ROHM’s Power Devices
Technology Update
18th Sep 2014@PowerForum
ROHM Semiconductor GmbH
Product Marketing
Masaharu Nakanishi
Confidential
c 2014 ROHM Co.,Ltd. All Rights Reserved
1
Table of contents
1. Introduction
2. SiC SBD
3. SiC MOSFET
4. Hybrid MOS (Si)
Confidential
c 2013 ROHM Co.,Ltd. All Rights Reserved
ROHM’s Accelerating Growth in Four Areas
Confidential
c 2014 ROHM Co.,Ltd. All Rights Reserved
2
ROHM’s Power Devices
3
ROHM’s power item lineup covers wafers/bare dies, discrete packages,
module, ICs and Intelligent Power Modules.
Power Module
PKG
TO220
TO247/3PF
D-Pak / D2-Pak
etc…
Case type
(Full SiC Module)
Mold type
IPM etc…
Device
SiC (SBD/MOSFET)
IGBT
Hybrid MOS
Super Junction MOSFET
FRD
SBD
Shunt Resistor
Confidential
c 2014 ROHM Co.,Ltd. All Rights Reserved
ICs
Gate Driver
Temperature/High Voltage monitor
ACDC
etc…
Applications for Power Devices
4
Industry
Solar
Induction
Heating
Medical
Air
Conditioner
Pulse power
Auxiliary
power supply
EV/HEV
Drive
Accelerator
(Collider)
Power supply
Train
BEMS/HEMS
Confidential
Others
c 2014 ROHM Co.,Ltd. All Rights Reserved
Advantage of SiC Power Devices
Characteristics of SiC Devices
5
Physical properties (SiC / Si)
A large safe operating range
Melting point
x2
Operation at High Temp.
Bandgap
High Breakdown Voltage
Breakdown electric field
Large Current
Thermal conductivity
x3
x3
Low Switching Loss
Physical propaties
Si
bandgap (eV)
1.12
electron mobility (cm2/Vs)
1350
breakdown field (MV/cm)
0.3
saturation electron mobility (cm/s) 1.0E+07
thermal conductivity (W/cmK)
1.5
Confidential
c 2014 ROHM Co.,Ltd. All Rights Reserved
SiC(4H)
3.26
1000
3.0
2.7E+07
4.9
GaN
X33.39
X0.8
1500
X10!3.3
X2
2.2E+07
X3! 1.3
x10
Supply Chain of ROHM SiC Power Devices
SiC epitaxial substrate
SiC discrete devices
6
SiC power modules
The production system of the consistent SiC power semiconductor
ROHM kyoto Univ. and Tokyo Electron
Establishment of SiC epitaxial equipment
SiCystal AG. is purchased.
Mass production start
Mass production start
MP.
Germany
SiCrystal AG
Confidential
Fukuoka
ROHM Apollo Co., Ltd.
Power Module
MP.
MP.
Kyoto
ROHM Co., Ltd. Kyoto HQ.
c 2014 ROHM Co.,Ltd. All Rights Reserved
801J005A
7
Table of contents
1. Introduction
2. SiC SBD
3. SiC MOSFET
4. Hybrid MOS (Si)
Confidential
c 2014 ROHM Co.,Ltd. All Rights Reserved
ROHM SiC SBD
Comparison of Forward Characteristics of SiC SBDs
8
2nd Gen SiC-SBDs realize lower Vf, which leads to better efficiency
Forward Characteristics
(at T=25˚C)
Forward Characteristics
10
(at T=125˚C)
10
Company C
C3D10060A
ROHM
2G SBD
SCS210A
5
If (A)
If (A)
Company C
C3D10060A
ROHM
2G SBD
SCS210A
5
Company I
IDT10S60C
Company I
IDT10S60C
0
0
0
0,5
1
1,5
Vf (V)
2
0
0,5
1
1,5
Vf (V)
※These data are provided to show a result of evaluation done by ROHM for your reference. ROHM does not
guarantee any of the characteristics shown here.
Confidential
c 2014 ROHM Co.,Ltd. All Rights Reserved
2
ROHM SiC SBD
Comparison between Si-FRD and SiC-SBD
9
High voltage is possible in SiC with “ultra fast” SBD structure
=>negligible recovery loss
100
600V 定格
10A
600V/10A
Devices
Ta=25℃
Ta=25℃
Si-FRD
trr (ns)
Low recovery
loss
G3
SiC-SBD
2015
2世代
第G2
SiC-SBD
SiC-SBD
第 1G1
世代
SiC-SBD
SiC-SBD
10
1
1.5
2
Vf@10A (V)
Low conduction loss
Confidential
c 2014 ROHM Co.,Ltd. All Rights Reserved
2.5
ROHM’s Next Gen SiC SBD (Trench)
Cross section
Electric field distribution
(reverse direction)
Schottky
Mo Metal
Conventional
SBD
N- SiC (Drift layer )
SiC sub.
Metal
Schottky
Mo Metal
Trench SBD
P SiC
N- SiC (Drift layer )
SiC sub.
Metal
Trench SBD structure reduces electric field at Schottky
contact.
=> Trade-off between Vf and leakage current is improved.
Confidential
c 2014 ROHM Co.,Ltd. All Rights Reserved
Confidential
10
If-Vf (reference data)
11
Trench SBD structure allows for
1) implementation of low barrier height Schottky metal
2) thinner epi thickness and higher dopant concentration
results in lower Vf (above graph is for case 1)
70
60
Ta= 25℃
50
IF [A]
40
Ta= 175℃
30
20
10
PureSBD
TrenchJBS
0
- 10
0
0.5
1
1.5
2
VF [V]
Confidential
c 2014 ROHM Co.,Ltd. All Rights Reserved
Confidential
2.5
12
Table of contents
1. Introduction
2. SiC SBD
3. SiC MOSFET
4. Hybrid MOS (Si)
Confidential
c 2014 ROHM Co.,Ltd. All Rights Reserved
Confidential
Area specific resistance RonA (mΩ cm2)
RonA vs Blocking Voltage Characteristics
400
350
Chip size ratio
300
Si-MOSFET
75
250
: Chip size ratio
: for the same Ron
: at BVdss of 900V
200
150
20
Si-SJMOS
100
2 2G SiC MOSFET
50
0
500
1 3G SiC MOSFET
Latest Si-SJMOS
600
700
800
900
1000
1100
1200
Blocking Voltage (V)
▪ Chip size can be halved for the same Ron, which leads to cost reduction
▪ Smaller package size for the same Ron
Confidential
c 2014 ROHM Co.,Ltd. All Rights Reserved
Confidential
13
Overview of ROHM SiC-MOSFET lineup
14
Release 2015
Generation
2G
SiC-MOSFET
3G
SiC-MOSFET
Structure
Planner gate (DMOS)
Trench gate
(UMOS)
RonA 1200V
8.2mΩcm2
4.1mΩcm2
RonA 650V
6.5mΩcm2
3.1mΩcm2
Confidential
c 2014 ROHM Co.,Ltd. All Rights Reserved
Confidential
Drain-source Bias Simulation Results
15
Condition: Same Vds supplied in both cases
Standard trench MOSFET
ROHM 3G SiC MOSFET
Eox: 35% lower
(MV/cm)
1.5
1.2
0.9
0.6
0.3
0.0
Suppression of the electric field concentration at the bottom of the gate trench is
achieved by the double trench structure of ROHM 3G SiC MOSFET
Confidential
c 2014 ROHM Co.,Ltd. All Rights Reserved
Confidential
On-state Characteristics of 3G SiC Trench MOSFET16
Vgs=20V
Vgs=18V
60
55
Ta = 25ºC
Pulsed
50
45
Vgs=14V
40
35
Vgs=12V
30
25
20
Vgs=10V
15
10
5
0
Vgs=8V
0
2
4
6
8
Drain - Source Voltage (V)
10
Id-Vds characteristics
▪
▪
Positive temp.-coefficient of Ron
0.12
Ron(Ω ) at Id = 15A
Drain Current (A)
0.14
Vgs=16V
0.10
150℃
0.08
0.06
Full turn on
0.04
25℃
0.02
0.00
Id = 15A
10
12
Recommended Vgs
14
16
Vgs (V)
18
20
Ron-Vgs characteristics
Low Ron at recommended Vgs of 18V
A positive temperature-coefficient of on-resistance over Vgs of 10.5V,
thus lower risk of thermal runaway
Confidential
c 2014 ROHM Co.,Ltd. All Rights Reserved
Confidential
Comparison of Temperature Dependency of Ron
Same chip size
0.14
Ron (Ω ) at Id = 15A
0.12
0.10
Planar MOSFETs
0.08
50%
Reduction
0.06
Trench MOSFETs
0.04
0.02
0.00
Vgs = 18V
25
50
75
100
125
Temperature (℃)
150
Ron-Temperature characteristics
▪ Compared to 2G planar MOSFET, Ron reduced by half throughout the
entire temperature range
Confidential
c 2014 ROHM Co.,Ltd. All Rights Reserved
Confidential
17
Ciss vs Ron
18
5000
4500
Reduction from 2G DMOS
Ciss: by 35%
Ron: by 50%
with the same chip size
4000
Ciss (pF)
3500
3000
2500
2G DMOS
80mΩ 1200V
2000
1500
1000
500
0
Ciss: by 70% at the same Ron
3G UMOS
40mΩ 1200V
0
20
40
3G UMOS
60
80
100
120
140
160
80mΩ 1200V
Ron@25℃ (mΩ )
The combination of Lower Ron & Ciss reduced both conduction and switching losses
Confidential
c 2014 ROHM Co.,Ltd. All Rights Reserved
Confidential
Vgs vs Qg
19
35%
Same chip size
18
16
3G UMOS
2G DMOS
40mΩ 1200V
80mΩ 1200V
14
12
Vgs[V]
10
8
o
Ta = 25 C
Vdd = 400V
Id = 10A
Pulsed
6
4
2
0
0
20
40
60
80
Qg[nC]
100
120
35% Lower Qg compared to ROHM 2G SiC DMOS
Confidential
c 2014 ROHM Co.,Ltd. All Rights Reserved
Confidential
Switching Loss Reduction
Same chip size
20
1800
Vdd=800V
Vgs=18V/-5V
L=500uH
Rg=0 Ω
Ta=25oC
1600
1400
1200
1000
Eon SiC Planar MOS
Eon SiC Trench MOS
800
600
Eoff SiC Planar MOS
400
Eoff SiC Trench MOS
200
0
0
10
20
30
40
Id (A)
Id
(A)
Total switching loss reduced by 30% compared to ROHM 2G SiC MOSFET
Confidential
c 2014 ROHM Co.,Ltd. All Rights Reserved
Confidential
Reverse Recovery Characteristics of Body-diode
21
50
40
30
20
10
0
-10
-20
-30
-40
-50
Si-SJ MOS
trr ~ 600nsec
- 0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
I [A]
I [A]
measurement
condition
E = 300V
Rg = 100Ω
Id = 36A
50
40
30
20
10
0
-10
-20
-30
-40
-50
3G SiC trench
MOS
trr ~ 30nsec
- 0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
time [µs]
time [µs]
Reverse recovery current of body-diode is extremely smaller than Si-MOSFETs
Confidential
c 2014 ROHM Co.,Ltd. All Rights Reserved
Confidential
Reliability test
Confidential
22
TEST
Condition
Body-diode
conduction
Isd=10A,
Ta=25oC
(1000h, n=20)
Vth stability
(HTGB+)
Vgs= +22V,
Ta=175oC
(1000h, n=80)
Vth stability
(HTGB-)
Vgs= -10V,
Ta=175oC
(1000h, n=30)
Robustness at
non-weather protected
locations
(H3TRB)
Vds=960V
(Vdsmax*80%)
Ta=85oC
85%RH
(1000h, n=88)
c 2014 ROHM Co.,Ltd. All Rights Reserved
Recombination induced stacking faults
23
SiC MOSFET circuit diagram
Before stress
Drain
bipolar current
p+
n- epi
electron-hole
recombination
Forward
Conduction
Body diode
(parasitic diode)
Gate
n+ sub
Source
70~140um
Basal plane dislocation (Linear defect)
@Id=10A, Vgs=18V
Cross section
Old process
2.50
2.00
1.50
1.00
0.50
0.00
0
10
20
30
40
50
Current process
Ron (Ω)
angle
Defect
Generation
Ron (Ω)
4o off
@Id=2.5A, Vgs=18V
After stress
TIME (hrs)
Device Degradation
Increase in Ron
ROHM SiC planar MOSFETs
have already solved
Confidential
c 2014 ROHM Co.,Ltd. All Rights Reserved
Body-Diode Reliability
24
Vgd=0V
IF
Body-Di
50%
Id = 10A
30%
Vsd = 5V
20%
N = 20
Body Diodes Differential On- Resistance
40%
VF increaseIncreace
rate of
body diode
Rate
Ron
increase
rateIncrease
of MOSFETs
MOSFETs
On- Resistance
Rate
Condition
IF=10A DC (body diode)
Ta=25oC
Number: 20
10%
0%
- 10%
- 20%
No degradation
- 30%
- 40%
- 50%
0
200
400
600
800
Time (h)
1000
1200
50%
40%
Id = 10A
30%
Vsd = 5V
20%
N = 20
10%
0%
- 10%
- 20%
No degradation
- 30%
- 40%
- 50%
0
200
400
600 800
Time (h)
1000 1200
Applicable to inverters, converters, and any sort of topologies
which have commutation current through the body-diode
Confidential
c 2014 ROHM Co.,Ltd. All Rights Reserved
Confidential
Time Dependence of Vth Change Rate
HTGB(+22V)
HTGB(-10V)
100%
100%
80%
80%
HTGB (175℃)
Vgs = 22V
N = 80
60%
40%
The change rate of
Vth at Vd = 10V, Id = 10mA
The change rate of
Vth at Vd = 10V, Id = 10mA
25
20%
0%
- 20%
No degradation
- 40%
- 60%
60%
40%
20%
0%
- 20%
- 40%
- 80%
- 100%
- 100%
200
400
600
Time (h)
800
1000
No degradation
- 60%
- 80%
0
HTGB (175℃)
Vgs = - 10V
N = 30
0
200
400
600
Time (h)
800
▪ Vth were stable during the entire duration of both positive and
negative gate bias test
▪ Rated Vgs(-) expanded from -6V (2G) to -10V (3G)
Confidential
c 2014 ROHM Co.,Ltd. All Rights Reserved
Confidential
1000
H3TRB test
26
For module applications in non-weather protected locations
Photovoltaic cell inverters
Industrial applications in humid tropical region
High Humidity High Temperature Reverse Bias test
H3TRB test conditions
Vds= Vdsmax ×80%
Ta=85oC
85%RH
1000h
Required to prove the robustness in non-weather protected locations
Confidential
c 2014 ROHM Co.,Ltd. All Rights Reserved
H3TRB Test Result
Filled with silicone gel
1.0E- 03
Idss at Vds = 1200V (A)
Condition
Vds=960V (Vdsmax ×80%)
Ta=85oC
85%RH
Number : total 88 chips
27
1.0E- 04
1.0E- 05
1.0E- 06
1.0E- 07
No degradation
1.0E- 08
1.0E- 09
0
200
400
600
800
1000
1200
Time (h)
Confirmed the robustness of 3G SiC MOSFET against H3TRB test, which proves
the potential to be used under non-weather protected environment
Confidential
c 2014 ROHM Co.,Ltd. All Rights Reserved
Confidential
Reliability test result
28
TEST
Condition
3G SiC-MOSFETs
Body-diode
conduction
Isd=10A,
Ta=25oC
(1000h, n=20)
○
no degradation
Vth stability
(HTGB+)
Vgs= +22V,
Ta=175oC
(1000h, n=80)
○
no degradation
Vth stability
(HTGB-)
Vgs= -10V,
Ta=175oC
(1000h, n=30)
○
no degradation
Robustness at
non-weather protected
locations
(H3TRB)
Vds=960V
(Vdsmax*80%)
Ta=85oC
85%RH
(1000h, n=88)
○
no degradation
Confidential
c 2014 ROHM Co.,Ltd. All Rights Reserved
Lineup of 3G SiC MOSFET
P/N
Package
BVDSS
Vgs
RDSon
22V / -10V
22mΩ
22V / -10V
30mΩ
TO247, Bare die
22V / -10V
40mΩ
TO247, Bare die
22V / -10V
17mΩ
22V / -10V
22mΩ
22V / -10V
30mΩ
TO247, Bare die
SCT30XXKL
SCT30XXAL
29
TO247, Bare die
TO247, Bare die
1200V
650V
TO247, Bare die
Bare die
Package
TO247
Confidential
c 2014 ROHM Co.,Ltd. All Rights Reserved
Confidential
Status
Under
development
30
Table of contents
1. Introduction
2. SiC SBD
3. SiC MOSFET
4. Hybrid MOS (Si)
Confidential
c 2014 ROHM Co.,Ltd. All Rights Reserved
Confidential
ROHM Super Junction MOSFET
ROHM Si HV-MOSFET
1997
2004
DMOS1
31
2006
DMOS2
2012
2009
SJ-Multi epi-1st
①PrestoMOS FN Series
Shrink
40um cell
A*Ron
Ron*Qg
17um cell
11.81mm2Ω
96Ω*nC
A*Ron
Ron*Qg
17.6Ω*nC
Planor type
Planor Type
16um cell
8.25mm2Ω
A*Ron
3.6mm2Ω
Ron*Qg 10.15Ω*nC
2014~
② SJ-Multi epi-2nd EN
Series
A*Ron 2.3mm2Ω
Multi Epi type Super Junction
New
③HybridMOS GN Series
New type
Multi Epi type
Super Junction
New concept Super Junction
<SJMOS Achievement>
2007~ PDP sustain
2008~ PDP power supply
2010~ LED-TV
2007~ Power Supply
2008~ LED lighting
2011~ Refrigerator Inverter
2008~ LCD-TV
2010~ Solar Inverter
2012~ Automotive
Confidential
c 2013 ROHM Co.,Ltd. All Rights Reserved
What is Hybrid MOS ? - High Voltage SW Devices- 32
SiC MOSFET
Si Super-junction
MOSFET
Si IGBT
Structure
Breakdown
voltage
Ron
Switching
speed
Confidential
High
High
Low
Low
Rapid
c 2013 ROHM Co.,Ltd. All Rights Reserved
Up to around 900V
Low
but has on-set voltage
but increasing at high
temperature
Limited switching
frequency due to tail
current at turn-off
Rapid
ROHM Super Junction MOSFET
Hybrid-MOS New structure SJ MOSFET
- GN
series -
33
Semiconductor Of The Year 2014
●Fastest in the market !! ROHM add IGBT function on Super Junction MOSFET.
●ROHM has achieved “Low Rdson at High Temperature condition”
while using Super Junction MOSFET structure.
Merit
■ Comparison with IGBT,,,
■Comparison with Super Junction MOSFET
①. About 62% Ron reduction in High Current operation
Hybrid-MOS Turn-off waveform
IGBT Turn-off waveform
(Tj=125℃)
②. Smaller change rate of Ron in temperature increase.
Id
Ic
VG
VG
14
Gen.1 SJ-MOS
R6020ANX
12
G
VDS(V)
10
8
Tj=125℃
①
Tail Current
②
Part.No
VDSS
(V)
ID
(A)
Tj=25℃
4
Hybrid-MOS
R6035GNX
2
0
R6020GNZ
R6035GNX
0
10
Confidential
20 ROHM 30
50
c 2014
Co.,Ltd. All 40
Rights Reserved
ID(A)
G
No Tail Current
Tj=125℃
Tj=25℃
6
Vds
Vce
600
600
20
35
RDS(on) Typ.(Ω)
Vgs=10V
Tj=25℃
Tj=125℃
ID=5A
ID=10A
ID=5A
ID=10A
0.37
0.24
0.45
0.30
ID=10A
ID=20A
ID=10A
ID=20A
0.17
0.11
0.20
0.14
Qg
Typ.(nC)
Vgs=10V
20
40
ROHM Super Junction MOSFET
Hybrid-MOS New structure SJ MOSFET
- GN
series -
34
■Application Example :
PFC circuit for the outdoor unit of the air conditioner
Driving System :
2 Phase Interleave Cont. Current Mode
■Improved Power Consumption in whole range
Q1,Q2 Power Dissipation
(power consumption per device)
IGBT:600V/40A
Pin (W)
HybridMOSTM
R6035GNX
Light loading 500W/50℃
81%
Down
w/pc
Conditions :
Pmax=7KW
Vin=200Vac 60Hz
Vout=340Vdc Tj=100℃
Driving Frequency: fsw=30kHz
Confidential
Hybrid-MOS
R6035GNX
c 2014 ROHM Co.,Ltd. All Rights Reserved
IGBT:600V/40A
Hybrid-MOS
Heavy loading 4kW/100℃
56%
Down
IGBT:600V/40A Hybrid-MOS
Conclusion
35
Takes Highest Performance devices for you !!
(Technology Leadership)
SiC Device/Module
600V~1700V
IGBT
400~1200V
Si Super-Junction
(Hybrid-MOS)
500~800V
Confidential
c 2013 ROHM Co.,Ltd. All Rights Reserved