長時間運動時の脳グリコゲン減少と中枢性疲労 - 上月財団

ɞůɠɎÒů2ȇU†WV‹Ʀę.–ſĹDŽÑ
ĮǐȏŮ
NjƏ
ȠǨ............................................................................................................................................................................................... 1
Ǟʈǝ Ƕȧ ........................................................................................................................................................................... 2
Ǟʉǝ ǒǚNjLJ@5Ȳɶ ........................................................................................................................................ 4
Ǟʊǝ ɞůɠɎÒ3ȇU†WV‹GƦę#CʒʂǒǚȲɶʈʃ ............................................... 5
Ǟʋǝ ɎÒů2ȇU†WV‹Ʀę3œdzůɠ®ČĹʒʂǒǚȲɶʉʃ.................................... 12
Ǟʌǝ ǵäȩȴ ............................................................................................................................................................... 20
Ǟʍǝ ǵŒ ......................................................................................................................................................................... 25
ǒǚłžŽȤ ......................................................................................................................................................................... 27
ȵɄ............................................................................................................................................................................................. 27
Ûǿţƹ................................................................................................................................................................................... 28
ɞůɠɎÒů2ȇU†WV‹Ʀę.–ſĹDŽÑ
ĮǐȏŮżœ ĝ
ȠǨ
Nj LJ Ɏ Ò ů 2 ȇ - 3 ɽ Ƅ ǟ . å Ƌ 1 ʄȺ ȓ ǥ ȼ - C U † W V ‹ Ǫ ȃ 2 Ɵ Ò 1 ’ á
Ǝ.DCʄ$2 ȵ1*,2ĺü3Ljƴ-Cʆ$2Ùó.,ʄȇU†WV‹
3 ȵƈ=,ŪʄŜÂ&ȇU†WV‹ďɛɫ.ŕADCʆŹǒǚ3ʄȇU†WV‹ďɛ2X‡i‹]c‹dk-C~KT‰ƝƵĖƜGė»ʄɞ
ůɠɎÒ1@CȇU†WV‹ÒľGŬA1!C.GNjLJ.&ʆ
ĕ ȶ . ŧ Ɯ : " ʄ~ K T ‰ Ɲ Ƶ Ė Ɯ G ƿ & Ɏ Ò ů 2 Ƒ ǔ 0 ȇ U † W V ‹ ď ɛ Ɯ G ɟ
džʄ$2-ʄȇU†WV‹ɎÒů1ÇƿDC/GŬA1!C&=ʄ©
ȗǥ0A51ǟŒȁU†WV‹2ƀƥG>&A!ɞůɠɎ҂i‡GƿʄȇU†WV
‹ ƀ ƥ Ⱦ C / G ǃ 0 C œ dz ů ɠ A ȭ Ǫ 1 Ɔ ȩ & ʂ ǒ ǚ Ȳ ɶ ʈ ʃʆ $ 2 ɨ ʄ
U†WV‹ÄȦ2Ŕƌ.0Cȇ¾˜ɘʄU†WV‹ÄȦG°ʄ$2 ȵɏ˖ſDŽ
Ñ 2 Ù ó 1 0 C . D C _ ‰ j m ‹ (5-HT) ʄ p ‡ I k ˆ l † ‹ (NA) 2 ȵ Ò ľ 1 * ,
> ǟ Œ ȁ . 2 Ɩ Ƀ A Ɔ ȩ & ʂ ǒ ǚ Ȳ ɶ ʉ ʃʆ
Ǯ ž Ɏ Ò ů - > Ƒ ǔ 0 ȇ U † W V ‹ ď ɛ á Ȅ . 0 B ʄ$ 2 ŧ Ɯ G ƿ C . ʄɞ ů ɠ
ɎÒů1ȗǥ³2©‘ĥ.Ɩ¬,ȇU†WV‹2ƦęȾC.ʄ$2āÔ3ȇ¾
˜ ɘ . ȷ 2 Ǎ ɡ G Ǖ ! . ʄ Ų 1 ʄ ȇ ¾ 5-HT/NA 3 U † W V ‹ Ʀ ę . ȷ 2 Ǎ ɡ G Ǖ ! .ŬA.0)&ʆ
Ǯ ȴ Ź ǒ ǚ - 3 ʄȇ U † W V ‹ ɞ ů ɠ Ɏ Ò ů 1 Ç ƿ D ʄ$ 2 į 2 Ɇ Ɋ 0 ¿ ä ł G
ûNJ.&jˆm‹UɒĶGȾ!.Æ=,ŬA10)&ʆDA2ƺȶGĶ
ƿ ! C . - ʄ – ſ ʂ ȇ ʃ DŽ Ñ š ɣ ? Ȯ Ǒ ƍ Ȅ 2 æ  G Nj LJ . & Ŧ & 0 Ɏ Ò ʔƂ ɺ Á ŧ
ȇU†WV‹‰iJ‹UGɟdž-C>D0ʆ
Ț Ȁ Ņ ě ʑ Ǡ Ɲ Ą č ʔª Ȃ ǧ
1
Ǟʈǝ Ƕȧ
ɎÒůʄȇ3ǟ.åƋ1ƟĹÔʄȇ1CNo‡S?ɘǩ2ɬȠ3ĀÎ!C
(Nybo & Secher, 2004)ʆȇ 3 I i p [ ‹  † ‹ ɘ (adnosine triphosphate, ATP)G ä ł ! C &
=1ǥȼ2;GɘÔÇƿ!C.DCʆ0AʄɎÒ1@Bȇ¾2ǥ ȵ/
ƍȄ!C38.H/ŬA1D,0ʆɽƄǟ-3ʄȺȓǥȼ-CU†WV‹
2 Ȧ ǥ ǧ G ɉ & Ä Ȧ Ɏ Ò ů 2 ǩ Ū ATP ƾ ƽ 2 & = 1 ɚ Ƞ - (Romijn et al., 1993)ʄ
Ɏ Ò – 2 Ɵ Ò ǟ 2 U † W V ‹ ư ĥ 3 ǟ Ɵ Ò ˆ y ‡ (Ɏ Ò 2 ĩ ĥ ? œ dz ů ɠ )1 ® Č , Ʀ
ę ʄ $ 2 ƀ ƥ 3 Ÿ ƅ (ǟ )DŽ Ñ 2 Ù ó . 0 C (Gollnick et al., 1974)ʆ Ž ŧ ʄ ȇ 2 U † W V
‹ 3 ʄ ȇ G Ɗ ł ! C Ǘ ǭ Ǫ ȃ (neuron ʄ m „  ‰ ‹ ) ʄ Ǘ ǭ ȉ Ǫ ȃ (glia ʄ U † I ) ʄ ȗ ǣ 2
( ʄU † I 2 Ž Ǚ - C ŭ Ƹ ȉ Ǫ ȃ (astrocyteʄI ] j ‰ Y K j )1 ɥ Ě , Ⱥ ȓ D C
(Wender et al., 2000)ʆ 0 A ʄ Ɏ Ò ů 1 ȇ ¾ Ⱥ ȓ N o ‡ S  . , 2 ȇ U † W V
‹/ ȵDC1ɡ,3¼ƆȩD,0ʆ
ȇU†WV‹3I]j‰YKj¾-˜ɘ1ÄȦDʄ$2˜ɘm„‰‹1­ǯ
D C . - I ] j ‰ Y K j m „  ‰ ‹ ˜ ɘ [ ƒ j ‡ (Pellerin & Magistretti, 1994) 1
C ɚ Ƞ 0 Ĭ Ì G ō ) , C (Gruetter, 2003; Brown, 2004; Benarroch, 2010)ʆ İ Ż ʄ ȇ
2 N o ‡ S  û ȼ 3 ȗ ƣ ǀ Ż 2 U ‡ W  ] 2 ; - C . ǿ A D , & ʄ ų ɇ 2 in
vitro ǒ ǚ 1 @ B ʄ I ] j ‰ Y K j 1 , U ‡ W  ] G û 1 ƾ ƽ D & ˜ ɘ m „  ‰
‹ 1 ­ ǯ D ɘ Ô Ç ƿ D C . ! C I ] j ‰ Y K j m „  ‰ ‹ ˜ ɘ [ ƒ j ‡ 2 Č ø
Ļ ď D C @ 1 0 ) & ʆ A 1 ų ɇ 2 in vivo ǒ ǚ - 3 ʄ m „  ‰ ‹ G Ɵ Ĺ Ô # C
Ȫ Ł Ȳ ɶ ʄȇ DŽ Ñ ‚ i ‡ - C ť ǎ ʄ$ , ȗ ƣ A 2 N o ‡ S  ­ ǯ ’ Ɂ G ő DZ ɷ ʄ
ȇȕȗʄK‹]†‹ȯdžĹ©ȗǥ0/1@),ʄȇU†WV‹ÇƿDƦęʄ$2
į ¿ ȝ ¸ D C . ü ê D , C (Garriga & Cusso, 1992; Kong et al., 2002; Gibbs et
al., 2006; Suh et al., 2007; Herzog et al., 2008; Suzuki et al., 2011)ʆ Î , ʄ ȇ U † W V ‹
ưĥɾD4ʄ©ȗǥů2ǗǭƟÒœdzůɠĦɞʄ$2ɨ1ƽ
CǗǭǪȃƒ
ň È D C . > ü ê D , C (Suh et al., 2007)ʆ D A 2 Ǒ ȡ A ʄ I ] j ‰ Y K j
2U†WV‹3m„‰‹2ƟĹÔ1§No‡SɬȠ2ĀÎʄ•51ȗƣǀŻ2U
2
‡ W  ] ­ ǯ ’ Ɂ 1 @ ) , ʄm „  ‰ ‹ 1 ˜ ɘ G ­ ǯ ! C & = 1 ˜ ɘ 1 Ä Ȧ D Ʀ ę ʄ
$2į¿ȝ¸DC.ǿADCʆ
Ɏ Ò 3 m „  ‰ ‹ G Ɵ Ĺ Ô (Vissing et al., 1996; Saito & Soya, 2004; Nishijima & Soya,
2006; Ohiwa et al., 2006; Soya et al., 2007a; Soya et al., 2007b; Nishijima et al., 2011b)ʄ ɞ
ů ɠ Ɏ Ò 3 © ȗ ǥ G Ĩ Ⱦ ! . A (Tabata et al., 1984; Winder et al., 1987)ʄ Ɏ Ò ů
13ȇU†WV‹ÇƿDʄƦę!CáȄĹĻďDCʆA1ʄWz‹qV‹
Ąč2U‡w3ʄtj1CDŽÑõŀɎÒ2ǫNJ.ǫ™į13ʄȇ2ȗ–U‡W
] ß B Ʌ ; Đ ɨ 1 ȵ D & U ‡ W  ] @ B > ɏ Ë 1 0 C . (Ide et al., 2000)ʄ $ ,ʄ$DȇU†WV‹ÄȦ2ɍ1ɡ“!CIkˆl†‹àēªGɤĒ!C.1
@ B Ƣ ą ! C . G ü ê & (Larsen et al., 2008)ʆ ĭ A 3 2 Ǒ ȡ G û 1 ʄ ȇ U † W V ‹
3 DŽ Ñ õ ŀ Ɏ Ò ů 1 Ç ƿ D Ʀ ę C . £ ȱ G ř ð , C (Nybo & Secher, 2004;
Quistorff et al., 2008; Secher et al., 2008)ʆ 0 A ʄ t j - > Ò ƶ - > ȇ U † W V ‹
ďɛõɫ-)&.Aʄ2£ȱ3D:-ƆȬD,0)&ʆ
ȇU†WV‹2 ȵɊĥ3Ɋ&=ʄŽȍLJ1ÒƶĐɼ-ƿADCťɴ?ƱƠ÷ď
0/2ĜƔƜ-3ƒįʌÄ¢¾1ƀƥ,:.AʄƽƻLJāÔGȥĔ!C.
õ ɫ ' ) & (Hutchins & Rogers, 1970a)ʆ 2 ñ ɶ 2 Ȧ ƙ ǡ . , ʄĐ ɼ Ò ƶ Ĝ Ɣ ů 2 ~
K T ‰ Ɲ Ƶ Ė Ɯ ė » D & ʆ ~ K T ‰ Ɲ Ƶ Ė Ɯ 3 … f j 2 ȇ Ƨ G 1 ǘ ɠ - Ǩ 90 1 
ū#C.1@BʄU†WV‹ ȵɡɋɗǩGąƟ#ʄƒį2ȇU†WV‹ÄȦG
ɣ . - ʄ ȇ Ź Ż 2 U † W V ‹ ư ĥ 2 ď ɛ G á Ȅ 1 ! C (Kong et al., 2002)ʆ
$-Źǒǚ-3ʄ~KT‰ƝƵĖƜGė»ʄɞůɠɎÒů2ȇU†WV‹ÒľG
ŬA1!C.GNjLJ.!Cʆ>Ļď&ɉB2ǮžıADD4ʄɎÒů2ȇ¾
No‡S ȵ13ȗƣǀŻ2U‡W].˜ɘ'-0ʄȇ¾2Ⱥȓǥȼ-C
U†WV‹>ȹƹ!C.ŬA10CʆD3ʄɎÒƽƻŒƽÔč1CŦ&0
ƉķGÎC.10C'-0ʄȇU†WV‹GŔƌ.&ȇƍȄ2ǴœŒĀɍ2
&=2ɎÒÁŧ?Yw†‹j2ɟdž1*0CáȄĹ>C.AʄļǽƤǒǚ
10BC.ǿCʆ
3
Ǟʉǝ ǒǚNjLJ@5Ȳɶ
ʈʆǒǚNjLJ
ɞůɠɎÒů2ȇU†WV‹ÒľG~KT‰ƝƵĖƜGƿ,ŬA1!Cʆ
ʉʆǒǚȲɶ
Źǒǚ2NjLJGɐł!C&=ʄ¢‘2ǒǚȲɶGȫď&ʆ:&ʄãǒǚȲɶ13$
D%Dȟš2ĘȲɶGȫď&ʆ
ǒǚȲɶʈɞůɠɎÒ3ȇU†WV‹GƦę#Cʒ
~ K T ‰ Ɲ Ƶ Ė 1 @ B ʄɞ ů ɠ 2 Ư Ɏ Ò ȇ U † W V ‹ ư ĥ 1 Ü 9 ! ī ɰ G Ɔ ȩ ! C ʆ
ɎÒů1ȇU†WV‹ÇƿDC2-D4ʄȇU†WV‹ɞůɠ2ƯɎÒ1@B
Ʀę!C3"-Cʆ
ǒǚȲɶʉɎÒȯdžĹȇU†WV‹Ʀę3ɎÒœdzůɠ®ČĹʒ
ǃ0Cœdzůɠ2ȽɎÒȇU†WV‹ưĥ1Ü9!īɰ.ȇU†WV‹ưĥ2ÈIJ
óċ-Cȗǥ?ȇ¾‚pI‹.2ɡ¯GƆȩ!CʆɎÒů1ȇU†WV‹Çƿ
DC2-D4ʄ©ȗǥ?ȇ¾‚pI‹ưĥ2ĀÎ1@Bʄȇ->ǟåƋ1U†WV
‹ɎÒœdzůɠ®ČLJ1Ʀę!C3"-Cʆ
4
Ǟʊǝ ɞůɠɎÒ3ȇU†WV‹GƦę#CʒʂǒǚȲɶʈʃ
ʈʆNjLJ
İŻʄȇ2No‡Sƫ3ȗǥǀŻ2U‡W]2;-C.ǿAD,&ʄų
ɇ2~KT‰ƝGƿ&ǒǚ1@),ʄI]j‰YKj2U†WV‹ȦǥǧGɉ,
˜ɘ1ÄȦDʄm„‰‹2No‡Sûȼ.,ÇƿDCáȄĹǕïD,
C (Gruetter, 2003; Brown, 2004; Benarroch, 2010)ʆ Đ ɨ ʄ ȇ U † W V ‹ ư ĥ 1 * , … f
j G ƿ , Ɔ ȩ & ǒ ǚ - 3 ʄ lj ȼ ʄ ơ ɻ ʄ Ȣ ģ ‘ ɓ ʄ Ę ȇ 0 / 2 U † W V ‹ ɛ 24 ů
ɠ 2 DZ ɷ (Garriga et al., 1992)ʄ ȣ ə (ť Ǐ ǎ )ů ɠ 2 Ā Î (Kong et al., 2002)ʄ ȇ ȕ ȗ (Suh et
al., 2007)ʄ K ‹ ] † ‹ ȯ dž Ĺ © ȗ ǥ (Herzog et al., 2008)1 @ B Ʀ ę ! C . Ä ) & ʆ
Î,ʄȇ1,ʄƑğȗǥů13U†WV‹ÄȦGɤĒ!Cʄ©ȗǥů13U†
WV‹2ÄȦGɤĒ0ƷƓ0ȇU†WV‹ÄȦɗǩɤĒȔGƿ,ʄ›É1ȇU†
W V ‹ ư ĥ G Ā Î # , . 1 @ B ʄ© ȗ ǥ ů 2 Ǘ ǭ Ɵ Ò œ dz ů ɠ Ǩ 90 Ä ɠ Ħ ɞ
& (Suh et al., 2007)ʆ D A 2 › Đ A ʄ ȇ U † W V ‹ 3 ȗ ǥ ǀ Ż 2 U ‡ W  ] ­ ǯ ’ Ö Ä 0 ý ä ʄ @ 5 ȇ 2 Ǘ ǭ Ɵ Ò (N o ‡ S  ɬ Ƞ )2 Ā Î 1 @ B Ǎ ĕ LJ 1 ë ö 2 U ‡ W
]’Ɂ&ýä1,ʄm„‰‹6No‡Sûȼ.,2˜ɘG­ǯ!C&
= 1 Ä Ȧ D ʄ Ⱥ ȓ ɛ Ʀ ę ! C . ǿ A D C (Brown et al., 2004)ʆ
Ɏ Ò 3 ȇ Ǘ ǭ Ɵ Ò G Ɵ Ĺ Ô (Saito & Soya, 2004; Nishijima & Soya, 2006; Ohiwa et al.,
2006; Soya et al., 2007a; Soya et al., 2007b; Nishijima et al., 2011b)ʄ ɞ ů ɠ Ɏ Ò 3 © ȗ ǥ G
Ĩ Ⱦ ! . A (Tabata et al., 1984; Winder et al., 1987)ʄ ȇ U † W V ‹ ư ĥ G Ʀ ę #CáȄĹCʆ
$-ǒǚȲɶʉʅʈ-3ʄ©ȗǥG§ɞůɠɎ҅fj2ȇU†WV‹ưĥ1
Ü9!īɰGƆȩ!CʆɎÒ1@),ʄǟåƋ1ȇ->U†WV‹ưĥ2ƦęȾC
çGƆȩ!C.3ʄɎÒů2ȇ¾No‡S ȵ1Ŧ&0ƉķGÎC.10
BʄɎÒƽƻŒƽÔčɳú1,Ŧ&0Ɖķ?Ȳɶ2ɟŐ1*0CáȄĹC&
=ʄɯğ1ļǽƤǒǚ10BC.ǿCʆ
5
ʉʆŧƜ
ʉʅʈʆțɼÒƶ@5ɹȂź¤
Źǒǚ3ʄǠƝĄčÒƶĐɼŔɜ2û+ʄÒƶĐɼ´ƻĉî¥2ŇȮGı,ȘFD
& ʆ Đ ɼ 1 3 11 Ɍ ʀ 2 Witar ǧ ɩ Ĺ … f j (250-300 gʄ SLCʄ Japan)G ƿ & ʆ ɹ Ȃ Ƽ ÿ
3 đ ¾ Ƨ ĥ 22±2 ʄ Ʃ ĥ 60±10%ʄ 7:00ʓ 19:00 G Ŭ Ŷ . & Ŭ ű Y K T ‡ G Ǵ œ & ʆ
ɹ Ť 1 3 Ò ƶ ƿ ÷ Ī ɹ Ť (MFʄ P † N ‹ c ‡ ɗ ƕ ʄ Japan)G ʄ ɸ Ť Ɨ 1 3 Ȓ ǂ Ɨ G $ D %
D ƿ ʄ . > 1 24 ů ɠ ȋ ǀ ś ß . & ʆ
ʉʅʉʆȽȘčǾ
… f j 1 3 1 Ɍ ɠ 2 š µ ɹ Ȃ 2 . ʄj ˆ f k  ‡ Ƚ Ɏ Ò 1 Ŀ D # C & = ʄ6 ũ ɠ 2
Ƚ Ș č Ǿ G Ũ & ʆ Ƚ Ș č Ǿ 3 Ę Ò ƶ ƿ j ˆ f k  ‡ (KNʅ 73ʄ Ă Nj Ȟ « Ņ ʄ Japan)G ƿ
, ʄ 1 ũ 30 Ä ɠ G Ȩ 5 ũ ɠ Ș ) & (Table 1)ʆ 2 w ‰ j W  ‡ - Ƚ Ș č Ǿ G Ș ) & …
f j 2 LT 3 ʄ @ $ 15ʓ 20 m/min - C . ǔ Ȯ D , C (Nishijima & Soya, 2006;
Soya et al., 2007a; Nishijima et al., 2011b)ʆ
Table 1 The protocol for habituation to treadmill running exercise.
Day
Running speed and time
1
2
3
4
5
Rest, 10 min + 5 m/min, 10 min + 10 m/min, 10 min
Rest, 5 min + 5 m/min, 10 min + 10 m/min, 10 min + 15 m/min, 10 min
Rest
Rest, 5 min + 10 m/min, 10 min + 15 m/min, 10 min + 20 m/min, 10 min
Rest, 5 min + 15 m/min, 10 min + 20 m/min, 10 min + 25 m/min, 10 min
6
Rest, 5 min + 15 m/min, 10 min + 20 m/min, 10 min + 25 m/min, 10 min
ʉʅʊʆɎÒĐɼ
… f j G ɯ Ɏ Ò Ǽ (Sedentaryʄj ˆ f k  ‡  1 Ď ǻ ). Ɏ Ò Ǽ (Exercise)2 ʉ Ǽ 1 Ä ʄ
Ä Ɋ 20 mʄ 120 Ä ɠ 2 j ˆ f k  ‡ Ƚ Ɏ Ò G Ș F # & ʆ Ɏ Ò ɟ Ĉ 120 Ä 2 ů Ƴ - ~ K T
‰ Ɲ Ƶ Ė (10 kWʄ 1.2 ǘ )1 @ C Ĝ Ɣ 2 . ť ɴ ʄ ª Ģ ȗ . ȇ ʄ ǟ ʄ ȁ Ȋ G ŗ ß & ʆ
Đɼ2 2 ůɠÉA…fjGDZɷƸľ1ʄĐɼ3!7,×ɖ1ȘFD&ʆ
6
ʉʅʋʆ~KT‰ƝƵĖ
ƴɿɕǼ3ȣəƸľ1,ʄz‹jr‡c‡Ǽ@5Kav‡…‹Ǽ3¼ɂɿ
ɕ 2 . ʄ Kong et al. (2002)2 ŧ Ɯ 1 İ ) , ʄ ~ K T ‰ Ɲ Ƶ Ė Ȝ ǻ (NJE-2606ʄ Ŧ ũ Ź ƴ
Ƿ ƃ ħ ¥ ǖ ʄ Japan)G ƿ ʄ 10 kW 2 ~ K T ‰ Ɲ G 1.2 ǘ ɠ Ƶ Ė … f j G Ĝ Ɣ & ʆ
ʉʅʌʆǬǺ2ŗß
~ K T ‰ Ɲ Ƶ Ė 2 . ȇ G ŗ ß ʄ Hirano et al. (2006)2 ŧ Ɯ 1 İ ʄ lj ȼ ʄ – ɧ ʄ Ƿ
ź ª ʄ ơ ɻ ʄ Ȣ ģ ʄ Ȣ ģ ‘ ɓ ʄ – ȇ ʄ Ę ȇ ʄ ȇ Ģ 2 ʐ ɓ ¨ 1 Ä ǁ & (Fig. 1)ʆ å ů 1 t
…ǟʄɁĤǟʄȁȊ>ŗß&ʆŗß&ǬǺ3ƣªǛǩ-ÀǮ#ʄU†WV‹2
ď ɛ 1 ƿ C : - ʅ 80 - ± Č & ʆ
Fi g ure 1 R at w hol e bra i n an d i ts re gi on s.
ʉʅʌʆȗǥ³2ďɛ
ŗ ß & ª Ģ ȗ (x s † ‹ Á ƻ )G ƿ , ʄ ǒ ǚ Ȳ ɶ ʈ ʅ ʉ . å Ƌ 1 U ‡ W  ] /… T h
 j I l … K Z  (2300 STAT PLUSʄ YSI, USA)- ȗ ǥ ³ G ƨ ď & ʆ
ʉʅʍʆU†WV‹ưĥ2ďɛ
ȇ 2 U † W V ‹ @ 5 U ‡ W  ] 2 Ō  3 Kong et al. (2002) 1 ʄ U ‡ W  ] ư ĥ 2 ƨ
ď 3 Passonneau & Lauderdale (1974)2 ŧ Ɯ 1 İ ) & ʆ ņ ɲ 3 ¢ ‘ 2 ɉ B - C ʆ
7
ʉʅʍʅʈ. U‡W]2ŌÂ
Ǭ Ǻ G 6 %ɏ þ ǩ ɘ /1 mM EDTA ƭ ƣ (perchloric acid solution)G ƿ Ƙ  - { ‚ \ l K
^&ʆ
2 { ‚ \ o  j G 25,000 gʄ 4 - 10Ä ɠ ɑ Ĵ Ä ɪ ʄ  Ʈ ; G Ɨ ɘ Ô Q † L € ƭ
ƣ (3 MƗ ɘ Ô Q † L € (KOH)ʄ 0.3 MK  d b  ‡ (imidazole)ʄ 0.4 Mþ Ô Q † L €
(KCl))- pH 6ʓ 82 ɠ 1 ȳ Ţ & ʆ
14,000 gʄ 4 - 10Ä ɠ ɑ Ĵ Ä ɪ ʄ  Ʈ ; G Î Ɨ Ä Ȧ G , 0 (Ǭ Ǻ ¾ 1 > . A Č ø ! C )U ‡ W  ] Y ‹ w ‡ . & ʆ
ʉʅʍʅʉ. U†WV‹2ŌÂ
Ǭ Ǻ G 6 %ɏ þ ǩ ɘ (perchloric acid)/1 mM EDTAƭ ƣ G ƿ Ƙ  - { ‚ \ l K ^ & ʆ
U † W V ‹ G U ‡ W  ] 1 Î Ɨ Ä Ȧ ! C & = ʄ 2 { ‚ \ o  j 100µl1 1 ml2 0.2 M
ɖ ɘ l j † L € (sodium acetate)ʄ 20µl2 1.0 MƲ ɘ Ɨ ǩ Q † L € (KHCO 3 )ʄ 20 U/ml2
I  ‰ U ‡ W [ d  ` (amyloglucosidase)G Î ʄ đ Ƨ - 16ů ɠ Ď ǻ & ʆ
500µl2 6 %ɏ þ ǩ ɘ /1 mM EDTAƭ ƣ G Î Î Ɨ Ä Ȧ Ý Ķ G Ɛ = & ʆ 25,000 gʄ 4 10Ä ɠ ɑ Ĵ Ä ɪ ʄ  Ʈ ; G Ɨ ɘ Ô Q † L € ƭ ƣ (3 MƗ ɘ Ô Q † L € (KOH)ʄ 0.3 M
K  d b  ‡ (imidazole)ʄ 0.4 Mþ Ô Q † L € (KCl))- pH 6ʓ 82 ɠ 1 ȳ Ţ & ʆ
14,000 gʄ4 - 10Ä ɠ ɑ Ĵ Ä ɪ ʄ Ʈ ; G Î Ɨ Ä Ȧ & (U † W V ‹ Ä Ȧ D & )
U‡W].ǬǺ¾1>.AČø!CU‡W]2”ŧGèH'Y‹w‡.&ʆ
ʉʅʍʅʊ. U‡W]ưĥ2ƨď
U ‡ W  ] 2 ƨ ď 1 3 96L M ‡ w ˆ  j . Ȗ º ~ K T ‰ w ˆ  j †  d  (Varioskan
Flashʄ Thermo Fisher Scientificʄ USA)G ƿ & ʆ
$ D % D 2 L M ‡ 6 200µl2 Ý Ķ ƣ (50 mMj † ] -þ ɘ ƭ ƣ (Tris-HCL)pH 8.1ʄ0.5 mM
I i p [ ‹  † ‹ ɘ (ATP)ʄ 0.5 mM m W e ‹ I  k I i m ‹ \ n T ˆ P e k † ‹ ɘ
(NADP)ʄ 0.5 mMǓ ɘ ~ U o [ L € (MgSO 4 )ʄ 0.1 U/mlU ‡ W  ] 6† ‹ ɘ Ȇ Ɨ ǩ ɗ ǩ
8
(glucose-6-phosphatede hydrogenase))G Î & ʆ
$ D % D 2 L M ‡ 1 ʄ 30µl2 ] c ‹ d  k @ 5 Y ‹ w ‡ . 0.3 U2 x R a R l  `
(Hexokinase)G Î & ʆ
L M ‡ w ˆ  j G Ȗ º ~ K T ‰ w ˆ  j †  d  - ŝ Ŏ ʄ 30Ä ɠ đ Ƨ - Ď ǻ &
. ʄ Ð Ⱦ 355 nmʄ dž º 420 nm- Ǯ Ű & \ t k ‰ m W e ‹ I  k I i m ‹ \ n T
ˆ P e k † ‹ ɘ (NADPH)2 ɛ A U ‡ W  ] ɛ G Ȩ Ǣ & ʆ
U ‡ W  ] 3 molư ĥ - Ț ʄ Ǭ Ǻ 2 Ʃ ɚ ɛ - ȝ Ƒ , µmol/g wet tissue- Ǖ & ʆ
ʉʅʍʅʋʆU†WV‹ɛ2ȨǢ
U†WV‹ưĥ3ʄÎƗÄȦ&Y‹w‡2U‡W]ưĥAÎƗÄȦ,0
Y ‹ w ‡ 2 U ‡ W  ] ư ĥ G Ğ Ĩ & ³ G . ʄU ‡ W  ] å Ƌ µmol/g wet tissue - Ǖ
&ʆ
ʉʅʎʆǰȨÁƻ
i  c 3 ! 7 , Ġ ù ³ ±ƌ Ƭ Ȱ Ğ - Ǖ ʄ ǰ Ȩ Á ƻ 1 * , 3 ĕ Ķ 2 0 t Ɔ ď G Ș )
& ʆ ŵ ļ Ɨ Ƭ 3 5%. & ʆ
ʊʆǮž
ʊʅʈʆȗǥ•51ǟŒȁŒȇU†WV‹ưĥ
Ä Ɋ 20 mʄ 120 Ä ɠ 2 j ˆ f k  ‡ Ƚ Ɏ Ò nj į 2 ȗ ǥ @ 5 ǟ Œ ȁ Œ ȇ U † W V ‹ ư
ĥ G Figure 2 1 Ǖ ! ʆȗ ǥ ³ 3 Exercise Ǽ 1 , Sedentary Ǽ . Ɩ 7 , 45 %© ) & (p
< 0.01)ʆǟ . ȁ Ȋ 2 U † W V ‹ 3 Exercise Ǽ 1 , sedentary Ǽ . Ɩ 7 , Ǩ 90 %Ʀ ę & ʆlj ȼ ʄơ ɻ ʄȢ ģ ‘ ɓ ʄĘ ȇ ʄȇ Ģ 2 U † W V ‹ ư ĥ exercise Ǽ 1 , sedentary
Ǽ . Ɩ 7 , Ǩ 50 %Ʀ ę & (p < 0.05)ʆ Ž ŧ ʄ – ɧ ʄ Ƿ ź ª ʄ Ȣ ģ ʄ – ȇ 2 U † W V ‹ ư
ĥ3Ʀę¶æGǕ&>22ʄŵļ0āÔ3ȡAD0)&ʆ
9
4
**
2
Glycogen (µmol/g)
10
50
40
Muscles
Sol.
1000
Pla.
30
Liver
800
600
20
400
**
10
**
0
0
15
C
B
6
Glycogen (µmol/g)
Blood glucose (mM)
A
200
**
0
Brain
Sedentary
Exercise
*
*
5
*
*
*
0
s
x
n
m
us
us
um
pu
rai
tem
tum
rte
ptu
ell
lam
lam
db
ns
ria
am
Co
Se
ha
St
Mi
reb
rai
oc
tha
T
e
p
B
o
C
p
Hip
Hy
D
% of Sedentary level
120
Reduction rate of brain glycogen
Sedentary level
100
80
60
40
*
**
*
*
*
*
20
0
in
in
m
m
m
m
ex
us
us
us
bra ellu Cort amp inste lam eptu riatu lam d bra
S
ole ereb
St Tha
Mi
oc Bra otha
h
p
C
W
p
Hip
Hy
Figure 2
e x e r c is e .
represent
( u n p a ir e d
B l o o d g l u c o s e , a n d g l y c o g e n l e v e l s i n t h e l i v e r , s k e l e ta l m u s c l e s , a n d t h e b r a i n a f t e r 2 h o f
A , B lo o d g l u c o s e ; B , L i v e r g l y c o g e n ; C , S k e l e t a l m u s c l e s g l y c o g e n ; D , B r a i n g l y c o g e n . D a ta
th e m e a n ± s t a n d a r d e r r o r ( n = 5 - 1 1 r a t s ) . * , p < 0 .0 5 ; * * , p < 0 .0 1 c o m p a r e d t o s e d e n t a r y r a ts
t - t e s t) .
ʋʆǿĔ
ŹĐɼ-3ʄǒǚȲɶ 1 -ǔǜ&ȇU†WV‹ďɛƜGƿ,ʄ©ȗǥGĨȾ
! ɞ ů ɠ (120 Ä ɠ )2 Ư Ɏ Ò … f j 2 ȇ U † W V ‹ ư ĥ 1 Ü 9 ! ī ɰ G Ɔ ȩ & ʆɎ Ò
1 @ B ȗ ǥ ³ 3 45 %© ‘ ʄǟ . ȁ Ȋ 2 U † W V ‹ 3 90 %Ʀ ę & ʆɎ Ò ů 2 © ȗ ǥ ?
ǟ Œ ȁ U † W V ‹ 2 ƀ ƥ 3 DŽ Ñ 2 Ŕ ƌ . D C . A (Nybo & Secher, 2004)ʄ Ź Đ ɼ ƿ&ɎÒ3ɯğ1ÚɎÒź¤-)&.ÄCʆ2.ʄljȼʄơɻʄȢ
ģ ‘ ɓ ʄ Ę ȇ ʄ ȇ Ģ 2 U † W V ‹ ư ĥ Ɏ Ò 1 @ B Ǩ 50ʁ Ʀ ę & ʆ D 1 @ B ʄ Ɏ Ò
ů@BȇU†WV‹Ʀę!C.Æ=,ŬA10)&ʆljȼ3ǟ62Þǹí¡?
Ɏ Ò 2 w ‰ U …  ‹ U ʄơ ɻ 3 Ɏ Ò ů 2 Ȯ Ǒ ʄȢ ģ ‘ ɓ 3 ª Ƨ ? N o ‡ S  ȵ 2 ȳ Ǥ ʄ
10
Ęȇ3ǟ2ĩȳ?ĊÓ2ǴœʄȇĢ3ìé?Ĵŏ2ȳǤ0/ʄɎÒů1ƟĹÔ!C.ǿ
ADCɓ¨-Cʆ2Ǯž3ʄȽɎÒů1ȇ-ĀÎ&No‡SɬȠGƪ&!&
=1Ȧǥǧɍ&áȄĹGǕ!ʆʄ2.åů1©ȗǥ>Ⱦ),C
.AʄŹĐɼ-ȥĔD&ɎÒ1@CȇU†WV‹2Ʀę3ɎÒů2ǗǭƟÒ2ĀÎ
1@C>202ʄ©ȗǥ1@C>202ŬA-0)&ʆ
Ɏ Ò 1 @ B lj ȼ ʄơ ɻ ʄȢ ģ ‘ ɓ ʄĘ ȇ ʄȇ Ģ 2 U † W V ‹ Ʀ ę & Ž ŧ - ʄ– ɧ ʄ
ǷźªʄȢģʄ–ȇ2U†WV‹ưĥ3Ʀę¶æ1)&>22ǰȨLJ0Ğ3ȡAD0
)&ʆDA2ɓ¨>ɎÒ2džƺ1ɡ“!Cɓ¨-CʄɚȠ0ɓ¨-CA
$ ʄ$ 2 ƍ Ȅ G Ǵ œ ! C & = 1 ȇ U † W V ‹ G Ʀ ę # 0 ƍ Ɗ C 2 > D 0 ʆ
11
Ǟʋǝ ɎÒů2ȇU†WV‹Ʀę3œdzůɠ®ČĹʒʂǒǚȲɶʉʃ
ʈʆNjLJ
ɎÒů2No‡S­ǯ1,ʄǟ2U†WV‹3ɯğ1ɚȠ0ĬÌGž&!ʆɽ
Ƅǟ2U†WV‹3ɎÒů1No‡SɬȠĀÎ&ýä1ʄȦǥǧGɉ,ǟȋɂ
1 ATP G ­ ǯ ! C & = 1 ȵ D C (Romijn et al., 1993)ʆ Đ ɨ ʄ ǟ U † W V ‹ ư ĥ 3 Ɏ
Ò – 1 $ 2 Ɏ Ò ĩ ĥ ? œ dz ů ɠ 1 ® Č , Ʀ ę ! C (Gollnick et al., 1974)ʆ Ž ŧ ʄ ǒ ǚ Ȳ
ɶʉʅʈ1@BʄȇU†WV‹©ȗǥG§ɞůɠɎÒ1@BƦę!C.ŬA
10)&ʄ$2Ʀę1ĕ!CɎÒœdzůɠ2īɰ3’Ŭ-Cʆ
Ɏ Ò ů ʄ ȇ 2 ȗ – ˜ ɘ ß B Ʌ ; 3 ȗ – ˜ ɘ ư ĥ Ā Î ! C ˜ ɘ Ĺ « Ƈ ɢ ³ (lactate
threshold, LT)G ɀ C ĩ ĥ 1 , Ⱦ C ʄ LT @ B © ĩ ĥ - 3 Ⱦ A 0 . Ä
) , C (Ide et al., 2000)ʆ Ž ŧ ʄ Ń 2 ǒ ǚ đ - 3 ʄ ~ K T ‰ d K I † [ ] Ɯ G ƿ & ǒ ǚ 1 @ B ʄȽ Ɏ Ò ů 2 … f j ơ ɻ ¾ ˜ ɘ ȗ – ˜ ɘ 2 Ā Î 0 LT @ B © ĩ ĥ 2
Ɏ Ò 1 , > Ā Î ! C . G ȡ  & (ŷ ½ Ț i  c )ʆ 2 . A ʄ LT @ B © ĩ
ĥ2ɎÒ-ĀÎ&ơɻ¾2˜ɘ3ʄȗ–ǀŻ-30ʄȇÙƽ2U†WV‹ÄȦ
D&.1@),ƽ
& ˜ ɘ - C á Ȅ Ĺ ǿ A D C ʆ 2 LT @ B © ĩ ĥ 2 Ɏ Ò ů
1©ȗǥ3Ⱦ),0.AʄɎÒů13©ȗǥȾA0ýä1,>ʄ
ǗǭƟÒ2ĀÎ1§),ȇU†WV‹ɛƦę!CáȄĹCʆ
$-ǒǚȲɶʉʅʉ-3ʄȇU†WV‹3ǟåƋ1ɎÒœdzůɠ®ČLJ1Ʀę!C
/ŬA1!C.GNjLJ.ʄǃ0Cœdzůɠ2ɎÒȇU†WV‹ưĥ1Ü
9!īɰGƆȩ&ʆ
ʉʆŧƜ
ʉʅʈʆțɼÒƶ@5ɹȂź¤
Źǒǚ3ʄǠƝĄčÒƶĐɼŔɜ2û+ʄÒƶĐɼ´ƻĉî¥2ŇȮGı,ȘFD
& ʆ Đ ɼ 1 3 11 Ɍ ʀ 2 Witar ǧ ɩ Ĺ … f j (250-300 gʄ SLCʄ Japan)G ƿ & ʆ ɹ Ȃ Ƽ ÿ
3 đ ¾ Ƨ ĥ 22±2 ʄ Ʃ ĥ 60±10%ʄ 7:00ʓ 19:00 G Ŭ Ŷ . & Ŭ ű Y K T ‡ G Ǵ œ & ʆ
ɹ Ť 1 3 Ò ƶ ƿ ÷ Ī ɹ Ť (MFʄ P † N ‹ c ‡ ɗ ƕ ʄ Japan)G ʄ ɸ Ť Ɨ 1 3 Ȓ ǂ Ɨ G $ D %
12
D ƿ ʄ . > 1 24 ů ɠ ȋ ǀ ś ß . & ʆ
ʉʅʉʆȽȘčǾ
… f j 1 3 1 Ɍ ɠ 2 š µ ɹ Ȃ 2 . ʄj ˆ f k  ‡ Ƚ Ɏ Ò 1 Ŀ D # C & = ʄ6 ũ ɠ 2
Ƚ Ș č Ǿ G Ũ & ʆ Ƚ Ș č Ǿ 3 Ę Ò ƶ ƿ j ˆ f k  ‡ (SN-460, Shinano, Japan)G ƿ , ʄ
1 ũ 30 Ä ɠ G Ȩ 5 ũ ɠ Ș ) & (Ț 1)ʆ 2 w ‰ j W  ‡ - Ƚ Ș č Ǿ G Ș ) & … f j 2 LT
3 ʄ @ $ 15ʓ 20 m/min - C . ǔ Ȯ D , C (Nishijima & Soya, 2006; Soya et al.,
2007a; Nishijima et al., 2011b)ʆ
ʉʅʊʆăɵɮȅQhh‡ǂǻņș
1 Ɍ ɠ 2 š µ ɹ Ȃ 2 . ʄ] j ˆ ] 2 0 ɿ ɕ Ȕ 2 ɮ ȅ ʼn “ G á Ȅ . ! C & = 1 ʄz ‹ j
r‡uc‡Ǽ2ăɵɮȅ1[†W‹ȞQhh‡Gǂǻ&ʆ…fj1z‹jruc
 ‡ ɿ ɕ (50 mg/kg B.W ., i.p.)G Ũ ʄ â ɝ ɽ  ɓ 2 lj Ȉ G Å ɟ & ʆ â ă ɵ ɮ ȅ G ɭ Â
į ʄ $ 2 Ž ɓ G ~ K T ‰ # H à - Å ɟ ʄ $ 2 Å ɟ ɓ A â Ĵ ń 1 < 10%x s † ‹ ƽ
ƻ ɷ þ Ɨ - ƪ & & Q h  h ‡ G 32 mm Ŗ » & ʆ dz , Q h  h ‡ G Ǧ - ă ɵ ɮ ȅ 1
÷ ď į ʄ į ɴ ɽ nj ‘ Ǩ 1 cm G Å ɟ ʄ $ A Q h  h ‡ G ɭ  # & ʆ ȗ ƣ ŋ C
. G ǔ Ȯ & . ʄ Å ɟ ɓ G Ǹ ä & ʆ $ 2 į ʄ Ľ Ɓ Dž G ɣ & = 1 Ŋ ƽ ƶ ȼ (Ò ƶ ƿ
~ K [ † ‹ b ‡ ʄ Ŭ ƚ Ȟ Ȑ ƃ ħ ¥ ǖ ʄ Japan) G 100µl lj ‘ 1 ƞ Ė & ʆ ș į 2 ũ ɠ 2 ò
ijŶɠ2.ĐɼGȘ)&ʆ
ʉʅʋʆɎÒĐɼ
… f j G Ɏ Ò É Ǽ ʄɯ Ɏ Ò Ǽ (j ˆ f k  ‡  1 Ď ǻ )ʄɎ Ò 30 Ä Ǽ ʄɎ Ò 60 Ä Ǽ ʄɎ
Ò 120 Ä Ǽ 2 5 Ǽ 1 Ä ʄ Ä Ɋ 20 mʄ 120 Ä ɠ 2 j ˆ f k  ‡ Ƚ Ɏ Ò G Ș F # & ʆ Ɏ Ò
ɟ Ĉ 0 Ä (Ɏ Ò É )ʄ 30 Ä ʄ 60 Ä ʄ 120 Ä 2 ů Ƴ - ~ K T ‰ Ɲ Ƶ Ė (10 kWʄ 1.2 ǘ )1 @ C
ĜƔ2.ťɴʄªĢȗ.ȇʄǟʄȁȊGŗß&ʆĐɼ2 2 ůɠÉA…fjGDZ
ɷ Ƹ ľ 1 ʄ Đ ɼ 3 ! 7 , × É – 1 Ș F D & ʆ Ƚ Ɏ Ò Đ ɼ 2 w ‰ j W  ‡ G Figure 12A
1Ǖ&ʆ
13
ʉʅʌʆǬǺ2ŗß
ǒ ǚ Ȳ ɶ ʈ . å Ƌ 1 ~ K T ‰ Ɲ Ƶ Ė Ȝ ǻ (NJE-2606ʄ Ŧ ũ Ź ƴ Ƿ ƃ ħ ¥ ǖ ʄ Japan) G ƿ
ʄ 10 kW 2 ~ K T ‰ Ɲ G 1.2 ǘ ɠ Ƶ Ė & . ȇ G ŗ ß & ʆ ȇ 3 Hirano et al. (2006)
2ŧƜ1İʄljȼʄ–ɧʄǷźªʄơɻʄȢģʄȢģ‘ɓʄ–ȇʄĘȇʄȇĢ2ʐɓ
¨1Äǁ&ʆåů1t…ǟʄɁĤǟʄȁȊ>ŗß&ʆŗß&ǬǺ3ƣªǛǩÀ Ǯ # ʄ U † W V ‹ 2 ď ɛ 1 ƿ C : - ʅ 80 - ± Č & ʆ Đ ɼ 1 3 lj ȼ ʄ ơ ɻ ʄ Ȣ
ģ‘ɓʄĘȇʄȇĢ2ʌɓ¨Gƿ&ʆ
ʉʅʍʆȗƣłÄ2ƨď
ǂ ǻ & Q h  h ‡ A 2 ɮ ȅ ȗ (x s † ‹ Á ƻ )G ƿ , ʄ 1 U ‡ W  ] /… T h  j
I l … K Z  (2300 STAT PLUSʄ YSI, USA)- ȗ ǥ ³ . ȗ – ˜ ɘ ³ G ƨ ď & ʆ
ʉʅʎʆU†WV‹@5U‡W]ưĥ2ďɛ
ȇ 2 U † W V ‹ @ 5 U ‡ W  ] 2 Ō  3 Kong et al. (2002)1 ʄ U ‡ W  ] ư ĥ 2 ƨ ď
3 Passonneau & Lauderdale (1974)2 ŧ Ɯ 1 İ ) & ʆ ņ ɲ 3 ǒ ǚ Ȳ ɶ ʈ . å Ƌ 1 Ș ) & ʆ
ʉʅʏʆȇ˜ɘưĥ2ďɛ
Passonneau & Lauderdale (1974)2 ŧ Ɯ 1 @ C R f j (DiaSysʄGermany)1 @ B ď ɛ & ʆ
ʉʅʐʆȇ¾‚pI‹2ďɛ
Takeda et al. (1990)2 ŧ Ɯ 1 @ B ɾ Ɋ ƣ ª T ‰ ~ j U … v J  (HPLC)- ƨ ď & ʆ
ʉʅʈʇʆǰȨÁƻ
i  c 3 ! 7 , Ġ ù ³ ±ƌ Ƭ Ȱ Ğ - Ǖ ʄǰ Ȩ Á ƻ 1 * , 3 Ž · ɔ ǻ Ä Š Ä Ž 2 . ʄ
post hoc h ] j (Dunnet)G Ș ) & ʆǍ ɡ Ä Ž 3 Pearson G ƿ & ʆŵ ļ Ɨ Ƭ 3 5%. & ʆ
14
ʊʆǮž
ʊʅʈʆȗǥʄȗ–˜ɘʄ•51ǟŒȁŒȇU†WV‹ưĥ
Ä Ɋ 20 m ʄ30ʄ60ʄ120 Ä ɠ 2 j ˆ f k  ‡ Ƚ Ɏ Ò nj į 2 ȗ ǥ ʄȗ – ˜ ɘ ʄ• 5 1 ǟ Œ
ȁ Œ ȇ U † W V ‹ ư ĥ G Figure 3 1 Ǖ ! ʆ ȗ ǥ ³ 3 Ɏ Ò 30 Ä Ǽ . 60 Ä Ǽ 1 , Ɏ Ò
É Ǽ . Ɩ Ƀ , Ʀ ę 0 ) & ʄ Ɏ Ò 120 Ä Ǽ - 46 %© ‘ & ʆ ǟ Œ ȁ U † W V ‹ ư
ĥ3ɎÒœdzůɠ®ČLJ1Ʀę&ʆȗǥ.åƋ1ʄljȼʄơɻʄȢģ‘ɓʄĘȇʄȇ
Ģ 2 U † W V ‹ ư ĥ 3 Ɏ Ò 30 Ä Ǽ . 60 Ä Ǽ 1 , Ɏ Ò É Ǽ . Ɩ Ƀ , Ʀ ę 0 )
Exercise
(20m/min, 120min)
E
30
50
120 min
60
Soleus
40
100
** **
30
**
10
0
0
30
**
60
20
60
40
0
0
15
10
10
**
Glycogen (µmol/g)
0
15 Hypothalamus
10
*
5
0
**
4
2
0
0
30
60
30
**
**
60
120
Cortex
30
60
120
1000
20
8
**
6
4
2
0
0
30
60
Liver
800
**
600
**
400
200
0
**
5
**
0
30
60
120
Hippocampus
**
10
5
0
15 Cerebellum
0
15 Brainstem
10
10
0
120
15
**
5
0
120
D
20
120
5
*
6
Plantaris
80
15 Whole brain
Glycogen (µmol/g)
C
Glycogen (µmol/g)
0
8
Blood lactate
(mM)
B
microwave irradiation
(10 kW, 1.2 s)
Glycogen (µmol/g)
A
Blood glucose
(mM)
& ʄ Ɏ Ò 120 Ä Ǽ - 2 ; Ʀ ę & ʆ
0
30
60
120
**
5
0
0
30
60
120
Fi g ure 3 B l ood pa ram ete rs a nd gl yc oge n l e vel s i n th e s kel eta l m usc le, live r, an d bra in a fter exer ci se
for 0, 30, 6 0, and 120 m i n. A , E xper im en t al pr oced ure. B, B lood gluc ose and lactate levels. C, G lyco gen
l ev els in sk eletal m uscl e s. D , L i ve r gl y cog en levels . E , B rain g lycog en leve ls. D ata repr esent the m ean ±
SE M (n = 5-6 r a t s). *, p < 0. 05 ; **, p < 0. 01 com pare d t o p re-ex ercised rats (D unn ett’s po st hoc test).
15
ʊʅʉʆȇ¾U‡W]•51˜ɘưĥ
Ä Ɋ 20 mʄ 30ʄ 60ʄ 120 Ä ɠ 2 j ˆ f k  ‡ Ƚ Ɏ Ò nj į 2 ȇ ¾ U ‡ W  ] • 5 1 ˜ ɘ
ư ĥ G Table 2 1 Ǖ ! ʆ lj ȼ ʄ ơ ɻ ʄ Ȣ ģ ‘ ɓ ʄ Ę ȇ ʄ ȇ Ģ 2 U ‡ W  ] ư ĥ 3 ȗ ǥ . å
Ƌ 1 ʄ Ɏ Ò 30 Ä Ǽ . 60 Ä Ǽ 1 , Ɏ Ò É Ǽ . Ɩ Ƀ , Ʀ ę 0 ) & ʄ Ɏ Ò 120
Ä Ǽ - 2 ; Ʀ ę & ʆ lj ȼ ʄ ơ ɻ ʄ Ȣ ģ ‘ ɓ ʄ Ę ȇ ʄ ȇ Ģ 2 ˜ ɘ ư ĥ 3 Ɏ Ò 120 Ä Ǽ ŵļ1ɾ)&ʆ
T a b l e 2 G lu c o s e a n d l a c t a t e l e v e l s i n f i v e b r a in lo c i a f t e r e x e r c is e f o r 0 , 3 0 , 6 0 , a n d 1 2 0 m in ( µ m o l / g
w e t t is s u e ) .
Brain region
Coetex
Hippocampus
Hypothalamus
Cerebellum
Brainstem
0 min
30 min
60 min
120 min
Glucose
2.6 ± 0.1
3.3 ± 0.1*
3.2 ± 0.2
1.3 ± 0.4*
Lactate
Glucose
1.1 ± 0.0
2.8 ± 0.1
1.9 ± 0.3*
3.4 ± 0.1*
1.9 ± 0.3
3.5 ± 0.1*
2.5 ± 0.2**
1.6 ± 0.3*
Lactate
Glucose
1.3 ± 0.0
2.8 ± 0.1
2.2 ± 0.3
3.2 ± 0.1
2.0 ± 0.3
3.0 ± 0.1
2.7 ± 0.4**
1.9 ± 0.3*
Lactate
Glucose
Lactate
Glucose
Lactate
1.1 ± 0.1
3.1 ± 0.1
0.9 ± 0.1
2.7 ± 0.1
1.1 ± 0.1
1.9 ± 0.3*
3.7 ± 0.2
1.5 ± 0.2*
3.2 ± 0.1
1.9 ± 0.3*
1.8 ± 0.3
3.4 ± 0.1
1.5 ± 0.2
3.3 ± 0.2
1.9 ± 0.3
2.4 ± 0.2**
1.9 ± 0.4*
2.0 ± 0.2**
1.6 ± 0.3*
2.5 ± 0.2***
D a ta r e p r e s e n t th e m e a n ± s t a n d a r d e r r o r ( n = 5 - 6 r a t s ) .
te s t) .
16
* , p < 0 .0 5 c o m p a r e d t o 0 m i n ( D u n n e t t ’ s p o s t h o c
ʊʅʊʆȗǥʄȇ¾U‡W]ʄȇ¾˜ɘ.ȇU†WV‹2Ǎɡ
ȗ ǥ ʄ ȇ ¾ U ‡ W  ] ʄ ȇ ¾ ˜ ɘ . ȇ U † W V ‹ 2 Ǎ ɡ G Figure 5 1 Ǖ ! ʆ ȗ ǥ • 5
1ȇU‡W].ȇU†WV‹.2ɠ13¼,2ɓ¨-ɯğ1ɾƑ2ǍɡȮ=AD
&ʆȇ˜ɘ.ȇU†WV‹.2ɠ13Ȣģ‘ɓGɦ¼,2ɓ¨-ȷ2ǍɡȮ=AD
&ʆ
A Blood glucose vs. Brain glycogen
Cortex
nr == 210.70
p < 0.001
10
5
0
0 2 4 6 8
!"#$%&'()*+,%"-&).'/)0112'3)
15
Hippocampus
Cerebellum
21
21
nr ==0.54
15nr == 0.67
p < 0.05
p < 0.001
10
10
5
5
0
0
0 2 4 6 8 0 2 4 6 8
Hypothalamus
Medulla oblongata
21
15n = 21
15nr == 0.70
r = 0.64
p < 0.01
p < 0.001
10
10
5
5
0
0
0 2 4 6 8 0 2 4 6 8
Blood glucose (mM)
15
B Brain glucose vs. Brain glycogen
C Brain lactate vs. Brain glycogen
Cortex
8%5/'9
nr == 210.85
p < 0.0001
10
5
0
0 1 2 3 4 5
!"#$%&'()*+,%"-&).'/)0112'3)
15
Hippocampus
"&
"!
&
!
!
n = 21
r = 0.73
p < 0.001
Medulla oblongata
$
%
8'5'<'""2,
'()("1(
*()(+!,0!(
!(.(!,!"
"!
'()("/(
*()(+!,0&(
!(.(!,!"
"
&
#
$
%
:#;%/=6"6,21
15n = 21
nr == 210.59
"&
r = 0.91
p < 0.001
p < 0.0001
10
10
"!
5
& '()(#!(
5
*()(+!,"1(
!
0
0
0 1 2 3 4 5 0 1 2 3 4 5
! "
4567()&"2$%1')*+,%"-&).'/)0112'3
15
#
"&
!
Hypothalamus
"
:7;;%$6,;21
Cerebellum
15
"&
10
10
"!
5
5
&
!
0
0
0 1 2 3 4 5 0 1 2 3 4 5
15
n = 21
r = 0.74
p < 0.0001
'()(#!(
*()(+!,%-(
!(.(!,!&
!
!
"
#
$
%
>'?2""6)%<"%(&6/6
"&
"!
&
#
$
%
'()(#!(
*()(+!,%1(
!(.(!,!&
!
!
"
#
$
%
@6$/6/')*+,%"-&).'/)0112'3)
F i g u r e 5 C o r r e l a t i o n b e t w e e n b r a i n g l y c o g e n le v e ls a n d b lo o d g lu c o s e , b r a in g lu c o s e a n d b r a in la c t a t e .
C o r r e l a t i o n b e t w e e n b r a i n g l y c o g e n l e v e l s a n d A ; b l o o d g l u c o s e , B ; b r a i n g l u c o s e , a n d C ; b r a i n l a c ta te
(Pearson’s product–moment correlation test).
17
ʊʅʋʆljȼ‚pI‹ưĥʄ•51ljȼ‚pI‹.U†WV‹ưĥ2Ǎɡ
p‡Ikˆl†‹2 ȵƾƶ-C
A
150 NA
40 MHPG
100
10
0
ng/g wet tissue
‡ (MHPG)3 Ɏ Ò 60 Ä Ǽ - Ɏ Ò É Ǽ . Ɩ
Ƀ , Ā Î ʄ Ɏ Ò 120 Ä Ǽ - 3 Ɏ Ò É
Ǽ ʄ Ɏ Ò 60 Ä Ǽ 2 ” Ǽ . Ɩ Ƀ , ŵ ļ
- C 5- t k ‰ R [ K ‹ k  ‡ ɖ ɘ
(5-HIAA)3 Ɏ Ò 60 Ä Ǽ . 120 Ä Ǽ - Ɏ
0
0
120
60
0
60
400 5-HT
200 5-HIAA
300
200
100
150
100
50
0
0
0
120
60
120
0
60
120
60
120
80 DOPAC
500 DA
400
300
200
100
0
0
0ɾ³GǕ&ʆ_‰jm‹2 ȵƾƶ
20
50
jR[tk‰R[vMm‡U†W
#
30
60
40
20
0
120
60
0
Running time (min)
B
Glycogen (µmol/g wet tissue)
ÒÉǼ.ƖɃ,ŵļ0ɾ³GǕ&ʆ
MHPG vs. glycogen
0Aʄ\tk‰R[vMm‡ɖ
ɘ (DOPAC) 3 Ā Î ¶ æ 1 C > 2 2 ŵ
ļ0āÔ30)&ʆ$2Ÿ2ƨďɱ
Nj 1 > ŵ ļ 0 ā Ô 3 ȡ A D 0 ) & (Fig.
6A)ʆ MHPG @ 5 5-HIAA . U † W V
‹.2ɠ13ɾȷ2ǍɡȮ=AD
15 n = 15
r = -0.66
p < 0.01
10
5
0
0
10
20
30
40
MHPG (ng/g wet tissue)
5-HIAA vs. glycogen
DOPAC vs. glycogen
15 n = 15
r = -0.68
p < 0.01
10
15
13
nr == -0.49
10
5
5
0
0
50
100
150
200
00
5-HIAA (ng/g wet tissue)
20
40
60
80
DOPAC (ng/g wet tissue)
Fi g ure 6 M on oam in es an d th eir m etab olites in
the co rtex aft er e xerc ise for 0, 6 0, and 1 20 m i n.
A, M on oam i ne s an d t he i r m et abo l i t es. D ata
rep resen t the m ean ± st an dard error (n = 4 -6 ra t s).
*, p < 0 . 05; ** , p < 0 . 01 co mp ared t o 0 m i n; #, p <
0. 0 5 com par ed t o 60 m i n of ex erci se (T uk ey’s po st
ho c test ). B , C orrelatio n be twee n m ono am ine
m etabo lites a nd glyco gen leve ls (Pe arson ’s
pro duc t–m om ent c orrel at i o n t est ).
& ʄ DOPAC . U † W V ‹ 2 ɠ 1 3 Ǎ
ɡ 3 ȡ A D 0 ) & (Fig. 6B)ʆ
ʋʆǿĔ
Ź Đ ɼ - 3 ʄǒ ǚ Ȳ ɶ 1 - ǔ ǜ & ȇ U † W V ‹ ď ɛ Ɯ G ƿ , ʄ30ʄ60ʄ120 Ä ɠ 2
Ƚ Ɏ Ò … f j 2 ȇ U † W V ‹ ư ĥ 1 Ü 9 ! ī ɰ G Ɔ ȩ & ʆ 30 @ 5 60 Ä ɠ 2 Ƚ Ɏ
Ò - 3 ȗ ǥ 3 Ʀ ę # " 1 ȗ – ˜ ɘ > Ā Î 0 ʄ Ɏ Ò 120 Ä - 3 ȗ ǥ 46 %© ‘ ȗ
– ˜ ɘ 3 Ǩ ʌ ² 1 Ā Î & ʆ 2 . ǟ . ȁ Ȋ 2 U † W V ‹ 3 œ dz ů ɠ ® Č LJ 1 Ǩ 90 %
Ʀ ę & ʆ Ɏ Ò 30ʄ 60 Ä 2 ů Ƴ - 3 ǟ Œ ȁ U † W V ‹ 3 © ‘ , C ʄ ȗ ǥ © ‘ , A " ʄDŽ Ñ # " 1 Ɏ Ò G Dz dz , C v M  ^ - C . ǿ A D C ʆŽ ŧ ʄɎ Ò 120
18
Ä2ůƳ-3©ȗǥȾBʄǟ?ȁȊ2U†WV‹>ƀƥ,CʆD3ǒǚȲɶ
ʉʅʈ2Ƹƛ.89åƋ-ɎÒ1@BDŽÑ,CvM^-C.ĸFDCʆ
2 . ʄlj ȼ ʄơ ɻ ʄȢ ģ ‘ ɓ ʄĘ ȇ ʄȇ Ģ 2 U † W V ‹ ư ĥ 3 š Ļ 1 Ý Ɏ Ò 30ʄ
60 Ä - 3 Ʀ ę # " ʄ Ɏ Ò 120 Ä - 2 ; Ǩ 50ʁ Ʀ ę & ʆ D 1 @ B ʄ ȇ U † W V ‹ 3 ©
ȗǥG§ɞůɠɎÒů12;Ʀę!C.Æ=,ŬA.0)&ʆ2.Ʀę
&ȗǥ•51ȇU‡W].ȇU†WV‹2ɠ1ɯğ1ɾƑ2ǍɡǔȮD&ʆ
2.Aʄȗǥ?ȇU‡W]3ɎÒů2ȇU†WV‹Ʀę2ƙďóċ-CáȄĹ
CʆA1ʄ2.ȇ¾-ĀÎ&˜ɘ.ȇU†WV‹2ɠ1Ȣģ‘ɓ¢ă2ʋ
ɓ¨-ȷ2ǍɡȡAD&ʆ2Ǯž3ʄɎÒů1ȇU†WV‹˜ɘ1ÄȦDʄm
„‰‹1­ǯD&áȄĹGǕ!ʆ
Î,ʄŹĐɼ-3ljȼ¾‚pI‹.$2 ȵƾƶ>ďɛ&.Eʄp‡Ikˆ
l † ‹ 2 ȵ ƾ ƶ - C MHPG . _ ‰ j m ‹ 2 ȵ ƾ ƶ - C 5-HIAA Ɏ Ò 120 Ä Ǽ
-ĀÎ&ʆp‡Ikˆl†‹?_‰jm‹3ȇU†WV‹2ÄȦ°ɍóċ-B
(Benington & Heller, 1995a; Brown, 2004; Benarroch, 2010)ʄ Ɏ Ò ů 1 Ā Î ! C . > ü ê
D , C (Newsholme et al., 1992; Pagliari & Peyrin, 1995)ʆ Ź Đ ɼ - 3 lj ȼ 2 MHPG .
U † W V ‹ ʄ @ 5 5-HIAA . U † W V ‹ 2 ɠ 1 ȷ 2 Ǎ ɡ ȡ A D & ʆ D 3 ʄȇ U † W
V ‹ ȵ 1 ɡ “ 0 k  s  ‹ 2 ȵ ƾ ƶ - C DOPAC - 3 ȡ A D 0 . A ʄ©
ȗǥGĨȾ!ɞůɠɎÒ1@CȇU†WV‹2Ʀę13p‡Ikˆl†‹._‰j
m‹2 ȵɍɡ“,CáȄĹCʆ
ɎҖ2©ȗǥ?ȇ¾_‰jm‹ưĥ2ĀÎ3ɎÒů2–ſDŽÑ2Ùó.DC
(Nybo & Secher, 2004)ʆ Ź Đ ɼ 1 , ʄ ȗ ǥ ? _ ‰ j m ‹ Ɏ Ò ů 2 ȇ U † W V ‹ Ʀ ę
2ƙďóċ.,ȡÂD&ʆDA2Ǯž3ʄ©ȗǥ?_‰jm‹2ĀÎ1§ȇU
†WV‹2ƦęɎÒů2–ſDŽÑ2ǰäȠó-AáȄĹGǕï!Cʆžįʄ›É1
ȇU†WV‹ưĥGɾ=&ýä1œ—ĹsvO~‹]æ!C/Ɔȩ!CĵȠ
Cʆ
19
Ǟʌǝ ǵäȩȴ
ɎÒůʄȇ3ǟ.åƋ1ƟĹÔʄȇ1CNo‡S?ɘǩ2ɬȠ3ĀÎ!C
(Nybo & Secher, 2004)ʆ ȇ 3 ǥ ȼ 2 ; G N o ‡ S  û ȼ . , C . D C ʄ Ɏ Ò 1 @
Bȇ¾2ǥ ȵ/ƍȄʄɒĶ!C38.H/ŬA1D,0ʆ
Ɏ Ò ů 2 ɽ Ƅ ǟ - 3 ʄ Ⱥ ȓ ǥ ȼ - C U † W V ‹ ư ĥ Ɵ Ò ˆ y ‡ (Ɏ Ò 2 ĩ ĥ ? œ dz
ů ɠ )1 ® Č , Ʀ ę ! C (Gollnick et al., 1974)ʆŽ ŧ ʄȇ 1 > U † W V ‹ 3 Č ø (Wender
et al., 2000)ʄ $ D 3 m „  ‰ ‹ 2 Ɵ Ĺ Ô ? ȗ ƣ ǀ Ż 2 U ‡ W  ] ­ ǯ ’ Ɂ ů 1 Ç ƿ D
Ʀ ę ! C (Brown, 2004)ʆ Ɏ Ò 3 m „  ‰ ‹ G Ɵ Ĺ Ô (Vissing et al., 1996; Saito & Soya,
2004; Nishijima & Soya, 2006; Ohiwa et al., 2006; Soya et al., 2007a; Soya et al., 2007b;
Nishijima et al., 2011b)ʄ ɞ ů ɠ Ɏ Ò 3 © ȗ ǥ G Ĩ Ⱦ ! . A (Tabata et al., 1984;
Winder et al., 1987)ʄ ȇ U † W V ‹ G ǟ U † W V ‹ å Ƌ 1 Ʀ ę # C á Ȅ Ĺ C ʆ $ -Źǒǚ-3ʄȇU†WV‹ďɛ2X‡i‹]c‹dk-C~KT‰ƝƵĖƜG
ė»ʄɞůɠɎÒů1ȇU†WV‹Ʀę!C/GŬA1!C.GNjLJ.
&ʆ
I ] j ‰ Y K j 1 Č ø ! C ȇ 2 U † W V ‹ 3 ʄȗ ƣ ǀ Ż 2 U ‡ W  ] ­ ǯ ’ Ɂ (© ȗ ǥ )
ů1ÇƿDƦę!C.DCʆɞůɠɎÒ3©ȗǥGĨȾ!.AʄȇU†W
V ‹ Ç ƿ D Ʀ ę ! C . ǿ A D C ʄ D 3 ¼ ’ Ŭ ' ) & ʆ$ - ǒ ǚ Ȳ ɶ ʉ ʈ
-3ʄ©ȗǥG§ɞůɠɎÒů2ȇU†WV‹ưĥG~KT‰ƝƵĖƜGƿ,Ɔȩ
& ʆ 120 Ä ɠ 2 ɞ ů ɠ Ɏ Ò 1 @ B ȗ ǥ ³ 3 45 %© ‘ ʄ ǟ . ȁ Ȋ 2 U † W V ‹ 3 90 %
Ʀę&ʆɎÒů2©ȗǥ?ǟŒȁU†WV‹2ƀƥ3DŽÑ2Ŕƌ.DC.A
(Nybo & Secher, 2004)ʄŹ Đ ɼ - ƿ & Ɏ Ò 3 ɯ ğ 1 Ú Ɏ Ò ź ¤ - ) & . Ä C ʆ 2 . ʄȇ U † W V ‹ 3 ȇ ¼ ª - Ʀ ę ¶ æ G Ǖ ʄlj ȼ ʄơ ɻ ʄȢ ģ ‘ ɓ ʄĘ ȇ ʄ
ȇ Ģ 2 U † W V ‹ ư ĥ ŵ ļ 1 Ǩ 50ʁ Ʀ ę & ʆ D 1 @ B ʄ © ȗ ǥ G § ɞ ů ɠ Ɏ Ò
ȇU†WV‹GƦę#C.Æ=,ŬA10)&ʆ©ȗǥ3ȇU†WV‹GƦ
ę#CȠó.,@ǑAD,C.Aʄ2Ǯž3ʄɞůɠɎÒů1ĨȾ
D&©ȗǥȗƣAȇ62No‡S­ǯ’ɁGőʄ$2’ɁGȝ&=1I]
20
?
Brain
GLUT3
?
Glucose
GLUT1
?
Pyruvate
Lactate
Mitochondria
?
MCT2 Serotonin
Noradrenaline
?
Lactate
MCT4 ?
Pyruvate
MCT1 Glucose
Glycolysis
G-6-P
5-HIAA
MHPG
Neuron
MCT1 Glycogen
Lactate
?
GLUT4
Glucose
?
?
GLUT1
GLUT1
Astrocyte
Vessel
Prolonged exhaustive exercise
F i g u r e 7 B r a in g l y c o g e n m e t a b o l i s m d u r i n g p r o lo n g e d e x h a u s tiv e e x e r c is e . G - 6 - P ; g l u c o s e - 6 - p h o s p h a te ,
G L U T ; G l u c o s e t r a n s p o r t e r , M C T ; m o n o c a r b o x y lic a c id t r a n s p o r t e r . E n e r g y s o u r c e s f o r n e u r o n s i n c l u d e n o t
o n ly b l o o d g lu c o s e b u t a l s o l a c t a t e . A s t r o c y t i c g l y c o g e n i s s y n t h e s i z e d f r o m b l o o d g l u c o s e a n d d e g r a d e d in to
la c t a t e b y e x c ita t o r y n e u r o t r a n s m i t t e r s s u c h a s n o r a d r e n a lin e a n d s e r o to n in . L a c ta te is u p ta k e n n e u r o n s a n d
c h a n g e d t o p y r u v a t e , w h i c h i s u s e d f o r A T P s y n th e s is in th e m ito c h o n d r ia . T h e e f f e c t o f e x e r c is e o n G L U T s
a n d M C T s in th e b r a i n i s n o t e l u c i d a t e d y e t .
j‰YKj-U†WV‹ÄȦɍ&áȄĹGǕ!ʆ0AʄŹĐɼ1,
ŵ ļ 0 U † W V ‹ Ʀ ę ǔ Ȯ D & 2 3 ȇ ¼ ª - 3 0 ʄlj ȼ ʄơ ɻ ʄȢ ģ ‘ ɓ ʄĘ ȇ ʄ
ȇĢ2ʌɓ¨-)&ʆljȼ3ǟ62Þǹí¡?ɎÒ2w‰U…‹Uʄơɻ3ɎÒů
2ȮǑʄȢģ‘ɓ3ªƧ?No‡S ȵ2ȳǤʄĘȇ3ǟ2Øȳ?ĊÓ2ǴœʄȇĢ
3ìé?Ĵŏ2ȳǤ0/ʄɎÒů1ƟĹÔ!C.ǿADCɓ¨-Cʆ&),ʄ
ɞůɠɎÒů2ȇU†WV‹Ʀę13©ȗǥ'-0ɎÒů2m„‰‹2ƟĹÔ>
ɡ“,C2>D0ʆ0Aʄ2Ƴ1ɡ,3ŬA-0)&ʆ
2 ñ ɶ 1 Ɉ C & = ʄ ǒ ǚ Ȳ ɶ ʉ ʉ - 3 ʄ ǃ 0 C œ dz ů ɠ (30ʄ 60ʄ 120 Ä ɠ )2 Ɏ Ò
…fj2ȇU†WV‹ưĥ1Ü9!īɰGƆȩ&ʆȇU†WV‹ɎÒů2m„
21
‰‹ƟÒ1Ķ
, Ç ƿ D Ʀ ę ! C 0 A ʄ ǟ U † W V ‹ Ɏ Ò œ dz ů ɠ (ǟ Ɵ Ò ˆ y ‡ )
1®Č,Ʀę!C@1ʄȇU†WV‹>ɎÒœdzůɠ®ČLJ1Ʀę!C.ǿAD
C ʆ © ȗ ǥ 3 Ɏ Ò ɟ Ĉ A 30ʄ 60 Ä 2 ů Ƴ - 3 Ⱦ A " ʄ 120 Ä 2 ů Ƴ - 2 ; ƽ
&ʆ
ǟ . ȁ Ȋ 2 U † W V ‹ 3 ¹ Ș ǒ ǚ 2 ɉ B ʄ Ɏ Ò œ dz ů ɠ 1 ® Č , Ʀ ę & ʆ ȇ (lj ȼ ʄ
ơ ɻ ʄ Ȣ ģ ‘ ɓ ʄ Ę ȇ ʄ ȇ Ģ )2 U † W V ‹ 3 ¼ , 2 ɓ ¨ 1 , ʄ © ȗ ǥ 2 ƽ
0Ɏ
Ò ɟ Ĉ A 30ʄ60 Ä 2 ů Ƴ - 3 Ʀ ę # " ʄ© ȗ ǥ G ő & 120 Ä 2 ů Ƴ - 2 ; Ʀ ę & ʆ
2.ʄƦę&ȗǥ.ȇU†WV‹2ɠ1ɯğ1ɾƑ2ǍɡǔȮD&ʆD
A2Ǯž3ʄȗǥɎÒů2ȇU†WV‹Ʀę2ƙďóċ-CáȄĹGǕï!Cʆ
A1ʄ2.Ȣģ‘ɓ¢ă2ʋɓ¨1,ʄȇ¾-ĀÎ&˜ɘ.ȇU†WV‹.
2ɠ1ȷ2ǍɡȡAD&ʆ2Ǯž3ʄɞůɠɎÒů1ȇU†WV‹˜ɘ1ÄȦ
D & . G Ǖ ʄ ɞ ů ɠ Ɏ Ò ů 2 I ] j ‰ Y K j m „  ‰ ‹ ˜ ɘ [ ƒ j ‡ (Pellerin &
Magistretti, 1994)1 C ˜ ɘ 2 ­ ǯ ƫ . , U † W V ‹ ȹ ƹ , C á Ȅ Ĺ G Ǖ ï
!CʆÎ,ʄI]j‰YKj2U†WV‹ÄȦ°ɍóċ.,ǑADCp‡Ikˆl
†‹._‰jm‹2 ȵGljȼ1,ďɛ&.Eʄp‡Ikˆl†‹2 ȵƾƶ
- C MHPG . _ ‰ j m ‹ 2 ȵ ƾ ƶ - C 5-HIAA Ɏ Ò 120 Ä Ǽ - Ā Î ʄ Ʀ ę &U†WV‹ưĥ.ȷ2ǍɡGǕ&ʆp‡Ikˆl†‹?_‰jm‹.$DA2 ȵ
3 ʄ Ɏ Ò ů 1 Ā Î ! C . ¹ Ș ǒ ǚ 1 , ü ê D , B (Pagliari & Peyrin, 1995)ʄ
Źǒǚ2ǮžGŞœ!CʆA1ʄȇU†WV‹ ȵ1ɡ“0ks‹2 ȵƾ
ƶ - C DOPAC . ȇ U † W V ‹ ư ĥ 1 Ǎ ɡ 3 0 . A ʄ© ȗ ǥ G § ɞ ů ɠ Ɏ ů 2
ȇU†WV‹Ʀę13ȌćĹǗǭ¦ɐƶȼ-Cp‡Ikˆl†‹._‰jm‹2 ȵ
 ɍ ɡ “ , C á Ȅ Ĺ C (Fig. 7)ʆ
ŹĐɼ1,ʄȗǥ?_‰jm‹ɎÒů2ȇU†WV‹Ʀę2ƙďóċ-Cá
ȄĹȡÂD&ʄDA3ɞůɠɎÒů2–ſDŽÑ2Ƞó.,>ǑADCʆ&
),ʄȇU†WV‹3ɞůɠɎÒů2ȇ¾_‰jm‹ ȵ2ɍ?ȗǥ³2©‘1@
BÇƿDƦęʄ$2ƦęɞůɠɎÒů2–ſDŽÑ2ǰäóċ.0C2>D0
(Fig. 8)ʆ D 1 * , 3 ʄ ž į ʄ Ɏ Ò É 1 ȇ U † W V ‹ ư ĥ G ɾ = & ý ä 1 œ — Ĺ s
vO~‹]æ!C/GƆȩ!CĵȠCʆ
22
Central fatigue
<An integrative factor?>
Brain glycogen decrease
<Central factors>
Hypoglycaemia
Increase in
brain monoamines
(serotonin hypothesis)
Increase in
brain temperature
(hot brain) Increase in
tryptophan/BCAA ratio
in blood
Increase in
body temperature
with dehydration
<Peripheral factors>
Glycogen depletion
in the muscle and liver
Prolonged exhaustive exercise
F ig u r e 8 H y p o t h e t i c a l d i a g r a m s h o w i n g t h e b r a i n g l y c o g e n d e c r e a s e a s a n i n t e g r a t i v e f a c t o r o f
c e n t r a l f a t ig u e d u r i n g p r o l o n g e d e x e r c i s e . P r o l o n g e d e x e r c i s e i n d u c e s g l y c o g e n d e p l e t i o n i n t h e m u s c le s
a n d liv e r , a n d h y p o g l y c a e m i a , w h i c h c a u s e s p e r ip h e r a l f a tig u e . H y p o g ly c a e m ia e lic its e n e r g y s h o r ta g e s in
th e b r a i n , a n d li k e l y i n d u c e s c e n t r a l f a t i g u e . I n c r e a s e i n b r a i n s e r o t o n i n d u e t o r i s e i n t r y p t o p h a n / B C A A
r a t i o i n b lo o d a l s o i n d u c e s c e n t r a l f a t i g u e b y e l i c i t i n g l a s s i t u d e ( s e r o t o n i n h y p o t h e s i s ) . F u r t h e r m o r e ,
in c r e a s e s i n b o d y a n d b r a i n t e m p e r a t u r e a t t r i b u t e d d e h y d r a t i o n i n d u c e c e n t r a l f a t i g u e d i r e c t l y a n d /o r
in d ir e c t l y th r o u g h i n c r e a s e s i n b r a i n n o r a d r e n a l i n e a n d s e r o t o n i n . H y p o g l y c a e m i a a n d s e r o t o n i n a r e n o t o n ly
in d u c i n g f a c to r s o f c e n t r a l f a t i g u e b u t a l s o e n h a n c i n g f a c t o r s o f a s t r o c y t i c g l y c o g e n d e g r a d a t i o n . I n d e e d , w e
o b s e r v e d t h a t b r a i n g l y c o g e n l e v e l s a f t e r r u n n i n g w e r e c o r r e la te d w ith th e r e s p e c tiv e b lo o d g lu c o s e a n d
in c r e a s e d s e r o to n i n m e t a b o l i s m ( M a t s u i e t a l., 2 0 1 1 ) . E x e r c is e - i n d u c e d b r a i n g l y c o g e n d e c r e a s e c o u l d b e a n
in te g r a tiv e f a c to r o f c e n t r a l f a t i g u e .
Źǒǚ1@BʄɞůɠɎÒ1@Bȇ3ȗƣǀŻ2U‡W].˜ɘ'-0ʄȇ¾
2Ⱥȓǥȼ-CU†WV‹GÇƿʄA1ʄɎÒį2ȇU†WV‹ȿòijǟU†
WV‹.åƋ1ȾBʄjˆm‹U1§ȇ2 ȵɒĶ1ɚȠ-CáȄĹŬA
10)&ʆD3ɞůɠɎÒů2–ſDŽÑ?ɎÒjˆm‹U1CȇƍȄæ2Qm
^€2ȦŬ1*0C>D0ʆ0AʄŹǒǚ1,ʄɎÒ1@CȇU
†WV‹Ʀę•51ȿòij2ÄċƍƊ?ƽƻLJļǽGnjŘLJ1Ɔȩ!C.3-0
) & ʆ ž į 3 ȇ U † W V ‹ ȵ 1 ɡ “ ! C ó ċ (p ‡ I k ˆ l † ‹ ʄ _ ‰ j m ‹ ʄ K ‹ ]
† ‹ 0 / )2 ɤ Ē Ê G ƿ & Ɏ Ò 1 @ C ȇ U † W V ‹ Ʀ ę • 5 1 ȿ ò ij 2 Ä ċ ƍ Ɗ G Ȧ
23
Ŭ!Cǒǚʄ$,ȇU†WV‹ÄȦɗǩɤĒȔGƿ&ɎÒů2ȇU†WV‹2ƽƻ
LJļǽGŬA1!CǒǚĵȠ.0CʆǒǚA1ɍ=4ʄȇU†WV‹GŔƌ.
&ȇƍȄ2ǴœŒĀɍ2&=2ɎÒÁŧ?Yw†‹j2ɟdž1*0C>D0
ʆ
24
Ǟʍǝ ǵŒ
Ɏ Ò ů 2 ɽ Ƅ ǟ - 3 ʄ Ⱥ ȓ ǥ ȼ - C U † W V ‹ ư ĥ Ɵ Ò ˆ y ‡ (Ɏ Ò 2 ĩ ĥ ? œ dz
ů ɠ )1 ® Č , Ʀ ę ! C (Gollnick et al., 1974)ʆŽ ŧ ʄȇ 1 > U † W V ‹ 3 Č ø (Wender
et al., 2000)ʄm „  ‰ ‹ 2 Ɵ Ĺ Ô ? ȗ ƣ ǀ Ż 2 U ‡ W  ] ­ ǯ ’ Ɂ ů 1 Ç ƿ D Ʀ ę ʄ
$ 2 į ¿ ȝ ¸ D C (Brown, 2004) ʆ Ɏ Ò 3 m „  ‰ ‹ G Ɵ Ĺ Ô (Vissing et al., 1996;
Saito & Soya, 2004; Nishijima & Soya, 2006; Ohiwa et al., 2006; Soya et al., 2007a; Soya et al.,
2007b; Nishijima et al., 2011b)ʄ ɞ ů ɠ Ɏ Ò 3 © ȗ ǥ G Ĩ Ⱦ ! . A (Tabata et al.,
1984; Winder et al., 1987)ʄ ȇ U † W V ‹ G ǟ U † W V ‹ å Ƌ 1 Ʀ ę # C á Ȅ Ĺ C ʆ
$-Źǒǚ-3ʄȇU†WV‹ďɛ2X‡i‹]c‹dk-C~KT‰ƝƵĖ
ƜGė»ʄɞůɠɎÒů1ȇU†WV‹Ʀę!C/GŬA1!C.GNj
LJ.&ʆŹǒǚ1@Bʄ¢‘2łžGı&ʆ
ǒǚȲɶʉɞůɠɎÒů1ȇU†WV‹3Ʀę!Cʒ
ǒǚȲɶʉʅʈʆɞůɠɎÒ3ȇU†WV‹GƦę#Cʒ
ȇU†WV‹3ɞůɠɎÒů1ÇƿDƦę!C/GŬA1!C&=ʄ©ȗ
ǥG§ɞůɠɎ҅fj2ȇU†WV‹ưĥ1Ü9!īɰGƆȩ&ʆ$2Ǯžʄ
©ȗǥG§ɞůɠɎÒ3ɎÒ1ɡ“!C.DCȇɓ¨2U†WV‹GǟU†WV‹
.åƋ1Ʀę#C.ŬA10)&ʆ
ǒǚȲɶʉʅʉʆɎÒȯdžĹȇU†WV‹Ʀę3ɎÒœdzůɠ®ČĹʒ
ȇU†WV‹3ǟU†WV‹.åƋ1ɎÒœdzůɠ®ČLJ1Ʀę!C/GŬA
1!C.GNjLJ.ʄǃ0Cœdzůɠ2ɎÒȇU†WV‹ưĥ1Ü9!īɰGƆ
ȩ&ʆ$2Ǯžʄ©ȗǥG§ɞůɠɎÒ-2;ȇU†WV‹Ʀęʄ$2Ʀę1
3ɞůɠɎÒ1@BĨȾD&©ȗǥ?ȇ¾2p‡Ikˆl†‹._‰jm‹ ȵ
2ɍɡ“!CáȄĹŬA.0)&ʆ©ȗǥ?ȇ¾_‰jm‹2ĀÎ3ɎÒů2
–ſDŽÑ2Ƞó.DC.AʄDA1@),ƽ
25
CȇU†WV‹ƦęɞůɠɎ
Òů2–ſDŽÑ2ǰäȠó.,>D0ʆ
Ź ǒ ǚ 1 @ B ʄȇ U † W V ‹ ǟ U † W V ‹ . å Ƌ 1 ɞ ů ɠ Ɏ Ò ů 1 Ä Ȧ ʔÇ ƿ D Ʀ
ę!C.ŬA10)&ʆžįʄɎÒ1@CȇU†WV‹Ʀę2ÄċƍƊ?ƽƻLJ
ļǽGŬA1!Cǒǚɍ=4ʄȇU†WV‹GŔƌ.&œ—ĹsvO~‹]?Ȯ
Ǒ ƍ Ȅ ʂ Ȫ Ł ʔč Ǿ Ȅ Í ʃ 2 Ǵ œ Œ Ā ɍ 2 & = 2 Ɏ Ò ʔƂ ɺ Á ŧ ʄ • 5 1 Y w †  ‹ j 2
ɟdž1*0CáȄĹCʆ
26
ǒǚłžŽȤ
Ùȑȴţ
1.
Takashi M atsui, Taro Ishikawa, Hitoshi Ito, Masahiro Okamoto, Koshiro Inoue,
Min-chul Lee, Takahiko Fujikawa, Yukio Ichitani, Kentaro Kawanaka, and Hideaki
Soya (2012). Brain glycogen supercompensation following exhaustive exercise. J Physiol
590, 607–616.
2.
Takashi Matsui, Shingo Soya, Masahiro Okamoto, Yukio Ichitani, Kentaro Kawanaka,
and Hideaki Soya (2011). Brain glycogen decreases during prolonged exercise. J Physiol
589, 3383-3393.
ǵȱȴţ
1.
Takashi Matsui and Hideaki Soya (2012). Brain glycogen metabolism and central fatigue
during prolonged exercise. Physiol News In press.
2.
ʆȇ ¾ U † W  V ‹ 2 Ʀ ę . – ſ Ĺ DŽ Ñ ʆ 60ʄ
ż œ ĝ ʄĮ ǐ ȏ Ů (2010)ʆ
797-804.
àȻ
Ǟ 65 ò ũ Ź ª Í Õ č ¥ Ą ¥ Ȏ ņ ǒ ǚ Ȁ Ć Ð Ȼ ʄ ʄ 2010 ġ 9 Ŵ
1
2
Ǟ 5 òc|‰T][‹}\L€ j…y‡IŠkʄ 2010 ġ 9 Ŵ
3
2010 ACSM International Student Award, American College of Sports Medicine ACSM (June 2010)
ȵɄ
Ź ǒ ǚ 3 ʄǞ ʎ ò  Ŵ ] }  g ʔş Ȃ ȸ ô ] }  g ǒ ǚ Ï ł › Ƈ 2 Ś Ï 1 @ B Ș F D :
&ʆ1ƤĽȵ2ļGȚ:!ʆ
27
Ûǿţƹ
Benington JH & Heller HC (1995a). Restoration of brain energy metabolism as the function of
sleep. Prog Neurobiol 45, 347-360.
Bergstrom J & Hultman E (1966). Muscle glycogen synthesis after exercise: an enhancing
factor localized to the muscle cells in man. Nature 210, 309-310.
Brown AM (2004). Brain glycogen re -awakened. J Neurochem 89, 537-552.
Cruz NF & Dienel GA (2002). High glycogen levels in brains of rats with minimal
environmental stimuli: implications for metabolic contributions of working astrocytes. J Cereb
Blood Flow Metab 22, 1476-1489.
Garriga J & Cusso R (1992). Effect of starvation on glycogen and glucose me tabolism in
different areas of the rat brain. Brain Res 591, 277-282.
Gibbs ME, Anderson DG & Hertz L (2006). Inhibition of glycogenolysis in astrocytes interrupts
memory consolidation in young chickens. Glia 54, 214-222.
Gollnick PD, Piehl K & Saltin B (1974). Selective glycogen depletion pattern in human muscle
fibres after exercise of varying intensity and at varying pedalling rates. J Physiol 241, 45-57.
Gruetter R (2003). Glycogen: the forgotten cerebral energy store. J Neurosci Res 74, 179-183.
Hasegawa H, Piacentini MF, Sarre S, Michotte Y, Ishiwata T & Meeusen R (2008). Influence of
brain catecholamines on the development of fatigue in exercising rats in the heat. J Physiol 586,
141-149.
Herzog RI, Chan O, Yu S, Dziura J, McNay EC & Sherwin RS (2008). Effect of acute and
recurrent hypoglycemia on changes in brain glycogen concentration. Endocrinology 149,
1499-1504.
Hutchins DA & Rogers KJ (1970a). Physiological and drug -induced changes in the glycogen
content of mouse brain. Br J Pharmacol 39, 9-25.
Ide K, Schmalbruch IK, Quistorff B, Horn A & Secher NH (2000). Lactate, glucose and O2
uptake in human brain during recovery from maximal exercise. J Physiol 522, 159-164.
Kong J, Shepel PN, Holden CP, Mackiewicz M, Pack AI & Geiger JD (2002). Brain glycogen
decreases with increased periods of wakefulness: implications for homeostatic drive to sleep. J
28
Neurosci 22, 5581-5587.
Larsen TS, Rasmussen P, Overgaard M, Secher NH & Nielsen HB (2008). Non-selective
beta-adrenergic blockade prevents reduction of the cerebral metabolic ratio during exhaustive
exercise in humans. J Physiol 586, 2807-2815.
Morgenthaler FD, Koski DM, Kraftsik R, Henry PG & Gruetter R (2006). Biochemical
quantification of total brain glycogen concentration in rats under different glycemic states.
Neurochem Int 48, 616-622.
Nelson SR, Schulz DW , Passonneau JV & Lowry OH (1968). Control of glycogen levels in
brain. J Neurochem 15, 1271-1279.
Newsholme EA, Blomstrand E & Ekblom B (1992). Physical and mental fatigue: metabolic
mechanisms and importance of plasma amino acids. Br Med Bull 48, 477-495.
Nishijima T, Okamoto M, Matsui T, Kita I & Soya H (2011a). Hippocampal functional
hyperemia mediated by NMDA receptor/NO signaling in rats during mild exercise. J Appl
Physiol, in press.
Nishijima T, Piriz J, Duflot S, Fernandez AM, Gaitan G, Gomez-Pinedo U, Verdugo JM, Leroy
F, Soya H, Nunez A & Torres-Aleman I (2010). Neuronal activity drives localized
blood-brain-barrier transport of serum insulin-like growth factor-I into the CNS. Neuron 67,
834-846.
Nybo L & Secher NH (2004). Cerebral perturbations provoked by prolonged exercise. Prog
Neurobiol 72, 223-261.
Obici S & Rossetti L (2003). Minireview: nutrient sensing and the regulation of insulin action
and energy balance. Endocrinology 144, 5172-5178.
Ohiwa N, Chang H, Saito T, Onaka T, Fujikawa T & Soya H (2007). Possible inhibitory role of
prolactin-releasing peptide for ACTH release associated with running stress. Am J Physiol
Regul Integr Comp Physiol 292, R497-R504.
Ohiwa N, Saito T, Chang H, Nakamura T & Soya H (2006). Differential responsiveness of c -Fos
expression in the rat medulla oblongata to different treadmill running speeds. Neurosci Res 54,
124-132.
Oz G, Kumar A, Rao JP, Kodl CT, Chow L, Eberly LE & Seaquist ER (2009). Human brain
glycogen metabolism during and after hypoglycemia. Diabetes 58, 1978-1985.
29
Oz G, Tesfaye N, Kumar A, Deelchand DK, Eberly LE & Seaquist ER (2011). Brain glycogen
content and metabolism in subjects with type 1 diabetes and hypoglycemia unawareness. J
Cereb Blood Flow Metab.
Pagliari R & Peyrin L (1995). Norepinephrine release in the rat frontal cortex under treadmill
exercise: a study with microdialysis. J Appl Physiol 78, 2121-2130.
Passonneau JV & Lauderdale VR (1974). A comparison of thr ee methods of glycogen
measurement in tissues. Anal Biochem 60, 405-412.
Pellerin L & Magistretti PJ (1994). Glutamate uptake into astrocytes stimulates aerobic
glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U
S A 91, 10625-10629.
Phelps
CH
(1972).
Barbiturate -induced
glycogen
accumulation
in
brain.
An
electron
microscopic study. Brain Res 39, 225-234.
Pitsiladis YP & Maughan RJ (1999). The effects of exercise and diet manipulation on the
capacity to perform prolonged exercise in the heat and in the cold in trained humans. J Physiol
517, 919-930.
Quistorff B, Secher NH & Van Lieshout JJ (2008). Lactate fuels the human brain during
exercise. Faseb J 22, 3443-3449.
Romijn JA, Coyle EF, Sidossis LS, Gastaldelli A, Horowitz JF, Endert E & Wolfe RR (1993).
Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and
duration. Am J Physiol 265, E380-391.
Saito T & Soya H (2004). Delineation of responsive AVP -containing neurons to running stress
in the hypothalamus. Am J Physiol Regul Integr Comp Physiol 286, R484-R490.
Secher NH, Seifert T & Van Lieshout JJ (2008). Cerebral blood flow and metabolism during
exercise: implications for fatigue. J Appl Physiol 104, 306-314.
Soya H, Mukai A, Deocaris CC, Ohiwa N, Chang H, Nishijima T, Fujikawa T, Togashi K &
Saito T (2007a). Threshold-like pattern of neuronal activation in the hypothalamus during
treadmill running: establishment of a minimum running stress (MRS) rat model. Neurosci Res
58, 341-348.
Soya H, Nakamura T, Deocaris CC, Kimpara A, Iimura M, Fujikawa T, Chang H, McEwen BS &
30
Nishijima T (2007b). BDNF induction with mild exercise in the rat hippocampus. Biochem
Biophys Res Commun 358, 961-967.
Suh SW, Bergher JP, Anderson CM, Treadway JL, Fosgerau K & Swanson RA (2007). Astrocyte
glycogen
sustains
neuronal
phosphorylase
activity
during
hypoglycemia:
studies
with
the
inhibitor
glycogen
CP-316,819
([R-R*,S*]-5-chloro-N-[2-hydroxy-3-(methoxymethylamino )-3-oxo-1-(phenylmet
hyl)propyl]-1H-indole-2-carboxamide). J Pharmacol Exp Ther 321, 45-50.
Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH, Magistretti PJ & Alberini CM (2011).
Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 144,
810-823.
Swanson RA (1992). Physiologic coupling of glial glycogen metabolism to neuronal activity in
brain. Can J Physiol Pharmacol 70 Suppl, S138-144.
Swanson RA, Sagar SM & Sharp FR (1989). Regional brain glycogen stores and metabolism
during complete global ischaemia. Neurol Res 11, 24-28.
Takeda H, Matsumiya T & Shibuya T (1990). Detection and identification modes for the highly
sensitive
and
simultaneous
determination
of
various
biogenic
amines
by
coulometric
high-performance liquid chromatography. J Chromatogr 515, 265-278.
Vissing J, Andersen M & Diemer NH (1996). Exercise-induced changes in local cerebral
glucose utilization in the rat. J Cereb Blood Flow Metab 16, 729-736.
Wender R, Brown AM, Fern R, Swanson RA, Farrell K & Ransom BR (2000). Astrocytic
glycogen influences axon function and survival during glucose deprivation in central white
matter. The Journal of neuroscience : the official journal of the Society for Neuroscience 20,
6804-6810.
Winder WW, Yang HT, Jaussi AW & Hopkins CR (1987). Epinephrine, glucose, and lactate
infusion in exercising adrenodemedullated rats. J Appl Physiol 62, 1442-1447.
31