D。くf〆謀 P如YでオJm一 ㌔krヶJl<巾軒mhUni仰,−一旬′冊∫ On t0七81eonformal eurvature OB弧Ⅹ01乳ya血i Introduetlon. Let 軋(M)d.enote the space of all snooth Rienannian metrics On a eOmp乱et n−dimenslon81manlfold二虻.We eon8まder a funetional v潮抽)すRde加東吋V(g)‡J拙n/2加g,血reVgi8tbeW町1 COnformal eurv8允We ten$Or Of g.エtis eaSy tO See tbat V(g) d・epen由only on the conformal c18SB Of g.Chw main Sub3ectin 七山S p叩eriS to detemineinftvくg);gG間(M)1,Wbiebvllもe denoted simply t)y V(M).Thisinvariant v(M)is nontrivi81.In fact,if SOme Pon七rjagin nl血ber of MiS nOt ZierO,then v(M)>Q. =npeLrticular,ifdimM=一,Vehavev(M)≧h8汀2lsgn(M‖・More一 〇Ver,if M a由良もS a h81f eonfomはユ1y flモ止metrie,tbenヽ)くM)= 拗218gn(M)I.miBgivesusB。neC。nP血ableex。nPle$。fM,e.gり Vくけ2)三㌦8㌔,e七占.工na組iti。nt。七摘i。叩息1ity,伽で。11m血g is often very u£efl止for eompu七ing v(M). 皿的remA・(i)望Sl空也望加地,迦V(M)±0・ (鼠)V(生が㌔)≦V(生)+V(㌔)・ −1− From(i),Ve get exanpies of Mvith v(M)=O but Vhich has no confornaiiy flat metrics.From(五),Ve have,for exanpie, V(CP2…P2):961∼・Thereals。eXistMlandM2f。rVhich V佃1#㌔)−<V(MJ+V(㌔)・ To d.eternine v(M)for general M seems tO be not SO eaSy. EVenforM=S2ⅩS20rCP2#−CP2,V(M)isnotknown.Forth叫 もhe由止血OrhopesthatV(M)ispositive.AsforS2ⅩS2,Vehave the f0110Ving resuit vhich partiaiiy supPOrtS this conjecture. TheorenB・迦funCtionaiv:Ⅶ(S2ⅩS2)+】R j彗星玉虫Ef0lioving propertieB:(0)V(go)=256T2′3塾生坐聖旦塾重畳建造 go;(i)望gisaKahiermetricforsome盤辿坐S2ⅩS2, 迦V(g)≧V(go);(五)go塾生一一strie七万目迎旦Crltieal蓮生 壁迦nmctionalvi(出目V(g)>6hT2,室生坐eWⅤ如we坐 giB.nOnneg8・tive・ Fron(i),VeCanSeethahV(g)≧V(go)fora町PrOduc七metric g;gi+g2,gi‘刑(S2)・Zn(艶)・thenⅦ血er6h2israhterun, satisfactory,Since6hT2<256¶2/3,butfromthisvecanexpect 醜1easttbepositivi毎OfV(S2ⅩS2). =tisate叩tingqpestiontoaskvhetherv(S2ⅩS2)=256¶2/3 0r nOt.The positive ansver■WOuid be a very nice resuit sinceit aiso gives a positive soil止ion tO a Wiil皿Ore type prol)iem for s2ⅩS2.Foranl皿erSionゆ:S2ⅩS2+S5(1),VeSet W(中)= /S2ⅩS2甜dvg・Where芸isthe血ceiesspartofthesec。ndfundB− mentaifomof中,andgistheinducedmetriconS2ⅩS2.By ¢ciiffordVedenotetheCiiffordenbeddingS2(1/摺)ⅩS2(1/YQ) ⊂S5(1). −2− TheoremC・蓮生¢:S2ⅩS2+S5(1)聖堂imersion壁S2ⅩS2 塾生壬生望生5−鹿・坐聖聖些V(g)三256¶2/3,壁g立 玉垣吐望S2ⅩS2廻吐〇・些竺竺垣望(i)両)三 Ⅴ(¢cllfford)堅迫(五)Ⅴ(¢)=Ⅴ(¢cllでford)望旦垣堕塩生¢= aら転ifで。rd丑竺竺三廼!竺至生transf。rmati。na廷Sう・ A duaiized version of Wiilmore probiemis aisointeresting, foritreiatestothequestionvbetherv(Mi#M2)=Oimpiies V(Ml)=V(M2)=0・WeshaiigivesomediscussiononitinS6・ To prove Theorem B(五三),Ve make use of the Ya皿abe constant u(g):=inf{/MRgdv云′(∫Mdvg)n/(n−2);菖isc。nfomit。g},Vhere R is the scaiar curvature Of g. One of vays toimprove Theorem B(Bi)istodetemineu(S2ⅩS2):=SuPh(g);g (S2ⅩS2)). Byvayoftrial,VeShaiicomputeu(Sixsn−1)insteadofu(S2ⅩS2). TheoremD・望n≧3,迦u(Sixsn−1)=U(Sn)・ This result hasind.ependentinterest,becauseitis knovn that U(M,g)<tl(Sn)un1ess(Mn,g)is confomaitothe stand.ard n−SPhere. We use the method of the pr00f of TheoremI)again to shov Theorem E・塾生望ヱr>0堅娃聖正巳>0,迦三eXistS旦 聖生主ヱg9fSn(n≧3)坐土建生Voi(Sn,g)=1,Rg≧r望迫 m2ⅩRg(X)/m主nRg(Ⅹ)≦1+E・ Most part Ofthis paperis based.on separate paperslir], [ル]and口7]. ー3− Sl.I)efinition and.二畠血Properties. For a Riemamian metric g∈′帆(M),the curvature tensor 《Rl脚力・ theRiccitensorRic=《Rij》=《㌔ikj》,andthescaiarcurvature g Rg=glJRij are d.efined.. The Weyi confomai cur’V’ature tensor W = g 《正脚》is加f加d吋 く1・1)㌔脚=Ri脚一言≒(Likgj九・giklj九一㌔由一gl鵡k), Where (1・2)一Lij=Ri了言て缶gij・ We put W =Oif n=dim M < 3.From the second・Bianchiid・entity, WehaveRi助i=Rj抽−Rjk;且,andhence, (1・3)正脚;i=豊玉C脚・ (1・k)cijk=Lik;了Lij;k・ I)efinition1.1.We d.efine a・funCtional v‥吼(M)→R by v(g)=iMIwよn/2dvg,VhereIwgln/2=(gi,gjqgkriswijk,WPqrs)n/h F。raSdbsetU。fM弧dgくn(M),WeⅥitev(g;U)=与。Iwgln/2dvg・ Lemai・2・(i)V(e2fg)=V(g)室生盟f∈Cq(M)望迫g∈凧M)・ (且)V(中骨g)= V(g)坐工盟diffeomorphism4)三三M・(Bi)V(g)=O jヱ堅迫望虹jヱeither dim M532三g主已旦COnformally fiat metric・ Pr00f.Let W■and Vl be the Weyi tensorB Of the metrics g and・ 2f gt =e gI reSPeCtiveiy・Since the Weyi tensorisinvariantund,er 一年 ̄ a confoma.i change of metric,Ve have くW−,W一㌔−=く叩ち・= e彗W,W㌔・Hence,fromdvT:en㌔v f。rthev。1ⅧeeiementS, W。get tW・tn/2且,一=回n/2且,,Which,T。VeS(i).(五)istriviai, ana(剋)is vel1−knoⅥ1. 口 Using the confornaiinvariance ofヽ),Ve Can reWrite v(g) in some other forms. 器[S可静gisconf。mltogH昔・ (正)V(g)=i可 Vol(叫還);言is eonformal to g弧d 惇Ⅹ)巨1forallxそMU 生壁・(i):WeputJ(g)=(3fWgt2dvg)′(Sdvgfn−h)/h ThenbyH31d.erineqpality,Vehave,for官confonaltO g,V(g)= V(i)≧(J(!))n/h・Hence,・V(g)≧[sIQfJ(苫);冨isconfomait04]n/h Onthe。therhand,Puttingg。=(fwgin/2・E)2/ngf。rP。SitiveE, Wehave n ∵小塙 n n_ト∵∵∵ 「 J(g。)=車g恒かg円く扉・E)丁匝撫: cieariy,1imE十〇(J(gE))n/h=V(g)・ (且):V(g)≦in串up吋n/2)Ⅴ。1(最);言ise。nformalt。gi =in中01(M芯;言ise。nformalt。g,ahd悔(Ⅹ)圧1forallxそMl・ Onthe。therhma,takinggcasabove,WehWe tWg。L= (twgln/2′(twgIn/2・E))2/n<1・M。re。Ver,1ime叫Voi(M,gE)= 1im洲。J(lwgln/2・!)dNg=V(g)・□ 一g− Remark・=n the case of(i),the suprem皿is achievedif and, Oniyif eiもher W≡o or wis novhere zer0.=n the case of(五), theinfi 皿is achieved.if and.oniyif Wis novhere zero. The expression(i)of the aboveiemmaisiike the Yanabe COnBtanセリ,Whichis d.efined.by (1・ら)両,g)=再gi=inf 倉篭;首 比か済’ gis eonformal to g Forthe Yanabe c。nStant U,itis kn。Vn(cf・[7】)that inf行くM,g);gモ咄(M)i=−00,ifdinM≧3・C。rreSP。ndingiy, Pr叩Sltionl・k・生血M≧互,迦S叩卜(g);g∈叫呵=・00・ 聖望旦・LetTn=Rn/2Znbethen−dinensionalt0ruS・工fn≧h, 七hereexIsts ametric ge明(Tn)Withc:=V(g)>0.Then,官塁間(Rn) d,enOting theiift Of g七〇七he universai covering,Ve have v(盲;[0,丸】n)=見。for丸∈乱 Now,iet(Uル)be achart OfMsuchtha.t O(U)=:Rn.Then, foreach且モ甘,VeCantakea=metricg丸OnM地主chcoincides 血b盲in[0,㌦⊂Rn冨U,i・e・,(幅誹[0,踏=笥軌姐聖地∴ 仙shavev(g九号V(g妄;U)≧(軋g且;[0,L]n)=Lnc,andhence limか㌔(g見)=十∞・ロ mis proposition notivates us tO the f0110Ving d.efinition. Definitioni・5・V(M):=inffv(g)ig6m(M)†・ 一‘− Zf M carries a conformally fiat metric,then obviousiy v(M) =0・HoveverI the converseis not true・To see thisIVe nOte the f0110Ving. Pmpo81tlonl・6・塾生旦COnBtmten旦印en弘喝望n= 出mM旦望生王迦堕」V(M)≦cn阻nVol(M)辿丑望盟望望聖聖追堕 聖法皇M,鹿MinV。1(M)=infivoi(M,g);tSeCti。nalcurVature。fgJ ≦11・ 迦⊆星.From Leml.3(五),Ve have v(M)= inf巨1佃,g);lwgl]i We ean cboose a eonstant e so that n 巨g巨1WheneverlsectionalcurvatureOfg巨cn ̄2/n・Th叫 V(M)≦in中01(M,g)itSeCt・cm・悠cn ̄2/ni: inffcnv。1(M,g);lsec七・cm・l≦11=CnMinV。1(H)・□ =七isknownゥforexampieナthatifSiactSfreeiyonM, then 阻n Voi(M)=0(cf.[10]).Hence,Ve have cor011aryl・7・望Sl延追望M地,辿聖V(M)=0・ 坤・1・A compact sinpiy connected・COnfornaiiy flat n−nanif01d工肌はtbeSn([削).Eence,V(g)>Oforang∈qn(S2ⅩS3). Hovever,fromtheabovecoroiiary,Vehave v(S2ⅩS3)=0. 2・Theuniversai covering space of a conpact confornaiiy fiat spacevithinfiniteAbeiianfund・anentalgroupis:Rn or]RxSnこ1 ([20])・Hence,V(g)>OforaligG叫(SPxTq)vithp,q≧2・ Hovever,V(Spx鱒)=0. ー 7− Ⅳext,We re皿息でk that there are nontrivial topoiogicaiiover b01mds for v. Propositioni・8・堅竺旦証Pontrjagin nⅦぬer p,塾生皇 盛望吐epdependipg2匹p望塾建立lp(出場epv(れ Pr00f. Let P be the corresponding Chern−Weii p01ynomial,i.e., P(M)=Sp(Q)・Where。nisthecm血ef。m・血SWaBPOintedby AvezlZ],P(n)=P(Q)・Where品ij:;wijkkek^et・Hence,fp(M)l」≡ 伸銅≦cpv(g)で。ra王Lg)モ明くM)・ロ =n particuユar,if some Pontrjagin nl血ber of Mis not ZierO, then v(M)>0.=f dimM=h,We have the foiiowing more precise 加p。Sitionl・9.望弘mM=吐,迦抽2ls融M)l≦V(M). 望M些旦生壁壬COnfon肥止1y蓮生壁且,塾生V(M)=拗21呼(M)1. 聖望珪・TakeametricgeⅦ(M)・men・fsgn(M)巨引pi(M)l =書く去)2踏朝三号離2日腔j菌i〉加g国吉)2(21)錮2加g :*2(2!)(喜)2かgI2加g=毒V(g)・Hen可sg叫≦V(g)/h8T2 f&allgeq(M),andeqpaiity。CCnrSifand。niyifSl:土一着E2.ロ 塾鱒pies・1・TheFdiniStudymetricofCP2ishaifconfomany flat.Eenee,V(CP2)=h8¶2. 2. A Ricci fiat metric of K3 Surfaceis aiso a haif confornaiiy fiatmetric,Hence,V(K3)=768¶2. 一g− =n dimension f01r,the Gauss−Bonnet formuia also gives some pm卯Sitionl.10.塾日没亘旦主題吐出mM=む,望追g∈拙M)並生 起望塾丑盗塁型生麺Stmcture旦EM.men v(g)≧拗2lsgn(M)巨争2ninf2X(M)−6sgn(M),2X(M)・3sgn(M)j・ 垂望呈X(M)立並辿ebaraeteristie三三m 望塗equality塾 生聖堕望辻堂g並旦旦Einstein盛辿註聖更生. 聖望生.Bythe h一dinensionai Gauss Bormet formuia, (1・6)V(g)=32T2X(M)・ヲ揮cgl2dvg−iSRg2dvg, 0 0 R Vhere Ricis thetraceiess part ofthe Riccitensor;Ric=Ric一軍・ Let Pbethe Ricci fomofthe撼hiermetric g([け]).Then, itis easiiy seen that (1・7)p∧P=(喜R2−2lR;車)れ Since the first ChernCiassis represented.by p/hTr,Ve have 巨人P=162Cき軒=162(2X(M)・3sgn㈲・ This,tOgethervith(1.6)and(1.7),yieids (l.り V(g)=−16¶25g刷・争2X(M)†与匝12か, vhich proveS the assertion.J 旭扉鴫仙spropositiontOS2ⅩS2,VebaveV(g)≧256T2′3 ー9− foranyKahiermetricgofS2ⅩS2,because sgn(S2ⅩS2)=0and x(S2ⅩS2)=互.Forexanpie,takeanarbitraryproductmetricg =gi+g2,giGT叫酌,then v(gi+g2)≧256T2/3・=nthiscase・ (1・9)V(gl・g2)=苧古書Js2感2(㌔−K2)2如, WhereKiistheGaussianCumtureOfgi・Inparticuiar,V(gi+g2) =256¶2′31で弧do正brLFKl=K2=COnS七・≫0・ We give another appiicaもion of Gauss−Bonnet formuia. 打OpOSition Lu・SuppoBe塾生d土mM=九・望望生,旦望∴聖駐 V(g)≧32¶2X(M)一計(g)2 辿・迦equality bolas主三雲旦皇室吐j王g j旦COnfonmaユ立至注 Einstein metric. Proof. S0ive the Yanabe problem for g,and ve get a metric g confornal tO g for which the scaiar curvature R−is constant, andR−Voi(M,;)1/2=U(g).ThenfromtheGauss−Bonnetformuia∴ノ, g v(g)=V(喜)=32¶2X(Hトか㈲2・2鮭亘悔 ≧32¶2X(Mトかほ)2・ =tisciearthaも亘isanEinsteinmetricifv(g)=32¶2X(M)−U(g)2/6. Converseiy,if gis conformal tOanEinstein netric gt,then,by atheoremof Obata[ir],g.is a s01ution ofthe Yanabe probiem, −Jo− i・e・,Rg・isconst鋸止,8皿dRg・Voi(M・g一)1/2三U(g)・Therefore・ V(g)=3釦2X(M)・山g)2/6.ロ FortheYanabeconstantu,itisknownthatU(Mh,g)< U(Sh・go)=8YqTuniess(M,g)is confornaitothest弧d肝d sphere(Sh,go)([(],[27】,SeeaisoST)・So,Veget Coroll象ryl・12・三ddmM=恒蛮川畑,g)≧0,迦 V(g)≧32T2(も2(M)−2㌧(M)), 垂望三㌔主星迦1世坐璧追坐坐M・望生equality望聖望旦 望珪已互塾生(M,g)並eOnfomal迫堂泣Stmぬrdk鹿・ F。reX弧pie,ifg色珊iS2Ⅹ二線‖鹿n。nnegativescalarcurVature, then,U(g)≧0.ThuB,forthismetric,V(g)>6hT2・ $2・Proof ofでbeorem A・ =n this section>Ve Shall prove Theorem A}and・also mention SOme renarks onit. Aithoughthe part(i)of the theorem haS aiready been seen inthe preceding section(see coroiiaryi・7),Ve give a d・etaiied・ PrOOf for compieteness・ 一日− Pr0Of。f(i)・Let Kdenotethevector fieid.。nM血ich generatestheSiaction・SinceSiiscompact,thereisanS1− invariantRienemnianmetric h onM,forvhichKis akiiiing VeCtor fieid・Since the actionis free,h(K,K)is n。Vhere zero,hence,g=(h(K,K))−1h aefinedaRiemamianmetric. Then ve have (2・1) ∠Kg=O and 如,K)=1. Nov>COnSid・er a faniiy of Riemannian metrics 頼七);0く二七≦15 (2・2) gij(七)=gi・(1−t2)αiαj, Whereαis thel−formass。CiatedvithKwithrespectto g=g(1), i・e・,αi=gijKa・TheinversematrixgiJ(七)iseasiiyseento be glJ−(1一七一2)KiKJ・Then,uSing(2.1),Vegetthereiation betveen the Christoffei sy血01s of g(t)and.g: (2・3)r矩)−r千・=−(1一七2)(㌔;iα了㌔、溝), 1J 雨lere the covariant d・erivationin the right hand.sid.eis taken aS One Vith respect tO g・Fromthis and.(2.1),We have (2・吊 Rl脚出−Rl脚 =−(1−も2斬謝長一(ノ㌔溝);丈・㌔R土地鵜十毎。;kヰkα。;丸1 ・(1一七2)2Ki溝(㌔隼えーα武k)・ ーIZ− ℡hen,aga,in using(2.1),Ve have (2・5)gjb(t)(Rl脚(七)−Rl脚) =−(1一七2)世b畑k一(㌔甑;九・㌔武k一㌔武史! +(1−㌔)巌jRi脚・ gjh(七)Rl脚=Rihkえー(1イ2蛾jRi脚・ (2・6)gjh(七)Rljk拒)−Ribk且 =−(1一七2)軽;h畑k一正甑;九・㌔武kヰk㌔詔・ ⅣOtethat(2.6)doesnot containtemsoftー2and.thatbothsid.es Of(2・6)aretensors oftype(2,2)・S。,thereis a constant c suchthat!R・・叫2(七)くc forall“(0,1]・Inpart山鹿, fw(七昭t)<C・Ontheotherhana・thevoiⅧefom dv(t)reiative tO the metric g(七)is easiiy computed as dv(七)=t dv.mus, Vegetii㌔+。V(g(七))=0・Hence,V(M)=0・ロ We have actuaiiy proved.the foiioving:・V(M)=Oif M ad皿its a Riemannian metric for vhich thereis a nonvanishing Kiiiing VeCtOr field. For the pr00f of part(且),Ve need the f01lovingie皿a. ー13− lem182・1・蓮生gぐ珊(M)虫塵ヱ望・塾生,史竺旦聖生C>0上 垣室生言ぐ軌(M)望生辿堕卜(g)−V(研く∈聖旦官立塾生 主星皇註三匹聖Sl止Set三三M・ 空望三・Let(Uル)be a chart ofM suchthat ゆ(U)つ 巨蛾回くり and・in the c00rd.inate expression of the metric gfU=gij(Ⅹ)dxidxj, (2・7) gij(0)=6‥ hoids・TakeanonnegativesmoothfunCtion n:RnウR suchthat n(Ⅹ);1if回≦1/2,and n(Ⅹ)=oif回≧1・Weset nt(Ⅹ) =n(Ⅹ/t)・Thesupportof ntiscontainedin Bt=fx‘Rn;回<t3・ F。rO<七<1,VedefineametricgE職(M)by紳\U= glM\Uand (2・8) 琶ij=(ト∩再1了情j inU.We shaii showthat官has the d.esired_PrOPerties for Ztf0110VSfrom(2・7)andthedefinitionof ntthat (2・9)恒i膏j車elt,1両<e了1∴笹七巨1七 ̄2, for some constant ci・Ⅱence, 悔巨e2 and 巨2掃くe2(七 ̄1・1) for some c2・Then,Puもting ft=諦扉(det(ちj))2, ∼=巨 甘e Can eaSiiy see that (2・10) ft<e3(もー1+1)2・ mus,Ve get (2・11)J㌔ft血≦e3(t ̄1・1瑞七飯 =Ch(七 ̄1+1)2一七m=C距2・七)2・ tv(g)−V(糾 =lv(gi√㍉Bt》−V(紬 ̄1(㌔Dl ≦V(g;√bt》瑠Btft血・ Therefore,from(2・11),VeCOnCiudethatIv(g);V(g)卜乍Ef。r asuffieient1y smallt.工tis obvious from(2.8)tbat宅is flat i叫−1(Bt)・□ Proof of part(五)of Theorem A. Let EbeaLnarbitra町POSitiven血ber・Taよegi<朝(Mi)so thatV(gi)≦V(Mi)+C,i=1,2・Bytheaboveiema,VeCan ehoose乾く叩くMi)sucbt旭V(ち)≦V(Mi)・2Eand竃iisnaも insomeneighborhood・OfMi・Supposethat forsomer>Oand・Pie Mi, ちisflatinUi(pi;[0,2r》;vhere Ui(pi勅2かい彗沃(Ⅹ,pi)∈【0,2可, Where d・・isthe distance functionofthemetric gi,i=1,2・ Wedefineadiffeomorphism かUi(pl;(r/2,2r》→U2(p2;(r/2,2r》 by ーげ− by 2 中(expplX)=eXpp2( ̄野中0(Ⅹ)), Wbere¢0:TpIMi→Tp2M2isaiinearisometry,andexppidenotes theexponentiaimapqtpi∈MiVithrespect七〇ち・〉Thenvecan reg訂d生純2aSモ隼Ul(plれr/2】)?項M2\U2(p2;恒/2叶 ∴ ̄ Let fibeapositive smoothfunctiononMiSuChthati fi(Ⅹ)=(芭(pi,Ⅹ)) ̄21f招くろくpl,Ⅹ)<2r・men,瑞is a・RiemamianmetriconMi,and・isconfornaiiyfiatinUi(pi;[052r))・ 肋e。Ver,¢;(卑pli(r/2,加)),fA)→(U2(p2;(r/2,2r)),f糸) becomes anisometry.Eence,Ve Can d.efine a Riemian metric g匡\Ui(pl;[0,号】):=瑚Ml\Ui(piれ…]), V(g)=V(f鼠;当\Ul(pl;[0,号])…(fみM2\U2(p2れ2r]) =V(fA)・V(f其) =V(ち)+V(ち) ≦V匝1)十V(M2)+hE・ merefore,両1約2)≦V(MJ+V(M2)+厄‥ forarbitra町E>0・ matis,Vq約2)≦V(町+V(M2)・ロ 璽三並主聖とヱ・買.・望V(旦)=V(㌔)=0,辿聖V(旦紺2)=〇・ ーJもー As ve can see from this coroiiary,○ur:reSlユ1tis ciosely reiated.to a theorem of二Kulkarni[il,22,23]Which assertS that COnneCted.SumOf tvo conformally fiat nanifoid,S adnits a fiat COnfomai structure.The author d.oes not know■any COunterlT ex餌lPie to the converse of the above cor011ary(or mユkarni−s theorem).Thisi盲〉aVeryinteresting question,forif the con− verseisaffirmative,thenve二C盛iget,forexanpie,V(CP2#TpCP2) >0・CP2#−CP2as・WeiiasS2ⅩS2is,inasense,akeytofurther understand,ing of V.We shaii againtake upthis probiemini‘. Exa皿Pies・1・ Althoughour fonnula−r for connected,SunSis an ineqpよ1ity,Ve Can get the exact Vaiue of v(M)in some cases.As atypicaiexample,WeShovv(CP2#CP2)=96¶2:FromProposition1.9, V(CP2#CP2)≧h8T2tsgn(CP2#Cp2)仁=96¶2.0ntheotherhand, V(CP2#CP2)≦2V(CP2).sincevehaveaireadyseenV(CP2)=48¶2 inii,COnSeqPent1ywehave v(CP2#CP2)=96T2. 2・mere eXistMland・n2for■Whichthe strictinequality V(Mi#M2)<V(Mi)+V(M2)hoids・=nfact,itisthecaseifMl =CP2#CP2andM2=−CP2・Toseethis,Wefirstnotetha七 cp2#CP2#−CP2isdiffeomorphictOCP2#S2ⅩS2〉([刹上 Hence, V(Ml約2)≦V(S2ⅩS2)+V(CP2)=V(S2ⅩS2)+V(Mさ)・ ≦苧而2…(M2)<96㌔…(M2) =V(Ml)+V(M2)・ 一17− 月旦・Variational formuユa∋in dimen或on h. =n this section,Ve Shali shov the first and.second.variational fonm止as ofV‥触(M)→R for eomp批t hⅧ8血fold二的.mrouかOut tbis SeCtion,Ve uSe the f011Oving abbreviation for shortnessI sake; 1・OnittingthesⅦm醜i。nSigns,e・g・,Ci3k;k・㌔ヂijk一一 standsfor ∑k,且gkLcijk;九・㌔,且,mgk且hWnij且; 2・id・entification throughthe du息iity d.efined by metric e.g., S芸=喜師彗舶−bl。;k)st弧由forS芸=餌伍拘i・甑。 −hiji見)・ The first Variationai fornuia hasかeady appeared.in an aれiele[5]by R.Bachin1921. Proposition3・1([3])・SuppoSe壬 生M 且皇且主 もt manifold. 坐dinension h・Then for a snooth cuⅣe g=g(七十塾側畑),望如 意V(g)=2J跡g),お〉如g, 塾Ⅹ室生地主2麺聖堂三主空色吐Ⅹij=Cij抽・塩でijk (三三三(1.1),(1.2)望追(1.h)坐臥室生W,1聖迫C). 聖更・Weset hij=苗gij andS芸=怠惰・Then, (3・1) S芸=喜(bjk了b鋸−bij;k)・ (312) 怠㌔ijk=S品;了環;k Then,f卸(1・1)andeiementaryalgebraic properties。fcurVature tensor,Ve have へI冨− ㌔ijk(怠㌔ijk)=㌦ijk(2b獅m・khij)・ Theref。re,uSing怠gij=−hijand怠dv=喜hiidv,Weget 主意V(gト=伊ijk(2bi錘・㌔㌔i。)一㌔粛㌔振九・喜W㌔ijか =匪jbij−(㌔ij濃j見一昔W2㌔見)㌔か, Vhereve use Stokes−fornuia and.(1.3).Thus,Ve have oniyto prove㌔ij謹ijA=帥2g餌・ =tis knovn that a.syⅦmetriciinear transfornation on the spaceof2−foms A2comutesviththeEodgestar鷺:^2ぅ^2 (since the argl皿ent hereisiocai,Ve need.not assume Mis Orientabie)if and・。niyifits Ricci contractionis proportionai tog(cf・[L7;The。remi・3])・Vievedas as四metrictransfomation onA29theWeyltensorcomtesviththetheHodgestarIbecauぷe the Ricci contraction of Wis zero・Hence} VoW aiso coEnutes Vith the Hodge star}and・hence●the Ricci contraction of WoWis PrOPOrtionaltOg・Thatls,WikabWabjk=入gijfors皿eSCal甜入1 血ehimplles㌔ij謹ijA=帥I2gk見・ That Ⅹis symetricis not difficuit tO See from Bianchi■s ldentities. ロ Comllary3・2・望d主mM=互,生垣Ⅹ塾生fqu。VIpg PrOperties;(i)もrace X=0;(且)divX=0;(jii)Ⅹ⑳gj旦COnfornaiiy invariant. Proof.Easy conseqpence of Lem1.2. ロ 、門− 坐mll鮎7三・三・三d土mH=k望迫gG凧(M)且且 pnfonn中主旦 聖Einsteinmetric,迦gj旦旦Criticai由良坐り:朝(M)一ナ丑. Pr00f・Obviousiy,Ⅹ=Oif gis an Einsteinmetric・Thus, the assertion f0110VS from Coroiiary3.2(鮎). ロ Zt may be哉pPrQPriate tO Shovthe principai sy血boi of X(g) in this piaceI Sinceiti88180a Principai part of the second. Variational formula. 塾王達・塑迦出盛星口∈‥62押すS2響,∈∈響ノ 廷堅生nOniinear車型壁吐P哩differentiai坤gト}Ⅹ(g) 牢h)=喜田hh一書が(h(∈)か∈・∈恥ほ)) ・喜伽(∈,)い(trh桐侮◎∈ ・喜(h(∈,∈)−(trh)l引2)国2g・ 呈 pp rtieuユ早手,室生∈≠0, (i)血ロ∈=恒S2叩;trll≡0弧d昭)=0右 (五)馳r彗=恒S2州;h;ag・卸”〇日orsomeaを紬d惟叫; 也)C∈(h)=封鍋飯b∈加㌔=(Ker㌔上 空望三・Straigbtforward calculatlon. 口 ⅣOW,We Shali compu七e the second.variationai fornuia.To d.〇 七his}We reViev the Lichnerowicz Lapiacian and・d・eCOmPOSition of the space of symmetric2−tensor fieids(cf・[隼]). )20− Definition3・5・ThetangentspaceTg価M)of椎M)atg is naturaiiyid.entified.vith the space of sm00th sy皿etric 2− tensorfieidsonM・TheLichneroviczLapiacianAL:Tg凧M)→ Td鶴M)isdefinedby (Alh)ij・ ・=(Ah)ij+hik;kj−hik;jk+hjk;ki−hjk;ik, 血ere A:Tg硯(M)→Tg搬M)isthe空也Lapiaciem;(Ah)ij= hij;kk(our・SignconventionofLapiaciansisopposite七〇七hat usedln[牛]). 壁空し主旦・(1日Alb)ij≡(△h)ij−hik㌔−Ri鵡5−2塩㌔ijk・ 壁聖呈,室呈dhM=互,迦 (ALh)ijこく△h)i了2(hikEkj+Eikhkj)・くE,h〉gij ・恒h)(Ei了誌jト車bi了2㌦ijk, 垣Eij=Rij−(R州gij・ 扇!M〈h・,△もh−ウ加=一最中・,鈷・戸(h−ij;k−h・ik;j)Ⅹ (h一一ij;k−h一一ik;j)・2h■ij;jh”ik;ktdv迦h一,h”GTgPL(M)・ (弘)SMくb一,△lh一・沖=揖h・ij;k呵ki・h・一雨−b一一ij;k) 一2h・ij浩k;k巨 迦b・,b一一島でg帆(M)・ Proof.Easy and.0mited.. 口 通ma3・7・望M室生望盟主聖塾生,り仰)迦聖 辿垂迫decompositi。niTg価M)=諸。(g)eA1(g),悪望望 ■ヱト }。(g)=fheTg佃);trh=0,divh=01壁31(g)= 恒でg湘M)ih=gug‥g室生盟主u鴫(M)坐錐♂(M)・ Thisdecom卯Sition並_grthog?nai建迫望萱盟生垣迦L2史些三 塑・Put P(u):Jug−(1/n)(tr∠ug)gf。raVeCt。r fieid・u・ThenIitis ea・Sy to check that the principal synboi OftheiineardifferentialoperatOr P詫(M)→Tg明M)is injective・Hence,T♂(M):KerP*OInP(cf・[牛]),Where P兼is the fornai adjoint OPeratOr Of P.P#is computed.as P*(h)i=−2(hij−(1/n)(trg)gij);j・Fromthis,Ve加ve KerP兼=J80¢COO(M)・g・Then,PuttingJ81=COO(M)・g+InP, We get the d.esired.d.ecomposition. 口 ReMks・1.Let G be the senidirect product Of the diffeomorphismgroup A(M)and.C’’(M)vithznuitipiication; く恒fl)・(¢2,で2)=(¢lO¢2,flO¢2日2)for町中2‘かM)and fi,f2eCP(M)・Then,Gactson吼(M)ontherightasf0110WS; (g,(中,i))けe2f¢第g,ge喧(M),¢eA(M)弧dfCCLP(M).Lezma1.2 saysthatVisc。nStantOneVeryG−。rbitin仰(M)・31(g)inthe aboveleⅢmais regard.ed.a.s the tangent SPaCe at g of the G−Orbit 2・Usingtheorthog。naiitybetveen範emdj1,Wehave anisomorphism/名(g)e/Ji。(e2fg)ihりei2−n)fh・lndinensi。n2, thisreduces七〇七hatJ20(g)=J30(e2fg)foranyfそC”(M)・More− 0Ver,Xo(g)isfinite弘mensionalifdinM=2,anditisvell− knovnfromtheRienann−Rochthe。renthatdimメ。(g)=Oifx(M)≫0; ー22− 血ノ。=2ifM=㌔;血メ。=11fM=mein−sbott1ei 血ガ。=−3X(M)ifx(M)く〇・王草地M≧3,』。(g)isa加ys infinite dimensiona1. The foild甘ingis themin resultin this section. 聖PfOBltlo乱立旦・卓叩p些些H虫旦型鱒止ギ些旦廷 d土mensl。n h,坐gG朝(M)虫旦eritieal迦正坐V:州(M)→丑. 塾㌔生旦塾生望辿生g辿迫g。=0,望迫h生月。(g) 望聖望望L廷(dg/呵弼∈ワg竹(M)・辿, (怠)2V叫弼≡JHk△もh・争,付争〉 ・くE叫屯h・3hEセ馳〉・図2回2・回2−号如ヂ ・S紳‰bi。);k−争ijR;m→(丑。b−h。E)血;了hi轟k−2㌔j?址ち −2hijh血Cijk; Eij=Rij一誌j,(E。h)ij=Ei鵡j 坐 S昌=書くbjk;1・ ̄㌔i;j−bi。;k)・ 聖望三・Fromthe first variational fomuユa(Proposition3.1), (dv(gt)/dt)=SM(X(gt),(dgt/dt)hdvt・SinceX(gt)’メ。(gt) (CQrOiiary3・2),Vehave(dv(gt)/dt)=SSⅩ(gt),hadvt,Where ㌔isthe.go(gt)component。f(dgt/dt)・Thus,SinceX=Ⅹ(g。)= 0,Ve get 一23r (3・3)(怠)2V(gt)lt=。=2J無血〉れ, Where:me弧S(d/a)七=Oii・e・:i”dX(gt)/d巧七=0・Ifwe write X=(DX)(畠),We Can See X=(I)Ⅹ)(h),beca.use thatⅩ=O is a conformaiinvariant PrOPerty by Coroiiary3.2(Bi).Eence, it Suffices tO PrOVe the fornuia・:und.er the assumption tha七色= h強くg)・S。,WeaSSumeinthefoiiovingthahhij=畠ijand b‥=0,hij;J=0・ From the d.efinition of X, 射)支‥=(gkmcijk訂・(gkhk㌦ijk)● 三(eijk);k一塩Cij抽一堤Cmjk−S芸Ci血 ・i定㌔ijk・工血甲ijk一㌔九㌦ijk・ From the d.efinition of C, (3・5)cijk=(Llk);j−(もij)ik・S芸㌔j一環塩・ From the d.efinition ofI}a.nd.the Lichnerovicz La.piacian,and. (3・6)ii。ニー書くAlb)ij−軋了帥頑gij・ (3・7)(もij);k(hij;k−hik;j)主封ム詞2・恕b・△lh〉 ・書く里方h〉弓酔,言草, dlerethemeaning。fthen。tation主isasf。110VS;f。rfiandf2e♂玩), ■之隼− vewr摘fl主で2ifJMflか=侵2dv・ Then,fron(3.5),(3.6),(3.7)and.Le皿a3_.6(i), (3・8)】宰土j轟hi了定㌔ijkbij 圭一Cijkhijik・甜ijkhij =肛ij);k・環塩)(hijik−bik;j)十定㌔ijkbij 主音鶴bl2・封h,頼〉・古顔Lh,宣中豊描h〉 ・S芸転(hij;k−bik;j) 弓(△1h)ijbk㌔ijk−翫轟でijk =喜仏1可2・艶,ALb〉・恕2回2 ・く叫△1b・斡・環塩(bij;k−hlk;j)・ From(1.1)and.(3.6), (3・9) hijがijk =b土j凄ijk一書(㌔凸k・毎ik一㌔㌔蛸k・症k 一塩blj−kgi了㌔見1地類一弘i詞 =hljk伊ijk一書(巨。牢・2〈M直上く1・b,皿〉 一回2回2−号軋り) =hi㌔k㌘ijk−′恕h軒〉・車叫払lb・唇E・討〉 一之ぐ− ・皇国2畔一鉢可2−麺や2・ FromIJe皿a3.6(i), (3・10)−bij魁㌔謹ijk =雛,△もb〉一計最h〉・妄R2回2−麺。滝h〉 ・くE叫喜△Lb・b。E・討〉弓叫2一拍,ザ・ From(3・2),Bianchi−sidentityLij;j=R;i/3andusing (3・11)環塩(hijik−hik;j)・hi轟k許ijk =環(khij);k一環塩詔ij−S芸i(khlk);j ・草加hik・bijk賎;j一環;k) 主張(kbij);k一挙かi凸m 一報(㌔㌔ik・㌔㌔比);j一報(kbik一㌔㌔紘);j ・S芸毎;jhik−S毘塩;jbi了S芸声i轟k);k =2環(khlj);k−hiij(khik・塩1ik);3 −S;(hjR;m・!(E・h−h。E)mi;3−hikCm。k) 主2環(‰bij)ik・撞(Rhlj);k弓やh,言ゆ −S抽ijRm・書くE。h−b。封mi;j−blkCmjk) 一之畠− 主封h,頼〉・麺。最h〉・か,言h〉 ・S芸瀬‰bij);k守ijR;m一書(E。b−h。E)血;・hikC。品 Stming up(3.8),(3.9)and.(3.10),then s血stitu七ing(3.11), We Obtain from(3.4)the foiioving; 草津ij 主封△㌔12・泰阜,ALh〉・忘R2回2 ・卓。h,2Alh・を。E・可・喜IE円bl2・錘・hl2−如,bプ ・朝2(‰hij);k一事ijR;m一書(E。h−b。E)由j ・2hik㌔jk一塩C址1 −hijh加Cijk;m Thus,from(3.3),We have the d.esired.fornuia. ロ Cor011ary 3.9. Under the seLne aSSl皿Ptions and.notaions as in Proposition3・8,坐SeCOndvaria・tionai fornuユa生望Einstein metric g(三三・Coroiiary3・3)生望foiiovs: (怠)2V(㌔)七朝≡伊lh・昔h,△上目号b〉れ ー27− _§_互,Pr。Of。f Theorem B. 工n this section,Ve Shall prove Theorem B.Parts(0),(i) and・(鮎)of the theoremhave aiready shovninii.So,Vhat we Shouid−dois proving part(且),i.e.,Stabiiity of the stand.ard 阻nsteinmetric ofS2ⅩS2. We begin with the d.efinition of stabiiity. Definition h.1.Let gも凧(M)be a criticalpoint Ofthe funCti。naiv:刑(M)→R・Then gis said.tobe辿if (k・1)(怠)2V里t=。≧O foraiLSnOOthvariationgtwithgo=g・Moreover,gis said tO be strict1y stabieif gis stabie and.if equa1ity of(互.1) b。1ds。nlyvhen(d中呵七=。∈β1(g)(cf・Le鱒3・7)・ Remark・=t f0110VS from Lem1.2thatif gis a(strictiy) Stabie criticai point Of v,then soisany metric confornal to g. 軸1es・1・如eonfomユ1y flat metricis staゐ1e. Any half eonformally flat metric of a eompae七一一maエ止foldis stdble(cf.Propositionl.9). 2・Setting the scaiar curvature R=Oin Coroiiary3.9, We See that any Ricci flat metric of a compact h,4anifoid.is 3・Letg叫(Sh)bethestandardmetricofconstant CWVature L Then,gis strict1y stabie. 一之才一 Proof・Since gis an Einstein metric,Ve have oniy to Js互くALh・号h,△Lh・号h〉加か f。rauh6J80(g)andthatequalityhoidsonly血enh=0 wehweR=12弧dALh:gh−8h forhGB。(g)・ (cf.Le皿a3.6,(i)).Eence, 5仏工b・書h,△もb・号h)か =5くZb−2hふ一旭)か =揮hl2−6くh,飢〉・8時か =5(馴2・6回2・8lhl2)dv20・ Ot)Viously,e耶息1ityimplies that h=0. □ 打00f of meorem B(五). =n this proof,Ve denote by g the standmd.Einstein metric ofS2ⅩS2・Wevriteg三g一十g一一wheregtandg.一areRiemamian metrics ofS2vithconstant GaussiancurVaturei.Thenthe cur− 仇2)RhLijk=(gTnjg−ik−gIijg一km)+(g”mjg”ik−g一一ijgI.kn)・ Forhを・80(g),Vedefinef∈C(S2ⅩS2)anah・,h一・,首 即g刑(52ⅩS2)asf01lovs: {ユデー f=軒jg−ij=一書bijg・・i。, h−ij=gTikhkng一m3−fg.ij, (l.3) hH‥ 1J=g−fikh血g−rnj+fg一.ij, hij=g−ikhkng一一mj+g一一ijhkmg,mj Then,g=h’+hTT+h+fg■−fgT;andthisdecompositionis Or地ogonal.町(互.2),Ve have 往・互)Aij=h−ij+h一一ij−fgtij+好一ij, vhereAij=脾㌔ijk・Then,aStraightforWardcompl加tiongives 回2=回2+帖2+止2, hij謹㌔ijk=回2+回2−hf2, (し.う) (録1㌔平㌔ijk=〈b−,芸bウ・くb一一,Zb・−トhfAf, 搭可2=lghtl2・l芸b車+互(△f)2+広畔, しい呵2=l∇叫2・圃叫2・叫∇評・幽2 ThuS,uSing Lemma3.6(i),(h.2)and.(h.互),We get (九・6)∫く△Lb・2b,Alh・書中 =狛Al2・担転k一也(紺jh㌔jk・桝2・号榊2巨 =5桝l2一項,左hウ・号佃2・・阿2 ・讐回2−中一,鉱一〉十号け叫2・lgh−平 一才0− ・号圃2・l富津 †号古16f△f・号困2・h嗣2ちか =封書(回2・回2)・普く阿2・呵2) ・(断・i2・断−l2)・号畔2・園2 ・号(△‥2f)2十号Af(Af・2f)巨 ?0, becausethefirsteigenvaiueoftheLaplacian−A。f(S2ⅩS2,g) 152,andheneeJAf(Af・2f)か≧0. Ⅳext,Ve COnSid.er vhen the eqJlaiity of(h.6)h01d.S. Ot)Viousiy}the e甲11iaty h01d・Sif and・Oniyif hT =hll=0} ▽冨=Oand Af+2f:0.Since divh=0(seethed.efiniti。n 。f,80(g)inLe皿a3・7),theconditionshT=h・一=0and∇冨=O yieid f=COnStanも.Then from Afl2f=0,Ve have f≡0. matis,h=首弧d吼=0・エnpar出血r,屯h=Ah=0・ ThenfromLema3・6(i)弧dRij=gij,Weget (l・7)hl了が㌔ijk=0・ Ontheotherhand,fron(h・h),bmk㌔ijk=0,Sinceh=h・ Hence,from(4.7),Ve have h=0.Thus,the equaiity of(h.6) bolds only雨Ien b=0. Ⅳ0■the assertion f■0110VS from Corollary3.8. □ トJ/− ;E:.Additional remarks. From Theorem B,it seens tO be reasonabie to conjecture that v(S2ⅩS2)=256¶2/3・=fthereshouidexistacounterexampie七〇 七heHopfconjectureOnnOneXistenceofametricofS2ⅩS2vth POSitive sectional curvature,thenit night be a candid.ate of a COunterexa皿pie tO OurCOnjecture. Thisisl〕aSed on theid.ea that Verylarge conformai curVature prevents positive(or negative) SeCtionai clmature・Since ourinvariant V(g)is given byinteg− ration,it misses aiot Of fineinfornation on conformai curvature. Soitis not so ciear to see the connection betveeniarge V(g) and positive(or negarive)sectionai curvature.in this section, Ve give a fev ot)SerVationson this topic. Le血a H・軸ppo紙土建生む血M=一望堕g∈帆(M)室生metric 建生nonnegative(望望聖PqSitive)sectionai cumature・塾 生辿迫幽重出辿;3慢2≦甜g2・ 塾生・Letiei,e2・e3・e直eanorthonomaiframe・Then, fi=ei^e2+e3^eh・f2=ei∧e3+eh^e2, f3=ei∧e互+e2∧e3,fh=ei^e2−e3∧eh, f5=eiへe3−eh∧e2andf6=ei∧ek−e2∧e3 forman。rthonornaifrauof疋(in。urCOnVention,ei^ej= 去(ei◎ej−ej⑬ei))・WeregardthecurVaturetensorasaiinear transfomati。nOf/ピ・Then,Withrespectt。thefreLneh右ve have the f0110Ving matrix representation of the curvature tensor; ーJ2− (七:…), Vhere A and C are3Ⅹ35ynmetric matrices vith tr A=tr C= Rg/2,and Ell十五22 E23−E11Eh2+E13 B=(㌔β)= E23+Eh1Ell+E33 Eh3−E21 E始−E13 Eh3+E21Ell+E仙 血ereE‥=R・・−(R/h)gij・ZtisknovnthatAandCcanbe diagonaiizedf。rSOmeOrthonomaifrane feil([27;meOrem2・1])・ So,Ve Write 昔・入10 0 A = 0 昔‥20 0 0 昔・入3 昔・畑 men,入1十人2十人3=リ1+リ2+い3=0弧d (5・1)履2=∑;去1人α2傘∑…=1リβ2・ A2−fom correspond・ing tO a Piane sectionis of the foとm ∑;=1∈αfα・∑ β=1鳩十3 Vitb ∑∈α2=∑nβ2;喜・ ーJ3− TheTefore,if sectional curVatureis nonnegative(resp.non− (5・2)専らα2(昔・入山苓購・吋・2宗冊や≧0∴ (resp・≦0), f。rall履頑車β卜ith∑∈α2=∑¶β2=1/2・蝕omth毎 itis easiiy seen tha七 号・入α・リβ≧0(resp・≦0)無血1α,β・ 3Rg2三‡(号・入1・吋・(号・入2・り2)・(号・入3・吋う2 ・博・入1・い2)・(号・入2†吋・増・入3・吋!2 ・勘入1・専・(号・入2・り1)・(号・入3・リ2巧2 ≧芸(号・入α・吋2 =R2・3(∑入α2・∑Vβ2)・ Therefore,from(5.1),Vehave2R2>3W2・] Cor011ary5.2.辿M生皇COnPaCt k−dinensionaimanif01d・, 望迫g∈帆(M)曇生Einstein地建生nonnegative(望n。npOSitive) sectionalcuⅣahure,圭迦聖.V(M)≦128T2X(M)/5・ 聖望三.Fromthe Gauss−Bonnet formi1a(1・6)and・the above iem,We have ′J午− V(g)=32¶2X(M)−封㌔加 ≦32T2X(M)−かくg)・ Hence,5V(g)≦128T2X(M).ロ Corollary5・3・蓮生M壬生旦eOmpaet hm餌11で01d・ (i)望MadnitS旦生Einsteinmetric虫主生nonnegative sectional 望三重望,迦庫(叫≦泰(M)く5・ (ii)主EMadnits旦已Einsteinmetric壁生nonpositive sectional 望望互望,望聖Isgn(M)t≦み(M)・ 空望三.=neachJOfcaSeS卜五七iseasytoseethahlsgn(M)L5 8X(M)/15でrom Propositlonl.9弧d Corollary5・2・ =f gis an Einstein metric with nonnegati’V’e SeCtional CurVature}then we get from Coと011aryi・12 32¶2(X(M)一2)≦V(g)≦竿T2X(M)・ Hence,X(M)≦10・Moreover,fromthe eqJlality condition:Of Cor011aryi・12,We have x(M)≦9・恥enthe nⅦ血er ofpos畠ibie pairs(X(M),Sgn(M))is finite,andve caneasiiyseeIsgn(M)I ≦X(M)/2・ 口 迦聖生.でhispropositionsiigh七1yinproves Theorem2。fl川, where8/15isrepiacesby(2/3)1・5(>8/15)・ ーjr− S6.A WilhlOre t e roblem. Let¢‥Mn+Sn+1(1)beanimerSionofacompactn−nanif01d intO the Euciid・eanunit(n幸1)−SPhere,and h the second.fund.eunen_ tai foヱm Of 4)・By h we d・enOte the traceiess partノOf hi.e., h=b一書(trgb)g, 血eregisthemetricon㌦ind.uced.by中.I)efine甘(¢)by 叫)=J㌦帖vg・ =tis ea.sy to see that W(4))is a.conformaiinvariant Of the i皿erSion中,thatis,Ⅴ(¢)=甘くao¢)for弧y M8bius tramfor− mationa∈Conf(Sn+1). The famous Wiilmore conjectureis stated as foiiovs. TheWiiinoreconjecture.Foranyimer$ion¢:T2十S3(1) Of2−dimensionai torusintO theunit3−SPhere,the foiioving (i)V(.)≧甘く¢clifford),Vhere¢ciifford:T2+S3(1)is tbeClifforde血由姐喝Sl(1/招)ⅩSl(1/摺)CS3(1); (正)W(¢)=Ⅴ(¢clifford)土fandonlyif¢iseonfon脈止七〇 ¢ciifford,thatis,thereexistsaMSbitutransfornaJ=ionae Conf(S3)suchthat¢=aO¢ciifford・ 地this section,We Sha.11consiaer the sa皿e PrObiem for SPxsP・町中ciifford‥SPxsP+S2p+lwedenotetheCiifford e血beddingSP(1/YQ)ⅩSP(1/招)Cs2p+1(1)・Bygo’勺肌(SPxsP), 一j‘− ved・enOtethe stand・ard・Einsteinmetric ofSPxsP}i・e・9 (SpxSp,go)=Sp(1)ⅩSp(1)・ The f0110Wingis a generaiization of Theorem Cin meorem6・1・辿¢:SpxSp十S2p+1(1)生盟hmersion,望追 gG咄(SPxsP巨二更生辿迫壁三・坐望聖旦塾生p≧2望娃 (6・1) V(g)≧V(go)・ 塾生,(i)Ⅴ(¢)≧Ⅴ(¢cllfford); (正)Ⅴ(¢)=Ⅴ(¢cllだord)韮望迫延塩生中立COnformaユ 生壁Ciifford・edbed・ding¢ciifford.・ Proof.From the Gauss equahionクもhe curvature tensor of Ri脚=gikgj九一gi見gjk+hikhj九一hiAhjk・ Hence,the Weyi confornai curvattue tensoris compl止ed・tO be Wi脚=hi㌔j丸 ̄hi鵡k ・歪(芸。芸)Oi動†gik触)評−(hob)璃k−gi見(h叫jk) 1 豆缶渾gi和一g璃k), Vhere n=2p and. hij=blj一三(trh)glj, 0 0 0 (hoh)ij=ら薫一拍2gij・ ーj7← So,We get by a simpie caicuiation (6・2日wl2=2号ヨ冊一言警戒0紆†2≦学芸玉砕・ (6■3)…)≧(紡)p/2V(g)・ Zt f0110甘S from(6.2)that the e甲lalityin(6.3)occurs oniyvben (hoh)≡0.This eqpaiity conditionis equivaient tO that at ea.ch point,either4)is unfbiiic or q)has tWO d・istinct Principai curvatures each of vhichis of ml止tipiicity p.Thus the a・rgument usedbyCeciiandRyanlb]showsthahw(.)=((2p−1)/h(p−1が/2V(g) if and.oniyif4)is conformai七〇七he e血bed・ding ¢α:SpくJ宗)ⅩSp倍)⊂S2p+1(1)・ =nparticuiar,fortheClifford・ehbedd・ing中ciifford.=¢1・ (6・k)叫。云ff。r。)=増請)p/2V(g。)・ Hence,from(6.3),(6.互)and.the assumpti。n(6・1),VehaNe …)≧(紡)p/2V(g)≧鴎請)p/2V(g。)=甘く中。1iff。r。), vhichproves the assertion(i)・ Ⅳow,SuPPOSeV(ゆ)=Ⅴ(ゆciifford)・Thenbytheabovea叩皿ent, 中mstbeconformait0㌔forsomeα・Moreover,thenV(go)= V(SP(1/.GTT)ⅩSP(vb/(α+1))should.h01d・・Byad・irect Calculation, Ve have ←Jg㌧ V(Sp( 義士) ⅩSp倍)) =il塙巧蠍 ℡herefore,Ve COnCiud・e thatα=1.Conseqpent1y,¢is confoma.1 七〇¢cllfford・ロ Remark・=f pis od.d.,then the a.ssⅦ叩tion(6.1)is t00 restrictive,Sinceweknowv(SPxsP)=O forod.d.pfrom Theorem A(i).Hovever,in the case when p=2,甘e Can eXPeCt tha尤the assumPtion(6ユ)土息P血neごモ日昌afy;eerta.iniy,thisis nore piausibie conjecture than that mentionedin S5. Remark.We remark here that a duai of the Wii]皿Ore PrObiemis n01essimportant than the onginal one・Roughiy SPeaking}the Wiiimore probiemin the aboveis a probiem to findanj血merSion¢‥dl十Sn+1(1)With一一smaii一・h=h(¢).Ⅳov, vevanttoconsideritinthesituation中:Sn−1十㌔.Ⅳaneiy, theprobiemistofindanimerSion¢:Sn−1+Mnvith.・snaii一一 h(¢). For simpiicity,VeaSSume㌦is conformaiiy fiat.Let ¢E:Sn−1Ⅹ[一己,こい㌦ be the E一七ubuiar neighborhood.0f中.Mis confomaiiy fiat, andSn−1Ⅹ[−巳,E]issimplyconnectedifn≧3・Eence,Wehave a conformai deveiopment(cf.[け]) de叫E:Sn−1Ⅹ[一己,主上+Sn(1)・ ー∫デー 工f¢is tOtallyl皿もllie,h(中)≡0,tben 輌‥=如駈Ⅹ{。}:Sn ̄1+Sn(1) is aiso tOtaliy血biiic・=n particuiar,d.evo4)isan embed.ding. Wevant to define the smilness ofh(4))viththis property,that is,Ve SaUh(¢)七。be塾主ifthe assc・Ciatedconfomainap devoOニSn−1→・Sn(1)isanezhbedding(thenゆisalsoaned)edding). 1em6・2・互生当紺2坐旦注COnf。m慮り草呈聖生m虹止fold坐 生垣堂堕室生n≧3,望迫¢:Sn−1十里聖堂望些王追虫垂辿 当#㌔立坤坐聖堂追聖・聖生,望b(¢)生壁主, 聖堂娃M2迦塁生eonfom始ユstmetWeS・ 塑・C血比ngaiong中,Wehave竺1#M2=M+U軋SuChthat Mrisananif01dvithboundaryO(Sn−1)andthatM+(resp・M) con七山S¢C(Sn−1Ⅹ[0対日resp・¢E(Sn−1Ⅹト印]))・S址1arly, dividingSnaiongtheembeddingdevo.,VehaveSn:D…UDn・ Sincedevo¢cisaconfornaimap,itiseasytOSetha尤Mi写 生UDn弧d生きMUD:地veflateonf。m弧stmetwes.ロ Thus,the converse of nユ1kami−s theoremin$2is red.uced. 七〇七he dual Wiil皿Ore PrOt)1em・Sois the converse of Coroiiary 2・2(in this case,Ve need additionai argl皿ent1ike Lezma2.2). 一半クー J. On YamabeIs constant. As YamabeIs prot)1emis affirmativeiy and・cc町pieteiy soIved ([/】,【zC]),Weheveametric ginanyconforma1ciass such thatthescaiarcumtureRisconstant,andRVoi(㌦,g)2/n= U(M,g)(see(1・5)forp(M,g))・=tisknown[HthatU(Mn,g) ≦U(Sn,go)hoidsingenerai,Vhere(Sn,go)istheEuciidean unit n−SPhere・Moreover,reCentiy,Schoenli訂]haS PrOVed. thatU(#,g)=U(Sn,go)ifandoniyif(M,g)isconformaiiy equivalen七七〇(Sn,go),血chvastheunS01vedpartofYanabe・s problem. リ(M):= Suptリ(M,g);ge朝(M)1. M adnlits a metric of positive scaiar curvatureif and oniyif u(M)>〇・AIso,U(M)≦U(Sn)=U(Sn,go)frontheaboveineqJlaiity ty Alぬin. ぎromPropositionl.11,ifitistmethatU(S2ⅩS2)= U(S2ⅩS2,go)forthestandardEinsteinmetricgo,thenvehave av叩pleasantres山ttbatV(S2ⅩS2路)≧Vfs2吏S2,go)fora町 g vith nonnegative sca.1ar curvahure. However,the author thinks this hypoth岳Sisis probabiy not true for some reasons.We may expectthatU(S2ⅩS2)<U(Sh),Whichvillslightlyimprove でbeorem B(五i). 王nthissection}WetakeupSlxsn−1insteadofS2ⅩS2I andshowtha七・V(Slxsn−1)=V(Sn)ifn!3(meoremD)・ −¢ト We beginwith some preiininary caiclilations,Vhichvilibe used.againin the next section・ Let(Ⅳ,gⅣ)bean(n−1)−dimensionaicompactRimennianmanif01d vhose scalar curVa,七ureis positive constan七(n−1)(n−2).ve alvays assl皿e n∼3. Suppose that fis a positive funCtion on R vhich satisfies (7.1)2(n_1)ff_n(n_1)を2+(n−1)(n−2)f2=n(n−1). Then,(丑ⅩⅣ,f(t)−2(dt2+gN))hasconstantscaiarcurVature n(n−1).(1.1)isint,egrable,and.ve have (7・2)を2ニー1日2−空言fn, vhere cis anintegrai constant5Vhich reiates七〇七he Ricci (7・3)RIcg(。)一転。)g(C)=ef(七)n ̄2(gⅣ一(n−1)胱㌦ vherevepl止g(C)=f(七)−2(dt2+gⅣ)withfsatisfying(7・2)・ From(7.2),Ve Observe that,in ord・er for f tO be d・efined−On vh01e丑,the constant c must bein theintervai (7・h) oie≦(誓)2=:C。・ Then,Ve bave f(七)=COSb(七+七0)forsomet01fc=0; fis a peTiod_ic funCtionvith prime period・T(C) ート之− ifO<C<eo; f(七)=(言㌔)至ifc=C。・ Hence,ifO<C<co,g(C)istheliftofametric(aisodenoted by g(C))of(R/T(C)2Z)ⅩⅣ.We d.enote by V(C)the voiume Of ((R/T(C)2Z)ⅩⅣ,g(C)).Remark that(丑ⅩⅣ,g(0))isisometric tO Sn\(antipod.aitWO POints)viththe stand.ard.metrie,if (Ⅳ,gⅣ)=(Sn−1,go)・ Lema,_礼T(C)望堕Ⅴ(C)望皇COntinuous fl皿Ctions主監C,望吐 くi)山C十0的)=∞;11m。十。。壇)三島・ (正)11m。詔e)=Vol(嘲艶; 1ime十C。Ⅴ(e)=2(n−2)(n−1)/2n胡Ⅴ。1鴨)・ 聖建・Weconputeoniyiimc+coT(C)andiimc+coV(C)・The Other assertions are easy to prove. ForO<C<Co,1et0<a(C)<b(C)bethetWOPOSitive rootS Of the equation (官・6)1−人2・蓋入2=0・ We d.efine a poiynomial F(入,C)in大町ith parameter c as (7.7)theieft Sid.e of(7.6)=(入−a(C))(入rb(C))F(入,C). =七iseasytOSeethatlimc十Coa(C)=limc+Cob(C)=入0:= 一再− (n/(n−2))至.Thenby a.d.irect caiculation,Ve Obtain (7・8) 11m(入,e)→(九〇,eo)F(入,C)=n−2・ 工t follovs from(7.2)that d入 (7.9)で(e)=2 −(入−a(e))(入一七(C)) ‡;:;「;F(入,e)一芸 且入 (7・10)Ⅴ(C)=2V。1(可三:;十的詔 ’′〉皿’Ja(C)_ ̄▼  ̄’− ̄’▼‘√行二示。))(入二も房寺 These co血bined・Vith(7.8)and.七he eiementary formula d入 ん(入−a)(九一吊 for a<b,give the d.esired.foTmuias. ] Remark. From the second,Variation fomユa for the funCtional g局Rgdvg′(Sdvg)(n ̄2)/n,itfoliwsthah,ifT>2T/ym, theproductmetricgT=dt2+gNOfSixⅣwithiength(Si,dt2)= Tis not a s01ution of Ya正labe−s probiem(ve cali a metric g a soiution生地mal)etS prOblem,if the scaiar curvahure R is eonstmt,弧dRVol(g)2/n=山は).),弧tho喝b拙smetricbas g COnStant scalar curvature(cf.ll]).mis fact correspondB t0 0urCOmpl加tionlimeナCo的)=2¶仙−2・ The f0110Wingis a coroiiary of the aboveieⅢma. 加p血tlon7・2・姓(SlxⅣ彗)生空也・空で> 21Tk/浣=す丑聖堂空皇integerk,thenthere are at1east(k+1) ー仏字− 眠trics conformal主立生垣壬生坐望彗星辿竺旦堅生玉蓮生地迩 Constant scaiar curvatures but are notisometric t0 0ne anOther. 聖望三.From Lemma7・1(i)and・the asslmPtion on T,Ve find・ ej∈(0,Co),j=1,…,ksuehtbatMej)=机・町地enatu門止 3−f0ld.covering(R/T2Z)ⅩNう(R/(T/j)za)ⅩⅣ,Veiift the metric g(㌔)七〇(R/T2Z)ⅩF・Thentheiiftedmetric,denotedbygj,is COnfomaito gT・ⅣornalidngthevoilmeS OfgT,gi,・・・,gkby homothetical changes,Ve get the d.esired.metrics. 口 LetgTbetheproductmetricofSlxsn−ivithiength(Si,dt2) =T・LetfbeapositiveftmctiononSixsn−lSuChthahf−2年 is a s011止ion of Yanabe−s probiem with constant scaiar cmture n(n−1)・Weiiftthemetricf−2gTtOthemiiersaic。Vering RxSn−1・Sincef−2(批2+go)=(rf)−2(dr2+r2go),r=e, 弧ddr2+r2goistheEhclideanflat肥tricofRn\0号丑ⅩSn−1, pl止ting u=(畢)T(rf)丁, Ve have 更生 △u睾㌔ ̄2=0, 血ere△istheLa,1acianoftheflatmetric dr2・r2g。・More− over,u→・CDa層コトす09andrn−2u→のaSr→鉾}because minf>O and.max f<ク0.Then,Ve Can aPPiy a theorem of Gi血S,Ⅳiand Nirenberg(meorenh ofl?]),and.conciudethat fdependB。niy 一頃ト ont;f=f(七)・Hence,f−2gTISOneOfthemetricsdescribed inPropositi。n7・2・Ⅳ0V,itiseasyt。SeethatifT≦2T/亮=巧, thenfisc。nStant,andthatifT>2¶/Ymtakec色(0,Co) suchthatT(C)=T,thenf−2gT=g(C)for(Ⅳ,gⅣ)=(Sn−1,go)・ Thus,forT>2¶/Ym,U(Sixsn−1・gT)=n(n−1)Ⅴ(C)n/2・There− linTiJl(Sixsn−1・gT)=n(n−1)iimc+Oy(C)n/2 =n(n−1)voi(Sn,go)n/2 =山Sn). matis,いくSlxsn−1)≧山Sn),50両Slxsn−1)=山Sn).口 $8.Large scaiar cuⅣatWe On Sn. Ve shall give another appiication of the coznputationin the PreCeding section.The purpose of this sectionis to prove TheoremEonahost constant1arge scalarCmture ofSn・So} this sectionis somevbat differentin character from previous SeCtlons. We consider the f01loving question:For a.given constant C, d.0eS there exist ametric gofSn(n之3)suchthatV01(Sn,g);1, euldthatthescaiarcurVatureRg=C?・:fcミ巨(Sn),VeCanget such a.metric by soIving Ya皿abefs problem・Othervise}Yanabels tl砧− 。i_.←−rJ_一す義一一、−___′一厨、−」 methodiosesits pover. So,七he probiemis foriarge c. The difficuユty of this qpes七ion may be seen from the f0110Wing facts・ Fact8.1(肋軸[革r]).望gg椚(Sn)立COnfomal立退迫 長髪聖堂建望奴∃宣go,Rg立盛望吐,望旦Ⅴ01(g)=1,迦 Rg=再n)・ ThusゥVe CannOt find・alarge constant scaiar curvaturein the stand_ard.confornai class of sphere. 塾生運送・姓Ke射S蝕+1)吐更生塾生主王退塾生壁旦 芝生生望主1ength虫垂主 星ind・uCed・史聖堂些空三fPering s2k+1/Si=CPk.Letg(七)∈価(S2k+1)bedefinedby g(七)ij=gij−(トも2)KiKj, 垣gj旦堅泣Stand・ardmetric坐COnStant curVaturei・塾生, Rg(七)立eonst弧七,望旦 Rg(七)Vol(g(七))2佃岨㌦いくS2k+1), 生壁・N。tethatKi;jk=Rijkh㌔・Then,nSing(2・6)inS2, Rg(七)=Rg(0)+(トも2)困2 =(n−1)(n+1一七2), ☆here ve put n=2k+1・肋Ce}We have ト 隼7− (七)Vol(g(七))2/n =≡t)t芸 山Sn) g(0) =吉(n・1一七2)tn≦1・ 口 We prove the existence o王−large scalar cur寸atureunder a siightly reiaxed condition on constanCy. Letf:五一十二R+,CE(0,Co)bethesolutionof e ;。(七)2ニー1‥(七)2一念f。(七)n (8.1) fc(0)=a(C), Vherecoanda(C)areasinS7・Let n:B+】ミbeasm00th funetion slユehthat吊七)=O fort≦0,吊七)>O fort>0,and 吊七)=1f。rt≧1・Wepl止 恒0+(1一冊e)(C)for−瓦的)三七 (8・2)㌔(七) ((1一冊0+げC)(七十㍍(e)+1)fort≦−k的), 融lere T(C)is asin§7,and kis aninteger satisfying (8・3)k+1>(r(1+E)′n(n−1))n/2′vol(Sn,go) Then,theRiemamianmetricgc:=Fc−2(批2+go)of=RxSn−1・ sm00thiyextend・able七〇七hetvopoint COmPaCtificationSn・=tB SCalareurvatureR =Rc(七)isglvenby C 一年デー (8・h)Rc(七)=2(n−1)Fc(t)Fc(七)−n(n−1)fc(t)2+(n−1)(n−2)F(t)2・ Fromthed・efinitionofFc,Vehave (8・5)Rc(七)=n(n−1)fort≠[0,1]∪トk壇)−1,−k恒)]・ Ⅳ〇七ethatfcTl0,1]C。nVergeSunif。叫tof。Il0・1]up一二七O SeCOndd・erivatives as c+0・Hence,Rc convergesmiforniy tOtheconstantn(n−1)・Therefore,thereis asmaiicl>O (8・6)mRcl血R <1+C・ el= AIso,fromLezmaT・1(五)in$7ana(8・3),takingasmailerci (8・7)Ⅴ01(gel)≧(r(1+E)′n(n−1))n/2 Ⅳow・Vedefineame血gofSnbyg:=Voi(gcl)−2/ngcl‥Then, Cieariy,Ⅴ01(Sn,g)=1・andnaxRg/ninR<1+蔓,from(3・6)・ F血hRg=Vol(gel鍋声(r(1・E油(n−1))血Rcl≧千・口 el= We canaiso sh。Ⅴthatifu(M)>O andn=dimM≧3,there exists,forany COnStant r,a metric g of M for vhich V01(M,g) =1and・R >r・But thisis notinteresting.AjeaSOn Why ve g SticktO(E−)constancy of scalar curVatureisin the foiioving result. Propo已ition8・3,Suppo紙土建吐室生望猛COnSt弧t r望娃 E>0,塾生旦metric g(r,∈)空室生玉塾生Vol(M,g(r,∈))=1 聖迫IRg(r,E)(Ⅹ)−rl<E迦婁主ⅩeM・塁聖,室生盟生野 r(持− COnStant funCtion f,玉垣望eXists旦metric g虫垂塾生 Ⅴ01(M,g)=1and R =f. − g mis propositionis a cor011ary of the f0110Wing generaiization of a theorem of Kazd.an and,Warner[は】. Therem8・互・蓮生go生色望聖更生Rieneumian聖辿室 生主望聖堂⊆imanif01dM更生Ⅴ01(M,go)=1望生垣壬生nonconstant 坐CurVatWeR(go),望迫で旦更生f皿Ctions舐is桝咤 mln f≦mhR(g。)堅塁m奴R(g。)≦Mf・塾聖地立皇室辿 metric g望≦生壁生Vol(M,g)=1望迫R(g)=f. Before the pr00f,We giVe SOme Other cor011aries. Cor。11ary8.5.旦空色Closed surfaceM(i・e・,dinM=2), 豊里聖互生丑辿fEC00(M)is the Gaussim CurVature Ofsomemetric ge耽両壁生Am扇丑,g)宰1三三望娃延虹jヱ 血nf≦帥くくM)≦maxf・ Coroiiary8・6・望n=dimM≧3,迦聖丑竺望狙function f 壁塾nin f<tl(M),塾生皇metric g壁生Ⅴ01(M,g)=1望迫 R(g)=f. 聖三越薫Ⅳ隼7・塾生聖旦M2吐旦聖迫聖生mmlfold5旦些生玉互生 U(町>0望旦dm㌔≧1・塾生,室生聖逆f皿Ctionf望生ⅩM2, 塾生三塁重工吐g蓮生Vol佃1Ⅹ聖,g)=1堅娃R(g)=f・ Pr00f of Coroiiary8.7. Under the assl皿ption,itis not hardLtO Seethat foranyCOnStant C,thereis ametric gc of 生ⅩM2WithVolqⅩM2,g。)三1弧dR(g。)=C・□ 、ロト Proof of meorem8.互. The pr00fis simiiar七〇七hat givenin[I2」.so,We Oniy sketChi七・LetS2T(resp・S:T)denotethebundleof(resp・ p。Sitivedefinite)syTnmetricc。Variant2_tens。rS,and昌2T: tb S2ヮ;tr b=0)・ktH2,p触S2畑H2,p(M庫),一・もethe go Soboie筆SPaCeSOfE2,P−SeCtions(i・e・,uP〉tosecondderivatives 甜eLp)。fS2ヮ,車,…We山耶誠S皿etbatp>n=血M・ H2,p(Mi車)is弧OpenS。ほほ止OfH2,p(M;S2畑弧d V。1:H2,p(M;車)+】;g十Vol(M,g) isaCLnaPPingvhosedifferentialisnotzero・FromthisI there紺eaneighborhoodUofOinK2,P(M;昌2T)弧daC1−funCtion α:UすR sueb that,putting 抽)=go+h+拍)go for]hEU, vehw示thefoiiowingpr。Perties(1)@(h)EH2,P(M;S:T); (2)voi(@(h))=1;(3)◎(0)=goi(h)D◎atOistheinclution mpE2,壷(M;昌2T)⊂K2,P(M;S2T)・Wenotethat抽)isaC∞metric if and oniyif his a C section. me sealar clmature R:H2,p(M;S…いLp血封 isdefineaasaC1−maPPingforp>n・So}WegetaCl・daPPing R。◎:U十㌔(M;軋 UC軋p(M;昌軋 ー㌻ト ThedifferentiaiA‥K2,P(M;S2T)うLp(M;R)。fRO◎ahOisc。m− A(h)=−Ahii+hiJiij−hlJRij, Vhere the connection,Ricci curvature,etC.are reiative tO go・The formaiL2−adjointA嵩is glVenby A兼(u)=か(u)+β(u)go, か(u)=一也)go+∇2u・−「且Rie(go) β(u)=孟転TJR(g。伽g。 A器:Hh,P(M;R)−→・Ⅱ2,P(M;昌2T)isacon七inuouslinearmap・Fromthe assⅦptionth如しthescaiarcurvatureR(go)isnotCOnStant,Ve e弧Showthat鮎か‥Hh,p(M;糾すLp他R)isallnearbome皿Or− Phism,andAoA兼‥Hh,P(M;R)+Lp(M;R)isinjective(cf・【J],[曾], [/2】.see aiso[件],【之+]for S血e二reiateauもOPics.).Then,Since Aや_(A★−か)is a compact OperatOr,Ve COnCiud.e that AoA鶉isinver一 七ibie・(迦堕・rfgoIS anEinsteinmetricvithconstant negative scalar curvature}then AqA★is notinvertibie・This is a difference from the case vithout vollme COnStraint.) LetⅤ=(A吋1(U)・DefineaCi→maPPingQ:Ⅴ+Lp(M;R)by Q=Ro◎qA着. Then the d.ifferentiai of Q at Ois AoA弟.so,by theinverse ー!ユー fupction theorem for Bana・Ch spaces}Qisiocaiiyinvertibie. =n particuiar,Q(Ⅴ)contains some_/C−baii centered at Q(0)in Lp(M;R)・ ⅣOwI for the function f givenin Theoren}Ve have a diffeom。rPhism中。fMsuchthatIQ(0)−foOIL<E(seeuヱ])・ So,thereisueⅤ⊂Eh,P(M;R)WithQ(u)=fo.・ AithoughQ(u)includesintegraisofu,∇u_and∇2u, We Can See that the eiiiptic reguiarity argumentis appiicabie, byvriting d.own Q(u)expiicit1y.So,We See that uis smooth. Thus,亘‥=如A半(u)is aC00RiemannianmetricvithV。1(M,云)=1 and・R(亘)=fo中.Then the d.esiTedmetric gis givenby g= (¢ ̄1)巧.ロ ll]T.餌bin,Eq.uations diffgrentieiies noniingaires et probl昌me deYamabe concernan七1acourbure SCaiaire, J.Math.pures et app1.55(1976),269−296. [2】A.Avez,Characteristic ciasses and,■Weyi tensor,Proc. Ⅳat.Acad..Sci.U.S.A.66(1970),265−268. :f5]R.Bach,Zur Weyischen Reiativitatstheorieund.d,er Wey1− SChen Erweiterung d.es Krumgstensorbegriffs,Math.Z.9 (1921),110−135. lh]M.Berger and.I).Ebin,Some d.ecompositions of the space of Symmetric tensors on a Riemannian manif01d.,J.I)iff.Geom. −53− 3(1969),379−392. [5]J.−P.Bourguignon,Une stratification d.e1−espace d.es Structures riemanniennes,Composition Math.30(1975), 1_互1. [6]T.E.Cecii and P.J.Ryan,Focai sets,tal止e血bed.aings and. the cyciid.es of Dupin,Math.Ann.236(1978),177−190. [7]H.Z.Eliasson,On variations of metrics,Math.Scand.29 (1971),317−327. [8]A.E.Fischer and.J.E.Marsden,Linearization stabiiity of noniinear partiai d・ifferentiai eq.uations,Proc・Symp・Pure Math.27(1975),219−262. [9]B.Gidas,W.−M.Ⅳi and.L.Ⅳirenberg,SyTnnetry of positive soiutions ofnoniinear eiiiptic eq.uationsin Rn,Math・ Anai.and Appi.Part A,Ad.V.Math.Suppi.Studies Vo1.7A (1981),369−ho2. [10]M.Gromov,Voiume and,bound.ed.cohom010gy,Plibi.Math.1.H.E.S. 56(1983),213−307. [11]N.Hitchin,Conpact four−dimensionai Einstein manif01ds, J.Diff.Geom.9(197h),互35一抽1. [12]J.L.Kazd.anand F.W.Warner,A direct approach to the d.eter− mination of Gaussian and.scaiar curvature funCtions,Znv. Math.28(1975),227−230. [13]J.L.Kazd.an,Some appiications of partiai d.ifferentiai eqpations tO PrObiemsin geometry,Surveysin Geometry Series,Tokyo Univ.,1983. llh]0.Kot)ayaShi,A differentiai equation arising from scaiar curvature function,J.Math.Soc.Japan3h(1982),665−675. −う互− [15]−,On a conformaiiyinvariant funCtionai of the space Of Riemannian metrics,to appearinJ.Math.Soc.Japan37 (1985),373−389. [16]−,Oniarge scaiar curvature,PrePrint. [17】−,AWiilmOretypeprobiemforS2ⅩS2,toappearin Proc.of DD6symp. [18]S.Kobayashi and.K.Ⅳomizu,Found,ations of differential geometry・,Ⅴ01.2,Znterscience,1969. [19]Ⅳ.H.Kuiper,On conformaiiy−fiat SPaCeSin theiarge,Am.of Math.50(1舛9),916−9幼. [20]−,On compact confornaiiy Euciidean spaces of d.imension>2, Ann.of Math.52(1950),姉8−互90. [21]R.S.Ehikami,ConfornaPge皿etryinhigher d.imensions.=, Buユ1.Amer.Math.Soc.81(1975),736−738. [22]−,Conformaiiy fiat manif01ds,Proc.Ⅳat.Acad..Sci. USA69(1972),2675−2676. [23]−,On the principie ofunifomiza,tlon,J.Diff.Geom. 13(1978),109−138. [2互】J.Lafontaine,Suria g占om&rie d.Yune gふさralisation d.e 1TgqJlation differentieiie d−Obata,J.Math.pureS et app1., 62(1983),63−72. [25]M.Obata,The conjectures on conformai tranSformations of of Riemannianmanif01ds,Buii.Amer.Math.Soc.77(1971), 265−270. [26]−,The conjectures on conformal transfornations of Riemannian manif0id.S,J.Diff.Geom.6(1971),2互7−258. [27]LM.Singer and.J.A.Thorpe,The curVature Of h−dimensional ー55− Einstein spaces,Globai Analysis,Papersin Honor of K. Kod.aira,Princeton Univ.Press,1969,355−365. [28]R逐en,C。nf。rmaldef。mation。faR血nnianmetrictO COnStant scaiar curvature,J.Diff.Geom.20(198h),互79− 互96. [29]C.T.C.Waii,Diffeomorphisms of h一manifpids,J.Lond.0n Ma他.Soc.39(196互),131一山0. [30]T.J.Wiilmore,Totai curVaturein Riemannian geometry,Eilis How0Od.Limited.,Engiand,,1982. Department of Matbematies Keio University Hiyoshi,Yokobama Japan ー56−
© Copyright 2024 ExpyDoc