⅹ)−rl<E迦婁主ⅩeM・塁聖,室生盟生野
r(持−
COnStant funCtion f,玉垣望eXists旦metric g虫垂塾生
Ⅴ01(M,g)=1and R =f.
− g
mis propositionis a cor011ary of the f0110Wing
generaiization of a theorem of Kazd.an and,Warner[は】.
Therem8・互・蓮生go生色望聖更生Rieneumian聖辿室
生主望聖堂⊆imanif01dM更生Ⅴ01(M,go)=1望生垣壬生nonconstant
坐CurVatWeR(go),望迫で旦更生f皿Ctions舐is桝咤
mln f≦mhR(g。)堅塁m奴R(g。)≦Mf・塾聖地立皇室辿
metric g望≦生壁生Vol(M,g)=1望迫R(g)=f.
Before the pr00f,We giVe SOme Other cor011aries.
Cor。11ary8.5.旦空色Closed surfaceM(i・e・,dinM=2),
豊里聖互生丑辿fEC00(M)is the Gaussim CurVature Ofsomemetric
ge耽両壁生Am扇丑,g)宰1三三望娃延虹jヱ 血nf≦帥くくM)≦maxf・
Coroiiary8・6・望n=dimM≧3,迦聖丑竺望狙function f
壁塾nin f<tl(M),塾生皇metric g壁生Ⅴ01(M,g)=1望迫
R(g)=f.
聖三越薫Ⅳ隼7・塾生聖旦M2吐旦聖迫聖生mmlfold5旦些生玉互生
U(町>0望旦dm㌔≧1・塾生,室生聖逆f皿Ctionf望生ⅩM2,
塾生三塁重工吐g蓮生Vol佃1Ⅹ聖,g)=1堅娃R(g)=f・
Pr00f of Coroiiary8.7. Under the assl皿ption,itis not
hardLtO Seethat foranyCOnStant C,thereis ametric gc of
生ⅩM2WithVolqⅩM2,g。)三1弧dR(g。)=C・□
、ロト
Proof of meorem8.互.
The pr00fis simiiar七〇七hat givenin[I2」.so,We Oniy
sketChi七・LetS2T(resp・S:T)denotethebundleof(resp・
p。Sitivedefinite)syTnmetricc。Variant2_tens。rS,and昌2T:
tb S2ヮ;tr b=0)・ktH2,p触S2畑H2,p(M庫),一・もethe
go
Soboie筆SPaCeSOfE2,P−SeCtions(i・e・,uP〉tosecondderivatives
甜eLp)。fS2ヮ,車,…We山耶誠S皿etbatp>n=血M・
H2,p(Mi車)is弧OpenS。ほほ止OfH2,p(M;S2畑弧d
V。1:H2,p(M;車)+】;g十Vol(M,g)
isaCLnaPPingvhosedifferentialisnotzero・FromthisI
there紺eaneighborhoodUofOinK2,P(M;昌2T)弧daC1−funCtion
α:UすR sueb that,putting
抽)=go+h+拍)go for]hEU,
vehw示thefoiiowingpr。Perties(1)@(h)EH2,P(M;S:T);
(2)voi(@(h))=1;(3)◎(0)=goi(h)D◎atOistheinclution
mpE2,壷(M;昌2T)⊂K2,P(M;S2T)・Wenotethat抽)isaC∞metric
if and oniyif his a C section.
me sealar clmature
R:H2,p(M;S…いLp血封
isdefineaasaC1−maPPingforp>n・So}WegetaCl・daPPing
R。◎:U十㌔(M;軋 UC軋p(M;昌軋
ー㌻ト
ThedifferentiaiA‥K2,P(M;S2T)うLp(M;R)。fRO◎ahOisc。m−
A(h)=−Ahii+hiJiij−hlJRij,
Vhere the connection,Ricci curvature,etC.are reiative tO
go・The formaiL2−adjointA嵩is glVenby
A兼(u)=か(u)+β(u)go,
か(u)=一也)go+∇2u・−「且Rie(go)
β(u)=孟転TJR(g。伽g。
A器:Hh,P(M;R)−→・Ⅱ2,P(M;昌2T)isacon七inuouslinearmap・Fromthe
assⅦptionth如しthescaiarcurvatureR(go)isnotCOnStant,Ve
e弧Showthat鮎か‥Hh,p(M;糾すLp他R)isallnearbome皿Or−
Phism,andAoA兼‥Hh,P(M;R)+Lp(M;R)isinjective(cf・【J],[曾],
[/2】.see aiso[件],【之+]for S血e二reiateauもOPics.).Then,Since
Aや_(A★−か)is a compact OperatOr,Ve COnCiud.e that AoA鶉isinver一
七ibie・(迦堕・rfgoIS anEinsteinmetricvithconstant
negative scalar curvature}then AqA★is notinvertibie・This
is a difference from the case vithout vollme COnStraint.)
LetⅤ=(A吋1(U)・DefineaCi→maPPingQ:Ⅴ+Lp(M;R)by
Q=Ro◎qA着.
Then the d.ifferentiai of Q at Ois AoA弟.so,by theinverse
ー!ユー
fupction theorem for Bana・Ch spaces}Qisiocaiiyinvertibie.
=n particuiar,Q(Ⅴ)contains some_/C−baii centered at Q(0)in
Lp(M;R)・
ⅣOwI for the function f givenin Theoren}Ve have a
diffeom。rPhism中。fMsuchthatIQ(0)−foOIL<E(seeuヱ])・
So,thereisueⅤ⊂Eh,P(M;R)WithQ(u)=fo.・
AithoughQ(u)includesintegraisofu,∇u_and∇2u,
We Can See that the eiiiptic reguiarity argumentis appiicabie,
byvriting d.own Q(u)expiicit1y.So,We See that uis smooth.
Thus,亘‥=如A半(u)is aC00RiemannianmetricvithV。1(M,云)=1
and・R(亘)=fo中.Then the d.esiTedmetric gis givenby g=
(¢ ̄1)巧.ロ
ll]T.餌bin,Eq.uations diffgrentieiies noniingaires et
probl昌me deYamabe concernan七1acourbure SCaiaire,
J.Math.pures et app1.55(1976),269−296.
[2】A.Avez,Characteristic ciasses and,■Weyi tensor,Proc.
Ⅳat.Acad..Sci.U.S.A.66(1970),265−268.
:f5]R.Bach,Zur Weyischen Reiativitatstheorieund.d,er Wey1−
SChen Erweiterung d.es Krumgstensorbegriffs,Math.Z.9
(1921),110−135.
lh]M.Berger and.I).Ebin,Some d.ecompositions of the space of
Symmetric tensors on a Riemannian manif01d.,J.I)iff.Geom.
−53−
3(1969),379−392.
[5]J.−P.Bourguignon,Une stratification d.e1−espace d.es
Structures riemanniennes,Composition Math.30(1975),
1_互1.
[6]T.E.Cecii and P.J.Ryan,Focai sets,tal止e血bed.aings and.
the cyciid.es of Dupin,Math.Ann.236(1978),177−190.
[7]H.Z.Eliasson,On variations of metrics,Math.Scand.29
(1971),317−327.
[8]A.E.Fischer and.J.E.Marsden,Linearization stabiiity of
noniinear partiai d・ifferentiai eq.uations,Proc・Symp・Pure
Math.27(1975),219−262.
[9]B.Gidas,W.−M.Ⅳi and.L.Ⅳirenberg,SyTnnetry of positive
soiutions ofnoniinear eiiiptic eq.uationsin Rn,Math・
Anai.and Appi.Part A,Ad.V.Math.Suppi.Studies Vo1.7A
(1981),369−ho2.
[10]M.Gromov,Voiume and,bound.ed.cohom010gy,Plibi.Math.1.H.E.S.
56(1983),213−307.
[11]N.Hitchin,Conpact four−dimensionai Einstein manif01ds,
J.Diff.Geom.9(197h),互35一抽1.
[12]J.L.Kazd.anand F.W.Warner,A direct approach to the d.eter−
mination of Gaussian and.scaiar curvature funCtions,Znv.
Math.28(1975),227−230.
[13]J.L.Kazd.an,Some appiications of partiai d.ifferentiai
eqpations tO PrObiemsin geometry,Surveysin Geometry
Series,Tokyo Univ.,1983.
llh]0.Kot)ayaShi,A differentiai equation arising from scaiar
curvature function,J.Math.Soc.Japan3h(1982),665−675.
−う互−
[15]−,On a conformaiiyinvariant funCtionai of the space
Of Riemannian metrics,to appearinJ.Math.Soc.Japan37
(1985),373−389.
[16]−,Oniarge scaiar curvature,PrePrint.
[17】−,AWiilmOretypeprobiemforS2ⅩS2,toappearin
Proc.of DD6symp.
[18]S.Kobayashi and.K.Ⅳomizu,Found,ations of differential
geometry・,Ⅴ01.2,Znterscience,1969.
[19]Ⅳ.H.Kuiper,On conformaiiy−fiat SPaCeSin theiarge,Am.of
Math.50(1舛9),916−9幼.
[20]−,On compact confornaiiy Euciidean spaces of d.imension>2,
Ann.of Math.52(1950),姉8−互90.
[21]R.S.Ehikami,ConfornaPge皿etryinhigher d.imensions.=,
Buユ1.Amer.Math.Soc.81(1975),736−738.
[22]−,Conformaiiy fiat manif01ds,Proc.Ⅳat.Acad..Sci.
USA69(1972),2675−2676.
[23]−,On the principie ofunifomiza,tlon,J.Diff.Geom.
13(1978),109−138.
[2互】J.Lafontaine,Suria g占om&rie d.Yune gふさralisation d.e
1TgqJlation differentieiie d−Obata,J.Math.pureS et app1.,
62(1983),63−72.
[25]M.Obata,The conjectures on conformai tranSformations of
of Riemannianmanif01ds,Buii.Amer.Math.Soc.77(1971),
265−270.
[26]−,The conjectures on conformal transfornations of
Riemannian manif0id.S,J.Diff.Geom.6(1971),2互7−258.
[27]LM.Singer and.J.A.Thorpe,The curVature Of h−dimensional
ー55−
Einstein spaces,Globai Analysis,Papersin Honor of K.
Kod.aira,Princeton Univ.Press,1969,355−365.
[28]R逐en,C。nf。rmaldef。mation。faR血nnianmetrictO
COnStant scaiar curvature,J.Diff.Geom.20(198h),互79−
互96.
[29]C.T.C.Waii,Diffeomorphisms of h一manifpids,J.Lond.0n
Ma他.Soc.39(196互),131一山0.
[30]T.J.Wiilmore,Totai curVaturein Riemannian geometry,Eilis
How0Od.Limited.,Engiand,,1982.
Department of Matbematies
Keio University
Hiyoshi,Yokobama
Japan
ー56−