SMATI group - Study of innovative manufacturing processes using experimental test, material characterization and numerical simulation Di Michele G1, Guglielmi P1, Palumbo G1, Piccininni A1, Piglionico V1, Scintilla LD1, Sorgente D1, Spina R1, Tricarico L1,* 1 DMMM – Politecnico di Bari, viale Japigia 182 – Bari, Italy {gabriella.dimichele, pasquale.guglielmi, gianfranco.palumbo, antonio.piccininni, vito.piglionico, donato.sorgente, roberto.spina, luigi.tricarico1}@poliba.it Abstract. The following research area are investigated: (i) Mechanical and technological characterization of industrial materials (metals and polymers). (ii) Sheet metal forming processes, assisted with flexible media, in warm/hot conditions and plastic/superplastic behaviour. (iii) Modelling of manufacturing processes. Keywords: Mechanical and Technological Characterization; Sheet Metal Forming; Laser Material Processing; Plastic injection moulding; Casting processes Introduction Through a numerical-experimental approach, in the 2013-2014 biennium the research group on MAterials and Innovative Technologies (SMATIgroup) of the Politecnico di Bari has investigated different innovative manufacturing processes, mainly in the sheet metal forming [1-3,12,13,15,17,18,26,27], laser material processing [4,7,8,10,11,14,16, 19-25, 28-31], plastic shaping [5,6,9,32] and casting processes [33,34]. In this paper, some case studies are described. 1 Case studies 1.1 Warm Hydroforming tests on age hardenable Al alloys The HydroForming process in Warm conditions (WHF) has been investigated using a 2500kN electro-hydraulic press machine specifically designed and produced as a prototype by Gigant Italia. The 6xxx series Al alloy AC170PX (1mm thick), largely Page 1 of 5 adopted for automotive applications, was purchased in the T4 condition and characterized in terms of mechanical properties (flow stress curves according to temperature and strain rate) and formability limits (Forming Limit Curves according to temperature). Such experimental data were implemented in a Finite Element model aimed at investigating the working range of the parameters affecting the WHF process (temperature in the range 20 – 200C and pressure rate in the range 2.5 – 25 bar/s). The investigated case study had a stepped geometry; as response variables the length of the flat part of the deepest region of the die (Flatness%), the bursting pressure and the sheet thinning were monitored. Results from numerical simulations are presented in figure 1a: the adoption of the highest pressure rate (the biggest bubbles ) coupled with the highest temperature (the red bubbles) was predicted to determine the highest Flatness and Bursting pressure. Figure 1. WHF working range from FE simulations (a); measured sheet thinning at 200C (b) Experimental results confirmed the effectiveness of working at the highest temperature level (200C); in addition in figure 1b the favourable effect of forming the blank using elevated strain rates is highlighted: when setting the pressure rate at 25bar/s, both the Flatness% and the minimum thickness along the blank section were increased. 1.2 Multiscale modeling of injection molding parts Predicting the microstructure requires the simulation of the crystallization process which is a complex problem because it is necessary to combine transport phenomena of the multi-phase flow in non-isothermal conditions with crystallization kinetics. This requires the calculation of polymer properties on a microscopic scale using information from a macroscopic scale. The simulation of the crystallization kinetics is performed by integrating COMSOL, in-house future SphäroSim. thorough the OpenSource file format VTK. The temperature and velocity in the nodes are transferred to SphäroSim where they are used as boundary conditions for the simulation of the crystallization process. Figure 2: Injection profile and microstructure formation 1.3 Steel surface structuring by high brightness pulsed laser Laser hardening and remelting of a hypereutectoid steel (AISI 52100), has been investigates using individual circular spots of a high brightness fiber laser working in pulsed mode. Hardned Diametr, micron 1500 750LP-20JP-num 1250 750LP-20JP-exp 500LP-20JP-num M 1000 500LP-20JP-exp 750 250LP-20JP-num H 500 250LP-20JP-exp 1200°C 250 1400°C 0 0 0.5 1 1.5 Spot Radius, mm 2 1800°C Figure 3: Hardened diameters obtained using a pulse energy of 20J/pulse. Investigated parameters were the laser power (LP: 250-750W), laser pulse energy (JP: 10-20J/pulse) and focusing distance (FD). A finite element model was developed and model parameters were calibrated using the shape and size of the treated zone measured in experimental tests. The figure 3 compares numerical and experimental results obtained with a laser pulse energy of 20J/pulse. The process maps obtained by the numerical model show the laser spot radius (related to the focal distance), and the laser power ranges, which provide the substrate hardening without melting (H) or the substrate melting without cracks occurrence (M). These maps are useful to design pattern for the laser structuring of tool steel surfaces in pressure die-casting and metal forming applications. Page 3 of 5 Conclusions Process window definition in the part manufacturing using new materials and/or innovative technologies, need a deeper knowledge of material behavior and process parameters impact. The results obtained in the 2013-2014 biennium by the SMATI research group, highlight great advantages in the use of numerical-experimental approach as shown by the case studies proposed in this paper. Acknowledgements. The authors wish to thank the Italian Institutions Region APULIA and MIUR (Ministry of Education, University and Research) for financing the research activities published in the 2013-2014 biennium (projects: TRASFORMA, PON01_02584, PON01_02238, PON02_00576_3333604). References [1] Sorgente, D., Tricarico, L.: Pressure profile designing in superplastic forming based on the strain rate and on post-forming properties. J. of Mat. Eng. and Perf. Vol. 23. pp. 2025 – 2033 (2014) [2] Sorgente, D., Tricarico, L.: Characterization of a superplastic aluminium alloy ALNOVI-U through free inflation tests and inverse analysis. Int. J. of Mat. Form. Vol. 7. pp. 179–187 (2014) [3] Sorgente D., Corizzo O., Brandizzi M., Tricarico L.: Preliminary Study on the Formability of a Laser-Welded Superplastic Aluminum Alloy. J. of Mat. Eng. and Perf. Vol. 23(11) (2014) [4] Scintilla, L.D.: Experimental investigation on fiber laser cutting of aluminum thin sheets. Proc. of SPIE - The Int. Society for Optical Eng.. Vol. 8963 (2014) [5] Spina, R., Spekowius, M., Dahlmann, R., Hopmann, C.: Analysis of polymer crystallization and residual stresses in injection molded parts. I. J. of Prec. Eng. & Man. Vol. 15. pp. 89 – 96 (2014) [6] Spina, R., Spekowius, M., Hopmann, C.: Analysis of polymer crystallization with a multiscale modeling approach. Key Eng. Materials. Vol. 611-612. pp. 928 – 936 (2014) [7] Brandizzi, M., Renna, S., Satriano, A., Sorgente, D., Tricarico, L.: Nd:YAG laser welding of fine sheet metal butt joints in AZ31 magnesium alloy. Welding Int.. Vol. 28. pp. 784 – 792 (2014). [8] Ancona, A., Carbone, G., Scaraggi, M., Mezzapesa, F.P., Sorgente, D., Lugarà, P.M.: Laser surface micro-texturing to enhance the frictional behavior of lubricated steel. Proc.s of SPIE The Int. Society for Optical Eng.. Vol. 8968 (2014) [9] Spina, R., Spekowius, M., Hopmann, C.: Multi-scale thermal simulation of polymer crystallization. Int. J. of Material Forming. DOI: 10.1007/s12289-014-1169-8 (2014) [10] Sorgente, D., Corizzo, O., Ancona, A., Scintilla, L.D., Palumbo, G., Tricarico, L.: Laser hardening of a AISI 52100 bearing steel with a discrete fiber laser spot. Proc.s of SPIE - The Int. Society for Optical Eng.. Vol. 8963 (2014) [11] Scaraggi, M., Mezzapesa, F.P., Carbone, G., Ancona, A., Sorgente, D., Lugarà, P.M.: Minimize friction of lubricated laser-microtextured-surfaces by tuning microholes depth. Tribology Int.. Vol. 75. pp. 123 – 127 (2014) [12] Sorgente D., Carbonara A., Colonna P., Palumbo G., Spina R., Brivio R., Tricarico L.: Simulazione numerica del processo di formatura superplastica di un componente complesso. Lamiera. Giugno 2014. pp. 48-51(2014) [13] Sorgente D., Colonna P., Carbonara A., Palumbo G., Corizzo O., Scintilla L.D., Carozzi G., Tricarico L.: Formatura superplastica di un componente automobilistico in lega di alluminio tramite un approccio numerico-sperimentale. Lamiera. Giugno 2014. pp. 52-54 (2014) [14] Sorgente D., Ancona, A., Tricarico, L.: Modellazione del trattamento termico mediante laser pulsato ad alta brillanza per la strutturazione superficiale di un acciaio ipereutettoidico. Applicazioni laser – PubliTec. Novembre 2014. pp. 2-9. (2014) [15] Palumbo G., Piccininni A., Guglielmi P., Sorgente D., Scintilla L.D., Tricarico L.: Application of the Warm Hydroforming Process to the Manufacturing of Pre-Aged 6xxx Series Components Using a Numerical/Experimental Approach. Key Eng. Mater. Pp. 701-709 (2014) [16] Scintilla, L.D., Palumbo, G., Sorgente, D., Tricarico, L.: Fiber laser cutting of Ti6Al4V sheets for subsequent welding operations: Effect of cutting parameters on butt joints mechanical properties and strain behavior. Materials and Design. Vol. 47. pp. 300 – 308 (2013) [17] Palumbo, G.: Hydroforming a small-scale aluminum automotive component using a layered die. Materials and Design. Vol. 44. pp. 365 – 373 (2013) [18] Palumbo, G., Piccininni, A.: Numerical-experimental investigations on the manufacturing of an aluminium bipolar plate for proton exchange membrane fuel cells by warm hydroforming. Int. J. of Advanced Manufacturing Technology. Vol. 69. pp. 731 – 742 (2013) [19] Scaraggi, M., Mezzapesa, F.P., Carbone, G., Ancona, A., Tricarico, L.: Friction properties of lubricated laser-micro-textured-surfaces: An experimental study from boundary to hydrodynamic lubrication. Tribology Letters. Vol. 49. pp. 117 - 125 (2013) [20] Mezzapesa, F.P., Scaraggi, M., Carbone, G., Sorgente, D., Ancona, A., Lugarà, P.M.: Varying the geometry of laser surface microtexturing to enhance the frictional behavior of lubricated steel surfaces. Physics Procedia. Vol. 41. pp. 677 – 682 (2013) [21] Sorgente, D., Palumbo, G., Scintilla, L.D., Tricarico, L.: Evaluation of the strain behavior of butt joints on AZ31 magnesium alloy thin sheets welded by Nd:YAG laser. Int. J. of Advanced Manufacturing Technology. Vol. 67. pp. 2753 - 2763 (2013) [22] Scintilla, L.D., Tricarico, L.: Experimental investigation on fiber and CO2 inert gas fusion cutting of AZ31 magnesium alloy sheets. Optics and Laser Tech. Vol. 46. pp. 42 – 52 (2013) [23] Scintilla, L.D., Tricarico, L.: Optimization of AZ31 magnesium alloy laser beam welding parameters based on process efficiency calculation by finite element method and joint mechanical properties. Optical Eng.. Vol. 52. doi:10.1117/1.OE.52.10.105101 (2013) [24] Scintilla, L.D., Tricarico, L.: Fusion cutting of aluminum, magnesium, and titanium alloys using high-power fiber laser. Optical Eng.. Vol. 52. doi:10.1117/1.OE.52.7.076115 (2013) [25] Brandizzi, M., Satriano, A.A., Sorgente, D., Tricarico, L. Laser-arc hybrid welding of Ti6Al4V titanium alloy: mechanical characterization of joints and gap tolerance. Welding Int.. Vol. 27. pp. 113 – 120 (2013) [26] Sorgente, D., Tricarico, L.: Pressure profile optimization on a superplastic aluminum alloy. Materials Science Forum. Vol. 735. pp. 383 – 394 (2013) [27] Palumbo, G., Piccininni, A., Guglielmi, P., Piglionico, V., Scintilla, L.D., Sorgente, D., Tricarico, L.: Numerical/experimental investigations about the warm hydroforming of an aluminum alloy component. AIP Conf. Proc. Vol. 1532. pp. 135 – 143 (2013) [28] Scintilla, L.D., Tricarico, L.: Numerical and experimental evaluation of Nd:YAG laser welding efficiency in AZ31 magnesium alloy butt joints. Proc. of SPIE. Vol. 8603 (2013) [29] Scintilla, L.D., Tricarico, L.: Laser cutting of lightweight alloys sheets with 1µm laser wavelength. Proc.s of SPIE - The Int. Society for Optical Eng.. Vol. 8603 (2013) [30] Scintilla, L.D., Tricarico, L., Wetzig, A., Beyer, E.: Investigation on disk and CO2 laser beam fusion cutting differences based on power balance equation. Int. J. of Machine Tools and Manufacture. Vol. 69. pp. 30 – 37 (2013) [31] Olabi, A.G., Alsinani, F.O., Alabdulkarim, A.A., Ruggiero, A., Tricarico, L., Benyounis, K.Y.: Optimizing the CO2 laser welding process for dissimilar materials. Optics and Lasers in Eng.. Vol. 51. pp. 832 – 839 (2013) [32] Spina, R., Spekowius, M., Küsters, K., Hopmann, C.: Thermal simulation of polymer crystallization during post-filling. Key Eng. Materials. Vol. 554-557. pp. 1699 – 1706 (2013). [33] Palumbo G., Piccininni A., Piglionico V., Guglielmi P., Sorgente D., Tricarico L.: Modelling residual stresses in sand-cast superduplex stainless steel. Journal of Materials Processing Technology, In Press, Accepted Manuscript (DOI: 10.1016/j.jmatprotec.2014.11.006). [34] Palumbo G., Piglionico V., Piccininni A., Guglielmi P., Sorgente D., Tricarico L.: Determination of interfacial Heat Transfer Coefficients in a sand mould casting process using an optimized inverse analysis, Applied Thermal Engineering, In Press, Accepted Manuscript Page 5 of 5
© Copyright 2024 ExpyDoc