ROHM’s Power Devices Technology Update 18th Sep 2014@PowerForum ROHM Semiconductor GmbH Product Marketing Masaharu Nakanishi Confidential c 2014 ROHM Co.,Ltd. All Rights Reserved 1 Table of contents 1. Introduction 2. SiC SBD 3. SiC MOSFET 4. Hybrid MOS (Si) Confidential c 2013 ROHM Co.,Ltd. All Rights Reserved ROHM’s Accelerating Growth in Four Areas Confidential c 2014 ROHM Co.,Ltd. All Rights Reserved 2 ROHM’s Power Devices 3 ROHM’s power item lineup covers wafers/bare dies, discrete packages, module, ICs and Intelligent Power Modules. Power Module PKG TO220 TO247/3PF D-Pak / D2-Pak etc… Case type (Full SiC Module) Mold type IPM etc… Device SiC (SBD/MOSFET) IGBT Hybrid MOS Super Junction MOSFET FRD SBD Shunt Resistor Confidential c 2014 ROHM Co.,Ltd. All Rights Reserved ICs Gate Driver Temperature/High Voltage monitor ACDC etc… Applications for Power Devices 4 Industry Solar Induction Heating Medical Air Conditioner Pulse power Auxiliary power supply EV/HEV Drive Accelerator (Collider) Power supply Train BEMS/HEMS Confidential Others c 2014 ROHM Co.,Ltd. All Rights Reserved Advantage of SiC Power Devices Characteristics of SiC Devices 5 Physical properties (SiC / Si) A large safe operating range Melting point x2 Operation at High Temp. Bandgap High Breakdown Voltage Breakdown electric field Large Current Thermal conductivity x3 x3 Low Switching Loss Physical propaties Si bandgap (eV) 1.12 electron mobility (cm2/Vs) 1350 breakdown field (MV/cm) 0.3 saturation electron mobility (cm/s) 1.0E+07 thermal conductivity (W/cmK) 1.5 Confidential c 2014 ROHM Co.,Ltd. All Rights Reserved SiC(4H) 3.26 1000 3.0 2.7E+07 4.9 GaN X33.39 X0.8 1500 X10!3.3 X2 2.2E+07 X3! 1.3 x10 Supply Chain of ROHM SiC Power Devices SiC epitaxial substrate SiC discrete devices 6 SiC power modules The production system of the consistent SiC power semiconductor ROHM kyoto Univ. and Tokyo Electron Establishment of SiC epitaxial equipment SiCystal AG. is purchased. Mass production start Mass production start MP. Germany SiCrystal AG Confidential Fukuoka ROHM Apollo Co., Ltd. Power Module MP. MP. Kyoto ROHM Co., Ltd. Kyoto HQ. c 2014 ROHM Co.,Ltd. All Rights Reserved 801J005A 7 Table of contents 1. Introduction 2. SiC SBD 3. SiC MOSFET 4. Hybrid MOS (Si) Confidential c 2014 ROHM Co.,Ltd. All Rights Reserved ROHM SiC SBD Comparison of Forward Characteristics of SiC SBDs 8 2nd Gen SiC-SBDs realize lower Vf, which leads to better efficiency Forward Characteristics (at T=25˚C) Forward Characteristics 10 (at T=125˚C) 10 Company C C3D10060A ROHM 2G SBD SCS210A 5 If (A) If (A) Company C C3D10060A ROHM 2G SBD SCS210A 5 Company I IDT10S60C Company I IDT10S60C 0 0 0 0,5 1 1,5 Vf (V) 2 0 0,5 1 1,5 Vf (V) ※These data are provided to show a result of evaluation done by ROHM for your reference. ROHM does not guarantee any of the characteristics shown here. Confidential c 2014 ROHM Co.,Ltd. All Rights Reserved 2 ROHM SiC SBD Comparison between Si-FRD and SiC-SBD 9 High voltage is possible in SiC with “ultra fast” SBD structure =>negligible recovery loss 100 600V 定格 10A 600V/10A Devices Ta=25℃ Ta=25℃ Si-FRD trr (ns) Low recovery loss G3 SiC-SBD 2015 2世代 第G2 SiC-SBD SiC-SBD 第 1G1 世代 SiC-SBD SiC-SBD 10 1 1.5 2 Vf@10A (V) Low conduction loss Confidential c 2014 ROHM Co.,Ltd. All Rights Reserved 2.5 ROHM’s Next Gen SiC SBD (Trench) Cross section Electric field distribution (reverse direction) Schottky Mo Metal Conventional SBD N- SiC (Drift layer ) SiC sub. Metal Schottky Mo Metal Trench SBD P SiC N- SiC (Drift layer ) SiC sub. Metal Trench SBD structure reduces electric field at Schottky contact. => Trade-off between Vf and leakage current is improved. Confidential c 2014 ROHM Co.,Ltd. All Rights Reserved Confidential 10 If-Vf (reference data) 11 Trench SBD structure allows for 1) implementation of low barrier height Schottky metal 2) thinner epi thickness and higher dopant concentration results in lower Vf (above graph is for case 1) 70 60 Ta= 25℃ 50 IF [A] 40 Ta= 175℃ 30 20 10 PureSBD TrenchJBS 0 - 10 0 0.5 1 1.5 2 VF [V] Confidential c 2014 ROHM Co.,Ltd. All Rights Reserved Confidential 2.5 12 Table of contents 1. Introduction 2. SiC SBD 3. SiC MOSFET 4. Hybrid MOS (Si) Confidential c 2014 ROHM Co.,Ltd. All Rights Reserved Confidential Area specific resistance RonA (mΩ cm2) RonA vs Blocking Voltage Characteristics 400 350 Chip size ratio 300 Si-MOSFET 75 250 : Chip size ratio : for the same Ron : at BVdss of 900V 200 150 20 Si-SJMOS 100 2 2G SiC MOSFET 50 0 500 1 3G SiC MOSFET Latest Si-SJMOS 600 700 800 900 1000 1100 1200 Blocking Voltage (V) ▪ Chip size can be halved for the same Ron, which leads to cost reduction ▪ Smaller package size for the same Ron Confidential c 2014 ROHM Co.,Ltd. All Rights Reserved Confidential 13 Overview of ROHM SiC-MOSFET lineup 14 Release 2015 Generation 2G SiC-MOSFET 3G SiC-MOSFET Structure Planner gate (DMOS) Trench gate (UMOS) RonA 1200V 8.2mΩcm2 4.1mΩcm2 RonA 650V 6.5mΩcm2 3.1mΩcm2 Confidential c 2014 ROHM Co.,Ltd. All Rights Reserved Confidential Drain-source Bias Simulation Results 15 Condition: Same Vds supplied in both cases Standard trench MOSFET ROHM 3G SiC MOSFET Eox: 35% lower (MV/cm) 1.5 1.2 0.9 0.6 0.3 0.0 Suppression of the electric field concentration at the bottom of the gate trench is achieved by the double trench structure of ROHM 3G SiC MOSFET Confidential c 2014 ROHM Co.,Ltd. All Rights Reserved Confidential On-state Characteristics of 3G SiC Trench MOSFET16 Vgs=20V Vgs=18V 60 55 Ta = 25ºC Pulsed 50 45 Vgs=14V 40 35 Vgs=12V 30 25 20 Vgs=10V 15 10 5 0 Vgs=8V 0 2 4 6 8 Drain - Source Voltage (V) 10 Id-Vds characteristics ▪ ▪ Positive temp.-coefficient of Ron 0.12 Ron(Ω ) at Id = 15A Drain Current (A) 0.14 Vgs=16V 0.10 150℃ 0.08 0.06 Full turn on 0.04 25℃ 0.02 0.00 Id = 15A 10 12 Recommended Vgs 14 16 Vgs (V) 18 20 Ron-Vgs characteristics Low Ron at recommended Vgs of 18V A positive temperature-coefficient of on-resistance over Vgs of 10.5V, thus lower risk of thermal runaway Confidential c 2014 ROHM Co.,Ltd. All Rights Reserved Confidential Comparison of Temperature Dependency of Ron Same chip size 0.14 Ron (Ω ) at Id = 15A 0.12 0.10 Planar MOSFETs 0.08 50% Reduction 0.06 Trench MOSFETs 0.04 0.02 0.00 Vgs = 18V 25 50 75 100 125 Temperature (℃) 150 Ron-Temperature characteristics ▪ Compared to 2G planar MOSFET, Ron reduced by half throughout the entire temperature range Confidential c 2014 ROHM Co.,Ltd. All Rights Reserved Confidential 17 Ciss vs Ron 18 5000 4500 Reduction from 2G DMOS Ciss: by 35% Ron: by 50% with the same chip size 4000 Ciss (pF) 3500 3000 2500 2G DMOS 80mΩ 1200V 2000 1500 1000 500 0 Ciss: by 70% at the same Ron 3G UMOS 40mΩ 1200V 0 20 40 3G UMOS 60 80 100 120 140 160 80mΩ 1200V Ron@25℃ (mΩ ) The combination of Lower Ron & Ciss reduced both conduction and switching losses Confidential c 2014 ROHM Co.,Ltd. All Rights Reserved Confidential Vgs vs Qg 19 35% Same chip size 18 16 3G UMOS 2G DMOS 40mΩ 1200V 80mΩ 1200V 14 12 Vgs[V] 10 8 o Ta = 25 C Vdd = 400V Id = 10A Pulsed 6 4 2 0 0 20 40 60 80 Qg[nC] 100 120 35% Lower Qg compared to ROHM 2G SiC DMOS Confidential c 2014 ROHM Co.,Ltd. All Rights Reserved Confidential Switching Loss Reduction Same chip size 20 1800 Vdd=800V Vgs=18V/-5V L=500uH Rg=0 Ω Ta=25oC 1600 1400 1200 1000 Eon SiC Planar MOS Eon SiC Trench MOS 800 600 Eoff SiC Planar MOS 400 Eoff SiC Trench MOS 200 0 0 10 20 30 40 Id (A) Id (A) Total switching loss reduced by 30% compared to ROHM 2G SiC MOSFET Confidential c 2014 ROHM Co.,Ltd. All Rights Reserved Confidential Reverse Recovery Characteristics of Body-diode 21 50 40 30 20 10 0 -10 -20 -30 -40 -50 Si-SJ MOS trr ~ 600nsec - 0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 I [A] I [A] measurement condition E = 300V Rg = 100Ω Id = 36A 50 40 30 20 10 0 -10 -20 -30 -40 -50 3G SiC trench MOS trr ~ 30nsec - 0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 time [µs] time [µs] Reverse recovery current of body-diode is extremely smaller than Si-MOSFETs Confidential c 2014 ROHM Co.,Ltd. All Rights Reserved Confidential Reliability test Confidential 22 TEST Condition Body-diode conduction Isd=10A, Ta=25oC (1000h, n=20) Vth stability (HTGB+) Vgs= +22V, Ta=175oC (1000h, n=80) Vth stability (HTGB-) Vgs= -10V, Ta=175oC (1000h, n=30) Robustness at non-weather protected locations (H3TRB) Vds=960V (Vdsmax*80%) Ta=85oC 85%RH (1000h, n=88) c 2014 ROHM Co.,Ltd. All Rights Reserved Recombination induced stacking faults 23 SiC MOSFET circuit diagram Before stress Drain bipolar current p+ n- epi electron-hole recombination Forward Conduction Body diode (parasitic diode) Gate n+ sub Source 70~140um Basal plane dislocation (Linear defect) @Id=10A, Vgs=18V Cross section Old process 2.50 2.00 1.50 1.00 0.50 0.00 0 10 20 30 40 50 Current process Ron (Ω) angle Defect Generation Ron (Ω) 4o off @Id=2.5A, Vgs=18V After stress TIME (hrs) Device Degradation Increase in Ron ROHM SiC planar MOSFETs have already solved Confidential c 2014 ROHM Co.,Ltd. All Rights Reserved Body-Diode Reliability 24 Vgd=0V IF Body-Di 50% Id = 10A 30% Vsd = 5V 20% N = 20 Body Diodes Differential On- Resistance 40% VF increaseIncreace rate of body diode Rate Ron increase rateIncrease of MOSFETs MOSFETs On- Resistance Rate Condition IF=10A DC (body diode) Ta=25oC Number: 20 10% 0% - 10% - 20% No degradation - 30% - 40% - 50% 0 200 400 600 800 Time (h) 1000 1200 50% 40% Id = 10A 30% Vsd = 5V 20% N = 20 10% 0% - 10% - 20% No degradation - 30% - 40% - 50% 0 200 400 600 800 Time (h) 1000 1200 Applicable to inverters, converters, and any sort of topologies which have commutation current through the body-diode Confidential c 2014 ROHM Co.,Ltd. All Rights Reserved Confidential Time Dependence of Vth Change Rate HTGB(+22V) HTGB(-10V) 100% 100% 80% 80% HTGB (175℃) Vgs = 22V N = 80 60% 40% The change rate of Vth at Vd = 10V, Id = 10mA The change rate of Vth at Vd = 10V, Id = 10mA 25 20% 0% - 20% No degradation - 40% - 60% 60% 40% 20% 0% - 20% - 40% - 80% - 100% - 100% 200 400 600 Time (h) 800 1000 No degradation - 60% - 80% 0 HTGB (175℃) Vgs = - 10V N = 30 0 200 400 600 Time (h) 800 ▪ Vth were stable during the entire duration of both positive and negative gate bias test ▪ Rated Vgs(-) expanded from -6V (2G) to -10V (3G) Confidential c 2014 ROHM Co.,Ltd. All Rights Reserved Confidential 1000 H3TRB test 26 For module applications in non-weather protected locations Photovoltaic cell inverters Industrial applications in humid tropical region High Humidity High Temperature Reverse Bias test H3TRB test conditions Vds= Vdsmax ×80% Ta=85oC 85%RH 1000h Required to prove the robustness in non-weather protected locations Confidential c 2014 ROHM Co.,Ltd. All Rights Reserved H3TRB Test Result Filled with silicone gel 1.0E- 03 Idss at Vds = 1200V (A) Condition Vds=960V (Vdsmax ×80%) Ta=85oC 85%RH Number : total 88 chips 27 1.0E- 04 1.0E- 05 1.0E- 06 1.0E- 07 No degradation 1.0E- 08 1.0E- 09 0 200 400 600 800 1000 1200 Time (h) Confirmed the robustness of 3G SiC MOSFET against H3TRB test, which proves the potential to be used under non-weather protected environment Confidential c 2014 ROHM Co.,Ltd. All Rights Reserved Confidential Reliability test result 28 TEST Condition 3G SiC-MOSFETs Body-diode conduction Isd=10A, Ta=25oC (1000h, n=20) ○ no degradation Vth stability (HTGB+) Vgs= +22V, Ta=175oC (1000h, n=80) ○ no degradation Vth stability (HTGB-) Vgs= -10V, Ta=175oC (1000h, n=30) ○ no degradation Robustness at non-weather protected locations (H3TRB) Vds=960V (Vdsmax*80%) Ta=85oC 85%RH (1000h, n=88) ○ no degradation Confidential c 2014 ROHM Co.,Ltd. All Rights Reserved Lineup of 3G SiC MOSFET P/N Package BVDSS Vgs RDSon 22V / -10V 22mΩ 22V / -10V 30mΩ TO247, Bare die 22V / -10V 40mΩ TO247, Bare die 22V / -10V 17mΩ 22V / -10V 22mΩ 22V / -10V 30mΩ TO247, Bare die SCT30XXKL SCT30XXAL 29 TO247, Bare die TO247, Bare die 1200V 650V TO247, Bare die Bare die Package TO247 Confidential c 2014 ROHM Co.,Ltd. All Rights Reserved Confidential Status Under development 30 Table of contents 1. Introduction 2. SiC SBD 3. SiC MOSFET 4. Hybrid MOS (Si) Confidential c 2014 ROHM Co.,Ltd. All Rights Reserved Confidential ROHM Super Junction MOSFET ROHM Si HV-MOSFET 1997 2004 DMOS1 31 2006 DMOS2 2012 2009 SJ-Multi epi-1st ①PrestoMOS FN Series Shrink 40um cell A*Ron Ron*Qg 17um cell 11.81mm2Ω 96Ω*nC A*Ron Ron*Qg 17.6Ω*nC Planor type Planor Type 16um cell 8.25mm2Ω A*Ron 3.6mm2Ω Ron*Qg 10.15Ω*nC 2014~ ② SJ-Multi epi-2nd EN Series A*Ron 2.3mm2Ω Multi Epi type Super Junction New ③HybridMOS GN Series New type Multi Epi type Super Junction New concept Super Junction <SJMOS Achievement> 2007~ PDP sustain 2008~ PDP power supply 2010~ LED-TV 2007~ Power Supply 2008~ LED lighting 2011~ Refrigerator Inverter 2008~ LCD-TV 2010~ Solar Inverter 2012~ Automotive Confidential c 2013 ROHM Co.,Ltd. All Rights Reserved What is Hybrid MOS ? - High Voltage SW Devices- 32 SiC MOSFET Si Super-junction MOSFET Si IGBT Structure Breakdown voltage Ron Switching speed Confidential High High Low Low Rapid c 2013 ROHM Co.,Ltd. All Rights Reserved Up to around 900V Low but has on-set voltage but increasing at high temperature Limited switching frequency due to tail current at turn-off Rapid ROHM Super Junction MOSFET Hybrid-MOS New structure SJ MOSFET - GN series - 33 Semiconductor Of The Year 2014 ●Fastest in the market !! ROHM add IGBT function on Super Junction MOSFET. ●ROHM has achieved “Low Rdson at High Temperature condition” while using Super Junction MOSFET structure. Merit ■ Comparison with IGBT,,, ■Comparison with Super Junction MOSFET ①. About 62% Ron reduction in High Current operation Hybrid-MOS Turn-off waveform IGBT Turn-off waveform (Tj=125℃) ②. Smaller change rate of Ron in temperature increase. Id Ic VG VG 14 Gen.1 SJ-MOS R6020ANX 12 G VDS(V) 10 8 Tj=125℃ ① Tail Current ② Part.No VDSS (V) ID (A) Tj=25℃ 4 Hybrid-MOS R6035GNX 2 0 R6020GNZ R6035GNX 0 10 Confidential 20 ROHM 30 50 c 2014 Co.,Ltd. All 40 Rights Reserved ID(A) G No Tail Current Tj=125℃ Tj=25℃ 6 Vds Vce 600 600 20 35 RDS(on) Typ.(Ω) Vgs=10V Tj=25℃ Tj=125℃ ID=5A ID=10A ID=5A ID=10A 0.37 0.24 0.45 0.30 ID=10A ID=20A ID=10A ID=20A 0.17 0.11 0.20 0.14 Qg Typ.(nC) Vgs=10V 20 40 ROHM Super Junction MOSFET Hybrid-MOS New structure SJ MOSFET - GN series - 34 ■Application Example : PFC circuit for the outdoor unit of the air conditioner Driving System : 2 Phase Interleave Cont. Current Mode ■Improved Power Consumption in whole range Q1,Q2 Power Dissipation (power consumption per device) IGBT:600V/40A Pin (W) HybridMOSTM R6035GNX Light loading 500W/50℃ 81% Down w/pc Conditions : Pmax=7KW Vin=200Vac 60Hz Vout=340Vdc Tj=100℃ Driving Frequency: fsw=30kHz Confidential Hybrid-MOS R6035GNX c 2014 ROHM Co.,Ltd. All Rights Reserved IGBT:600V/40A Hybrid-MOS Heavy loading 4kW/100℃ 56% Down IGBT:600V/40A Hybrid-MOS Conclusion 35 Takes Highest Performance devices for you !! (Technology Leadership) SiC Device/Module 600V~1700V IGBT 400~1200V Si Super-Junction (Hybrid-MOS) 500~800V Confidential c 2013 ROHM Co.,Ltd. All Rights Reserved
© Copyright 2025 ExpyDoc