ɞůɠɎÒů2ȇUWVƦę.ſĹDŽÑ ĮǐȏŮ NjƏ ȠǨ............................................................................................................................................................................................... 1 Ǟʈǝ Ƕȧ ........................................................................................................................................................................... 2 Ǟʉǝ ǒǚNjLJ@5Ȳɶ ........................................................................................................................................ 4 Ǟʊǝ ɞůɠɎÒ3ȇUWVGƦę#CʒʂǒǚȲɶʈʃ ............................................... 5 Ǟʋǝ ɎÒů2ȇUWVƦę3œdzůɠ®ČĹʒʂǒǚȲɶʉʃ.................................... 12 Ǟʌǝ ǵäȩȴ ............................................................................................................................................................... 20 Ǟʍǝ ǵŒ ......................................................................................................................................................................... 25 ǒǚłžȤ ......................................................................................................................................................................... 27 ȵɄ............................................................................................................................................................................................. 27 Ûǿţƹ................................................................................................................................................................................... 28 ɞůɠɎÒů2ȇUWVƦę.ſĹDŽÑ ĮǐȏŮż ĝ ȠǨ Nj LJ Ɏ Ò ů 2 ȇ - 3 ɽ Ƅ ǟ . å Ƌ 1 ʄȺ ȓ ǥ ȼ - C U W V Ǫ ȃ 2 Ɵ Ò 1 á Ǝ.DCʄ$2 ȵ1*,2ĺü3Ljƴ-Cʆ$2Ùó.,ʄȇUWV 3 ȵƈ=,ŪʄŜÂ&ȇUWVďɛɫ.ŕADCʆŹǒǚ3ʄȇUWVďɛ2Xi]cdk-C~KTƝƵĖƜGė»ʄɞ ůɠɎÒ1@CȇUWVÒľGŬA1!C.GNjLJ.&ʆ ĕ ȶ . ŧ Ɯ : " ʄ~ K T Ɲ Ƶ Ė Ɯ G ƿ & Ɏ Ò ů 2 Ƒ ǔ 0 ȇ U W V ď ɛ Ɯ G ɟ džʄ$2-ʄȇUWVɎÒů1ÇƿDC/GŬA1!C&=ʄ© ȗǥ0A51ǟȁUWV2ƀƥG>&A!ɞůɠɎÒiGƿʄȇUWV ƀ ƥ Ⱦ C / G ǃ 0 C œ dz ů ɠ A ȭ Ǫ 1 Ɔ ȩ & ʂ ǒ ǚ Ȳ ɶ ʈ ʃʆ $ 2 ɨ ʄ UWVÄȦ2Ŕƌ.0Cȇ¾ɘʄUWVÄȦG°ʄ$2 ȵɏËſDŽ Ñ 2 Ù ó 1 0 C . D C _ j m (5-HT) ʄ p I k l (NA) 2 ȵ Ò ľ 1 * , > ǟ ȁ . 2 Ɩ Ƀ A Ɔ ȩ & ʂ ǒ ǚ Ȳ ɶ ʉ ʃʆ Ǯ ž Ɏ Ò ů - > Ƒ ǔ 0 ȇ U W V ď ɛ á Ȅ . 0 B ʄ$ 2 ŧ Ɯ G ƿ C . ʄɞ ů ɠ ɎÒů1ȗǥ³2©ĥ.Ɩ¬,ȇUWV2ƦęȾC.ʄ$2āÔ3ȇ¾ ɘ . ȷ 2 Ǎ ɡ G Ǖ ! . ʄ Ų 1 ʄ ȇ ¾ 5-HT/NA 3 U W V Ʀ ę . ȷ 2 Ǎ ɡ G Ǖ ! .ŬA.0)&ʆ Ǯ ȴ Ź ǒ ǚ - 3 ʄȇ U W V ɞ ů ɠ Ɏ Ò ů 1 Ç ƿ D ʄ$ 2 į 2 Ɇ Ɋ 0 ¿ ä ł G ûNJ.&jmUɒĶGȾ!.Æ=,ŬA10)&ʆDA2ƺȶGĶ ƿ ! C . - ʄ ſ ʂ ȇ ʃ DŽ Ñ ɣ ? Ȯ Ǒ ƍ Ȅ 2 æ G Nj LJ . & Ŧ & 0 Ɏ Ò ʔƂ ɺ Á ŧ ȇUWViJUGɟdž-C>D0ʆ Ț Ȁ Ņ ě ʑ Ǡ Ɲ Ą č ʔª Ȃ ǧ 1 Ǟʈǝ Ƕȧ ɎÒůʄȇ3ǟ.åƋ1ƟĹÔʄȇ1CNoS?ɘǩ2ɬȠ3ĀÎ!C (Nybo & Secher, 2004)ʆȇ 3 I i p [ ɘ (adnosine triphosphate, ATP)G ä ł ! C & =1ǥȼ2;GɘÔÇƿ!C.DCʆ0AʄɎÒ1@Bȇ¾2ǥ ȵ/ ƍȄ!C38.H/ŬA1D,0ʆɽƄǟ-3ʄȺȓǥȼ-CUWV 2 Ȧ ǥ ǧ G ɉ & Ä Ȧ Ɏ Ò ů 2 ǩ Ū ATP ƾ ƽ 2 & = 1 ɚ Ƞ - (Romijn et al., 1993)ʄ Ɏ Ò 2 Ɵ Ò ǟ 2 U W V ư ĥ 3 ǟ Ɵ Ò y (Ɏ Ò 2 ĩ ĥ ? œ dz ů ɠ )1 ® Č , Ʀ ę ʄ $ 2 ƀ ƥ 3 Ÿ ƅ (ǟ )DŽ Ñ 2 Ù ó . 0 C (Gollnick et al., 1974)ʆ ŧ ʄ ȇ 2 U W V 3 ʄ ȇ G Ɗ ł ! C Ǘ ǭ Ǫ ȃ (neuron ʄ m ) ʄ Ǘ ǭ ȉ Ǫ ȃ (glia ʄ U I ) ʄ ȗ ǣ 2 ( ʄU I 2 Ǚ - C ŭ Ƹ ȉ Ǫ ȃ (astrocyteʄI ] j Y K j )1 ɥ Ě , Ⱥ ȓ D C (Wender et al., 2000)ʆ 0 A ʄ Ɏ Ò ů 1 ȇ ¾ Ⱥ ȓ N o S . , 2 ȇ U W V / ȵDC1ɡ,3¼ƆȩD,0ʆ ȇUWV3I]jYKj¾-ɘ1ÄȦDʄ$2ɘm1ǯ D C . - I ] j Y K j m ɘ [ j (Pellerin & Magistretti, 1994) 1 C ɚ Ƞ 0 Ĭ Ì G ō ) , C (Gruetter, 2003; Brown, 2004; Benarroch, 2010)ʆ İ Ż ʄ ȇ 2 N o S û ȼ 3 ȗ ƣ ǀ Ż 2 U W ] 2 ; - C . ǿ A D , & ʄ ų ɇ 2 in vitro ǒ ǚ 1 @ B ʄ I ] j Y K j 1 , U W ] G û 1 ƾ ƽ D & ɘ m 1 ǯ D ɘ Ô Ç ƿ D C . ! C I ] j Y K j m ɘ [ j 2 Č ø Ļ ď D C @ 1 0 ) & ʆ A 1 ų ɇ 2 in vivo ǒ ǚ - 3 ʄ m G Ɵ Ĺ Ô # C Ȫ Ł Ȳ ɶ ʄȇ DŽ Ñ i - C ť ǎ ʄ$ , ȗ ƣ A 2 N o S ǯ Ɂ G ő DZ ɷ ʄ ȇȕȗʄK]ȯdžĹ©ȗǥ0/1@),ʄȇUWVÇƿDƦęʄ$2 į ¿ ȝ ¸ D C . ü ê D , C (Garriga & Cusso, 1992; Kong et al., 2002; Gibbs et al., 2006; Suh et al., 2007; Herzog et al., 2008; Suzuki et al., 2011)ʆ Î , ʄ ȇ U W V ưĥɾD4ʄ©ȗǥů2ǗǭƟÒœdzůɠĦɞʄ$2ɨ1ƽ CǗǭǪȃƒ ň È D C . > ü ê D , C (Suh et al., 2007)ʆ D A 2 Ǒ ȡ A ʄ I ] j Y K j 2UWV3m2ƟĹÔ1§NoSɬȠ2ĀÎʄ51ȗƣǀŻ2U 2 W ] ǯ Ɂ 1 @ ) , ʄm 1 ɘ G ǯ ! C & = 1 ɘ 1 Ä Ȧ D Ʀ ę ʄ $2į¿ȝ¸DC.ǿADCʆ Ɏ Ò 3 m G Ɵ Ĺ Ô (Vissing et al., 1996; Saito & Soya, 2004; Nishijima & Soya, 2006; Ohiwa et al., 2006; Soya et al., 2007a; Soya et al., 2007b; Nishijima et al., 2011b)ʄ ɞ ů ɠ Ɏ Ò 3 © ȗ ǥ G Ĩ Ⱦ ! . A (Tabata et al., 1984; Winder et al., 1987)ʄ Ɏ Ò ů 13ȇUWVÇƿDʄƦę!CáȄĹĻďDCʆA1ʄWzqV Ąč2Uw3ʄtj1CDŽÑõŀɎÒ2ǫNJ.ǫį13ʄȇ2ȗUW ] ß B Ʌ ; Đ ɨ 1 ȵ D & U W ] @ B > ɏ Ë 1 0 C . (Ide et al., 2000)ʄ $ ,ʄ$DȇUWVÄȦ2ɍ1ɡ!CIklàēªGɤĒ!C.1 @ B Ƣ ą ! C . G ü ê & (Larsen et al., 2008)ʆ ĭ A 3 2 Ǒ ȡ G û 1 ʄ ȇ U W V 3 DŽ Ñ õ ŀ Ɏ Ò ů 1 Ç ƿ D Ʀ ę C . £ ȱ G ř ð , C (Nybo & Secher, 2004; Quistorff et al., 2008; Secher et al., 2008)ʆ 0 A ʄ t j - > Ò ƶ - > ȇ U W V ďɛõɫ-)&.Aʄ2£ȱ3D:-ƆȬD,0)&ʆ ȇUWV2 ȵɊĥ3Ɋ&=ʄȍLJ1ÒƶĐɼ-ƿADCťɴ?ƱƠ÷ď 0/2ĜƔƜ-3ƒįʌÄ¢¾1ƀƥ,:.AʄƽƻLJāÔGȥĔ!C. õ ɫ ' ) & (Hutchins & Rogers, 1970a)ʆ 2 ñ ɶ 2 Ȧ ƙ ǡ . , ʄĐ ɼ Ò ƶ Ĝ Ɣ ů 2 ~ K T Ɲ Ƶ Ė Ɯ ė » D & ʆ ~ K T Ɲ Ƶ Ė Ɯ 3 f j 2 ȇ Ƨ G 1 ǘ ɠ - Ǩ 90 1 ū#C.1@BʄUWV ȵɡɋɗǩGąƟ#ʄƒį2ȇUWVÄȦG ɣ . - ʄ ȇ Ź Ż 2 U W V ư ĥ 2 ď ɛ G á Ȅ 1 ! C (Kong et al., 2002)ʆ $-Źǒǚ-3ʄ~KTƝƵĖƜGė»ʄɞůɠɎÒů2ȇUWVÒľG ŬA1!C.GNjLJ.!Cʆ>Ļď&ɉB2ǮžıADD4ʄɎÒů2ȇ¾ NoS ȵ13ȗƣǀŻ2UW].ɘ'-0ʄȇ¾2Ⱥȓǥȼ-C UWV>ȹƹ!C.ŬA10CʆD3ʄɎÒƽƻƽÔč1CŦ&0 ƉķGÎC.10C'-0ʄȇUWVGŔƌ.&ȇƍȄ2ǴœĀɍ2 &=2ɎÒÁŧ?Ywj2ɟdž1*0CáȄĹ>C.AʄļǽƤǒǚ 10BC.ǿCʆ 3 Ǟʉǝ ǒǚNjLJ@5Ȳɶ ʈʆǒǚNjLJ ɞůɠɎÒů2ȇUWVÒľG~KTƝƵĖƜGƿ,ŬA1!Cʆ ʉʆǒǚȲɶ Źǒǚ2NjLJGɐł!C&=ʄ¢2ǒǚȲɶGȫď&ʆ:&ʄãǒǚȲɶ13$ D%Dȟš2ĘȲɶGȫď&ʆ ǒǚȲɶʈɞůɠɎÒ3ȇUWVGƦę#Cʒ ~ K T Ɲ Ƶ Ė 1 @ B ʄɞ ů ɠ 2 Ư Ɏ Ò ȇ U W V ư ĥ 1 Ü 9 ! ī ɰ G Ɔ ȩ ! C ʆ ɎÒů1ȇUWVÇƿDC2-D4ʄȇUWVɞůɠ2ƯɎÒ1@B Ʀę!C3"-Cʆ ǒǚȲɶʉɎÒȯdžĹȇUWVƦę3ɎÒœdzůɠ®ČĹʒ ǃ0Cœdzůɠ2ȽɎÒȇUWVưĥ1Ü9!īɰ.ȇUWVưĥ2ÈIJ óċ-Cȗǥ?ȇ¾pI.2ɡ¯GƆȩ!CʆɎÒů1ȇUWVÇƿ DC2-D4ʄ©ȗǥ?ȇ¾pIưĥ2ĀÎ1@Bʄȇ->ǟåƋ1UWV ɎÒœdzůɠ®ČLJ1Ʀę!C3"-Cʆ 4 Ǟʊǝ ɞůɠɎÒ3ȇUWVGƦę#CʒʂǒǚȲɶʈʃ ʈʆNjLJ İŻʄȇ2NoSƫ3ȗǥǀŻ2UW]2;-C.ǿAD,&ʄų ɇ2~KTƝGƿ&ǒǚ1@),ʄI]jYKj2UWVȦǥǧGɉ, ɘ1ÄȦDʄm2NoSûȼ.,ÇƿDCáȄĹǕïD, C (Gruetter, 2003; Brown, 2004; Benarroch, 2010)ʆ Đ ɨ ʄ ȇ U W V ư ĥ 1 * , f j G ƿ , Ɔ ȩ & ǒ ǚ - 3 ʄ lj ȼ ʄ ơ ɻ ʄ Ȣ ģ ɓ ʄ Ę ȇ 0 / 2 U W V ɛ 24 ů ɠ 2 DZ ɷ (Garriga et al., 1992)ʄ ȣ ə (ť Ǐ ǎ )ů ɠ 2 Ā Î (Kong et al., 2002)ʄ ȇ ȕ ȗ (Suh et al., 2007)ʄ K ] ȯ dž Ĺ © ȗ ǥ (Herzog et al., 2008)1 @ B Ʀ ę ! C . Ä ) & ʆ Î,ʄȇ1,ʄƑğȗǥů13UWVÄȦGɤĒ!Cʄ©ȗǥů13U WV2ÄȦGɤĒ0ƷƓ0ȇUWVÄȦɗǩɤĒȔGƿ,ʄÉ1ȇU W V ư ĥ G Ā Î # , . 1 @ B ʄ© ȗ ǥ ů 2 Ǘ ǭ Ɵ Ò œ dz ů ɠ Ǩ 90 Ä ɠ Ħ ɞ & (Suh et al., 2007)ʆ D A 2 Đ A ʄ ȇ U W V 3 ȗ ǥ ǀ Ż 2 U W ] ǯ Ö Ä 0 ý ä ʄ @ 5 ȇ 2 Ǘ ǭ Ɵ Ò (N o S ɬ Ƞ )2 Ā Î 1 @ B Ǎ ĕ LJ 1 ë ö 2 U W ]Ɂ&ýä1,ʄm6NoSûȼ.,2ɘGǯ!C& = 1 Ä Ȧ D ʄ Ⱥ ȓ ɛ Ʀ ę ! C . ǿ A D C (Brown et al., 2004)ʆ Ɏ Ò 3 ȇ Ǘ ǭ Ɵ Ò G Ɵ Ĺ Ô (Saito & Soya, 2004; Nishijima & Soya, 2006; Ohiwa et al., 2006; Soya et al., 2007a; Soya et al., 2007b; Nishijima et al., 2011b)ʄ ɞ ů ɠ Ɏ Ò 3 © ȗ ǥ G Ĩ Ⱦ ! . A (Tabata et al., 1984; Winder et al., 1987)ʄ ȇ U W V ư ĥ G Ʀ ę #CáȄĹCʆ $-ǒǚȲɶʉʅʈ-3ʄ©ȗǥG§ɞůɠɎÒ fj2ȇUWVưĥ1 Ü9!īɰGƆȩ!CʆɎÒ1@),ʄǟåƋ1ȇ->UWVưĥ2ƦęȾC çGƆȩ!C.3ʄɎÒů2ȇ¾NoS ȵ1Ŧ&0ƉķGÎC.10 BʄɎÒƽƻƽÔčɳú1,Ŧ&0Ɖķ?Ȳɶ2ɟŐ1*0CáȄĹC& =ʄɯğ1ļǽƤǒǚ10BC.ǿCʆ 5 ʉʆŧƜ ʉʅʈʆțɼÒƶ@5ɹȂź¤ Źǒǚ3ʄǠƝĄčÒƶĐɼŔɜ2û+ʄÒƶĐɼ´ƻĉî¥2ŇȮGı,ȘFD & ʆ Đ ɼ 1 3 11 Ɍ ʀ 2 Witar ǧ ɩ Ĺ f j (250-300 gʄ SLCʄ Japan)G ƿ & ʆ ɹ Ȃ Ƽ ÿ 3 đ ¾ Ƨ ĥ 22±2 ʄ Ʃ ĥ 60±10%ʄ 7:00ʓ 19:00 G Ŭ Ŷ . & Ŭ ű Y K T G Ǵ œ & ʆ ɹ Ť 1 3 Ò ƶ ƿ ÷ Ī ɹ Ť (MFʄ P N c ɗ ƕ ʄ Japan)G ʄ ɸ Ť Ɨ 1 3 Ȓ ǂ Ɨ G $ D % D ƿ ʄ . > 1 24 ů ɠ ȋ ǀ ś ß . & ʆ ʉʅʉʆȽȘčǾ f j 1 3 1 Ɍ ɠ 2 µ ɹ Ȃ 2 . ʄj f k Ƚ Ɏ Ò 1 Ŀ D # C & = ʄ6 ũ ɠ 2 Ƚ Ș č Ǿ G Ũ & ʆ Ƚ Ș č Ǿ 3 Ę Ò ƶ ƿ j f k (KNʅ 73ʄ Ă Nj Ȟ « Ņ ʄ Japan)G ƿ , ʄ 1 ũ 30 Ä ɠ G Ȩ 5 ũ ɠ Ș ) & (Table 1)ʆ 2 w j W - Ƚ Ș č Ǿ G Ș ) & f j 2 LT 3 ʄ @ $ 15ʓ 20 m/min - C . ǔ Ȯ D , C (Nishijima & Soya, 2006; Soya et al., 2007a; Nishijima et al., 2011b)ʆ Table 1 The protocol for habituation to treadmill running exercise. Day Running speed and time 1 2 3 4 5 Rest, 10 min + 5 m/min, 10 min + 10 m/min, 10 min Rest, 5 min + 5 m/min, 10 min + 10 m/min, 10 min + 15 m/min, 10 min Rest Rest, 5 min + 10 m/min, 10 min + 15 m/min, 10 min + 20 m/min, 10 min Rest, 5 min + 15 m/min, 10 min + 20 m/min, 10 min + 25 m/min, 10 min 6 Rest, 5 min + 15 m/min, 10 min + 20 m/min, 10 min + 25 m/min, 10 min ʉʅʊʆɎÒĐɼ f j G ɯ Ɏ Ò Ǽ (Sedentaryʄj f k 1 Ď ǻ ). Ɏ Ò Ǽ (Exercise)2 ʉ Ǽ 1 Ä ʄ Ä Ɋ 20 mʄ 120 Ä ɠ 2 j f k Ƚ Ɏ Ò G Ș F # & ʆ Ɏ Ò ɟ Ĉ 120 Ä 2 ů Ƴ - ~ K T Ɲ Ƶ Ė (10 kWʄ 1.2 ǘ )1 @ C Ĝ Ɣ 2 . ť ɴ ʄ ª Ģ ȗ . ȇ ʄ ǟ ʄ ȁ Ȋ G ŗ ß & ʆ Đɼ2 2 ůɠÉA fjGDZɷƸľ1ʄĐɼ3!7,×É1ȘFD&ʆ 6 ʉʅʋʆ~KTƝƵĖ ƴɿɕǼ3ȣəƸľ1,ʄzjrcǼ@5Kav Ǽ3¼ɂɿ ɕ 2 . ʄ Kong et al. (2002)2 ŧ Ɯ 1 İ ) , ʄ ~ K T Ɲ Ƶ Ė Ȝ ǻ (NJE-2606ʄ Ŧ ũ Ź ƴ Ƿ ƃ ħ ¥ ǖ ʄ Japan)G ƿ ʄ 10 kW 2 ~ K T Ɲ G 1.2 ǘ ɠ Ƶ Ė f j G Ĝ Ɣ & ʆ ʉʅʌʆǬǺ2ŗß ~ K T Ɲ Ƶ Ė 2 . ȇ G ŗ ß ʄ Hirano et al. (2006)2 ŧ Ɯ 1 İ ʄ lj ȼ ʄ ɧ ʄ Ƿ ź ª ʄ ơ ɻ ʄ Ȣ ģ ʄ Ȣ ģ ɓ ʄ ȇ ʄ Ę ȇ ʄ ȇ Ģ 2 ʐ ɓ ¨ 1 Ä ǁ & (Fig. 1)ʆ å ů 1 t ǟʄɁĤǟʄȁȊ>ŗß&ʆŗß&ǬǺ3ƣªǛǩ-ÀǮ#ʄUWV2 ď ɛ 1 ƿ C : - ʅ 80 - ± Č & ʆ Fi g ure 1 R at w hol e bra i n an d i ts re gi on s. ʉʅʌʆȗǥ³2ďɛ ŗ ß & ª Ģ ȗ (x s Á ƻ )G ƿ , ʄ ǒ ǚ Ȳ ɶ ʈ ʅ ʉ . å Ƌ 1 U W ] / T h j I l K Z (2300 STAT PLUSʄ YSI, USA)- ȗ ǥ ³ G ƨ ď & ʆ ʉʅʍʆUWVưĥ2ďɛ ȇ 2 U W V @ 5 U W ] 2 Ō  3 Kong et al. (2002) 1 ʄ U W ] ư ĥ 2 ƨ ď 3 Passonneau & Lauderdale (1974)2 ŧ Ɯ 1 İ ) & ʆ ņ ɲ 3 ¢ 2 ɉ B - C ʆ 7 ʉʅʍʅʈ. UW]2Ō Ǭ Ǻ G 6 %ɏ þ ǩ ɘ /1 mM EDTA ƭ ƣ (perchloric acid solution)G ƿ Ƙ - { \ l K ^&ʆ 2 { \ o j G 25,000 gʄ 4 - 10Ä ɠ ɑ Ĵ Ä ɪ ʄ Ʈ ; G Ɨ ɘ Ô Q L ƭ ƣ (3 MƗ ɘ Ô Q L (KOH)ʄ 0.3 MK d b (imidazole)ʄ 0.4 Mþ Ô Q L (KCl))- pH 6ʓ 82 ɠ 1 ȳ Ţ & ʆ 14,000 gʄ 4 - 10Ä ɠ ɑ Ĵ Ä ɪ ʄ Ʈ ; G Î Ɨ Ä Ȧ G , 0 (Ǭ Ǻ ¾ 1 > . A Č ø ! C )U W ] Y w . & ʆ ʉʅʍʅʉ. UWV2Ō Ǭ Ǻ G 6 %ɏ þ ǩ ɘ (perchloric acid)/1 mM EDTAƭ ƣ G ƿ Ƙ - { \ l K ^ & ʆ U W V G U W ] 1 Î Ɨ Ä Ȧ ! C & = ʄ 2 { \ o j 100µl1 1 ml2 0.2 M ɖ ɘ l j L (sodium acetate)ʄ 20µl2 1.0 MƲ ɘ Ɨ ǩ Q L (KHCO 3 )ʄ 20 U/ml2 I U W [ d ` (amyloglucosidase)G Î ʄ đ Ƨ - 16ů ɠ Ď ǻ & ʆ 500µl2 6 %ɏ þ ǩ ɘ /1 mM EDTAƭ ƣ G Î Î Ɨ Ä Ȧ Ý Ķ G Ɛ = & ʆ 25,000 gʄ 4 10Ä ɠ ɑ Ĵ Ä ɪ ʄ Ʈ ; G Ɨ ɘ Ô Q L ƭ ƣ (3 MƗ ɘ Ô Q L (KOH)ʄ 0.3 M K d b (imidazole)ʄ 0.4 Mþ Ô Q L (KCl))- pH 6ʓ 82 ɠ 1 ȳ Ţ & ʆ 14,000 gʄ4 - 10Ä ɠ ɑ Ĵ Ä ɪ ʄ Ʈ ; G Î Ɨ Ä Ȧ & (U W V Ä Ȧ D & ) UW].ǬǺ¾1>.AČø!CUW]2ŧGèH'Yw.&ʆ ʉʅʍʅʊ. UW]ưĥ2ƨď U W ] 2 ƨ ď 1 3 96L M w j . Ȗ º ~ K T w j d (Varioskan Flashʄ Thermo Fisher Scientificʄ USA)G ƿ & ʆ $ D % D 2 L M 6 200µl2 Ý Ķ ƣ (50 mMj ] -þ ɘ ƭ ƣ (Tris-HCL)pH 8.1ʄ0.5 mM I i p [ ɘ (ATP)ʄ 0.5 mM m W e I k I i m \ n T P e k ɘ (NADP)ʄ 0.5 mMǓ ɘ ~ U o [ L (MgSO 4 )ʄ 0.1 U/mlU W ] 6 ɘ Ȇ Ɨ ǩ ɗ ǩ 8 (glucose-6-phosphatede hydrogenase))G Î & ʆ $ D % D 2 L M 1 ʄ 30µl2 ] c d k @ 5 Y w . 0.3 U2 x R a R l ` (Hexokinase)G Î & ʆ L M w j G Ȗ º ~ K T w j d - ŝ Ŏ ʄ 30Ä ɠ đ Ƨ - Ď ǻ & . ʄ Ð Ⱦ 355 nmʄ dž º 420 nm- Ǯ Ű & \ t k m W e I k I i m \ n T P e k ɘ (NADPH)2 ɛ A U W ] ɛ G Ȩ Ǣ & ʆ U W ] 3 molư ĥ - Ț ʄ Ǭ Ǻ 2 Ʃ ɚ ɛ - ȝ Ƒ , µmol/g wet tissue- Ǖ & ʆ ʉʅʍʅʋʆUWVɛ2ȨǢ UWVưĥ3ʄÎƗÄȦ&Yw2UW]ưĥAÎƗÄȦ,0 Y w 2 U W ] ư ĥ G Ğ Ĩ & ³ G . ʄU W ] å Ƌ µmol/g wet tissue - Ǖ &ʆ ʉʅʎʆǰȨÁƻ i c 3 ! 7 , Ġ ù ³ ±ƌ Ƭ Ȱ Ğ - Ǖ ʄ ǰ Ȩ Á ƻ 1 * , 3 ĕ Ķ 2 0 t Ɔ ď G Ș ) & ʆ ŵ ļ Ɨ Ƭ 3 5%. & ʆ ʊʆǮž ʊʅʈʆȗǥ51ǟȁȇUWVưĥ Ä Ɋ 20 mʄ 120 Ä ɠ 2 j f k Ƚ Ɏ Ò nj į 2 ȗ ǥ @ 5 ǟ ȁ ȇ U W V ư ĥ G Figure 2 1 Ǖ ! ʆȗ ǥ ³ 3 Exercise Ǽ 1 , Sedentary Ǽ . Ɩ 7 , 45 %© ) & (p < 0.01)ʆǟ . ȁ Ȋ 2 U W V 3 Exercise Ǽ 1 , sedentary Ǽ . Ɩ 7 , Ǩ 90 %Ʀ ę & ʆlj ȼ ʄơ ɻ ʄȢ ģ ɓ ʄĘ ȇ ʄȇ Ģ 2 U W V ư ĥ exercise Ǽ 1 , sedentary Ǽ . Ɩ 7 , Ǩ 50 %Ʀ ę & (p < 0.05)ʆ ŧ ʄ ɧ ʄ Ƿ ź ª ʄ Ȣ ģ ʄ ȇ 2 U W V ư ĥ3Ʀę¶æGǕ&>22ʄŵļ0āÔ3ȡAD0)&ʆ 9 4 ** 2 Glycogen (µmol/g) 10 50 40 Muscles Sol. 1000 Pla. 30 Liver 800 600 20 400 ** 10 ** 0 0 15 C B 6 Glycogen (µmol/g) Blood glucose (mM) A 200 ** 0 Brain Sedentary Exercise * * 5 * * * 0 s x n m us us um pu rai tem tum rte ptu ell lam lam db ns ria am Co Se ha St Mi reb rai oc tha T e p B o C p Hip Hy D % of Sedentary level 120 Reduction rate of brain glycogen Sedentary level 100 80 60 40 * ** * * * * 20 0 in in m m m m ex us us us bra ellu Cort amp inste lam eptu riatu lam d bra S ole ereb St Tha Mi oc Bra otha h p C W p Hip Hy Figure 2 e x e r c is e . represent ( u n p a ir e d B l o o d g l u c o s e , a n d g l y c o g e n l e v e l s i n t h e l i v e r , s k e l e ta l m u s c l e s , a n d t h e b r a i n a f t e r 2 h o f A , B lo o d g l u c o s e ; B , L i v e r g l y c o g e n ; C , S k e l e t a l m u s c l e s g l y c o g e n ; D , B r a i n g l y c o g e n . D a ta th e m e a n ± s t a n d a r d e r r o r ( n = 5 - 1 1 r a t s ) . * , p < 0 .0 5 ; * * , p < 0 .0 1 c o m p a r e d t o s e d e n t a r y r a ts t - t e s t) . ʋʆǿĔ ŹĐɼ-3ʄǒǚȲɶ 1 -ǔǜ&ȇUWVďɛƜGƿ,ʄ©ȗǥGĨȾ ! ɞ ů ɠ (120 Ä ɠ )2 Ư Ɏ Ò f j 2 ȇ U W V ư ĥ 1 Ü 9 ! ī ɰ G Ɔ ȩ & ʆɎ Ò 1 @ B ȗ ǥ ³ 3 45 %© ʄǟ . ȁ Ȋ 2 U W V 3 90 %Ʀ ę & ʆɎ Ò ů 2 © ȗ ǥ ? ǟ ȁ U W V 2 ƀ ƥ 3 DŽ Ñ 2 Ŕ ƌ . D C . A (Nybo & Secher, 2004)ʄ Ź Đ ɼ ƿ&ɎÒ3ɯğ1ÚɎÒź¤-)&.ÄCʆ2.ʄljȼʄơɻʄȢ ģ ɓ ʄ Ę ȇ ʄ ȇ Ģ 2 U W V ư ĥ Ɏ Ò 1 @ B Ǩ 50ʁ Ʀ ę & ʆ D 1 @ B ʄ Ɏ Ò ů@BȇUWVƦę!C.Æ=,ŬA10)&ʆljȼ3ǟ62Þǹí¡? Ɏ Ò 2 w U U ʄơ ɻ 3 Ɏ Ò ů 2 Ȯ Ǒ ʄȢ ģ ɓ 3 ª Ƨ ? N o S ȵ 2 ȳ Ǥ ʄ 10 Ęȇ3ǟ2ĩȳ?ĊÓ2ǴœʄȇĢ3ìé?Ĵŏ2ȳǤ0/ʄɎÒů1ƟĹÔ!C.ǿ ADCɓ¨-Cʆ2Ǯž3ʄȽɎÒů1ȇ-ĀÎ&NoSɬȠGƪ&!& =1Ȧǥǧɍ&áȄĹGǕ!ʆʄ2.åů1©ȗǥ>Ⱦ),C .AʄŹĐɼ-ȥĔD&ɎÒ1@CȇUWV2Ʀę3ɎÒů2ǗǭƟÒ2ĀÎ 1@C>202ʄ©ȗǥ1@C>202ŬA-0)&ʆ Ɏ Ò 1 @ B lj ȼ ʄơ ɻ ʄȢ ģ ɓ ʄĘ ȇ ʄȇ Ģ 2 U W V Ʀ ę & ŧ - ʄ ɧ ʄ ǷźªʄȢģʄȇ2UWVưĥ3Ʀę¶æ1)&>22ǰȨLJ0Ğ3ȡAD0 )&ʆDA2ɓ¨>ɎÒ2džƺ1ɡ!Cɓ¨-CʄɚȠ0ɓ¨-CA $ ʄ$ 2 ƍ Ȅ G Ǵ œ ! C & = 1 ȇ U W V G Ʀ ę # 0 ƍ Ɗ C 2 > D 0 ʆ 11 Ǟʋǝ ɎÒů2ȇUWVƦę3œdzůɠ®ČĹʒʂǒǚȲɶʉʃ ʈʆNjLJ ɎÒů2NoSǯ1,ʄǟ2UWV3ɯğ1ɚȠ0ĬÌGž&!ʆɽ Ƅǟ2UWV3ɎÒů1NoSɬȠĀÎ&ýä1ʄȦǥǧGɉ,ǟȋɂ 1 ATP G ǯ ! C & = 1 ȵ D C (Romijn et al., 1993)ʆ Đ ɨ ʄ ǟ U W V ư ĥ 3 Ɏ Ò 1 $ 2 Ɏ Ò ĩ ĥ ? œ dz ů ɠ 1 ® Č , Ʀ ę ! C (Gollnick et al., 1974)ʆ ŧ ʄ ǒ ǚ Ȳ ɶʉʅʈ1@BʄȇUWV©ȗǥG§ɞůɠɎÒ1@BƦę!C.ŬA 10)&ʄ$2Ʀę1ĕ!CɎÒœdzůɠ2īɰ3Ŭ-Cʆ Ɏ Ò ů ʄ ȇ 2 ȗ ɘ ß B Ʌ ; 3 ȗ ɘ ư ĥ Ā Î ! C ɘ Ĺ « Ƈ ɢ ³ (lactate threshold, LT)G ɀ C ĩ ĥ 1 , Ⱦ C ʄ LT @ B © ĩ ĥ - 3 Ⱦ A 0 . Ä ) , C (Ide et al., 2000)ʆ ŧ ʄ Ń 2 ǒ ǚ đ - 3 ʄ ~ K T d K I [ ] Ɯ G ƿ & ǒ ǚ 1 @ B ʄȽ Ɏ Ò ů 2 f j ơ ɻ ¾ ɘ ȗ ɘ 2 Ā Î 0 LT @ B © ĩ ĥ 2 Ɏ Ò 1 , > Ā Î ! C . G ȡ  & (ŷ ½ Ț i c )ʆ 2 . A ʄ LT @ B © ĩ ĥ2ɎÒ-ĀÎ&ơɻ¾2ɘ3ʄȗǀŻ-30ʄȇÙƽ2UWVÄȦ D&.1@),ƽ & ɘ - C á Ȅ Ĺ ǿ A D C ʆ 2 LT @ B © ĩ ĥ 2 Ɏ Ò ů 1©ȗǥ3Ⱦ),0.AʄɎÒů13©ȗǥȾA0ýä1,>ʄ ǗǭƟÒ2ĀÎ1§),ȇUWVɛƦę!CáȄĹCʆ $-ǒǚȲɶʉʅʉ-3ʄȇUWV3ǟåƋ1ɎÒœdzůɠ®ČLJ1Ʀę!C /ŬA1!C.GNjLJ.ʄǃ0Cœdzůɠ2ɎÒȇUWVưĥ1Ü 9!īɰGƆȩ&ʆ ʉʆŧƜ ʉʅʈʆțɼÒƶ@5ɹȂź¤ Źǒǚ3ʄǠƝĄčÒƶĐɼŔɜ2û+ʄÒƶĐɼ´ƻĉî¥2ŇȮGı,ȘFD & ʆ Đ ɼ 1 3 11 Ɍ ʀ 2 Witar ǧ ɩ Ĺ f j (250-300 gʄ SLCʄ Japan)G ƿ & ʆ ɹ Ȃ Ƽ ÿ 3 đ ¾ Ƨ ĥ 22±2 ʄ Ʃ ĥ 60±10%ʄ 7:00ʓ 19:00 G Ŭ Ŷ . & Ŭ ű Y K T G Ǵ œ & ʆ ɹ Ť 1 3 Ò ƶ ƿ ÷ Ī ɹ Ť (MFʄ P N c ɗ ƕ ʄ Japan)G ʄ ɸ Ť Ɨ 1 3 Ȓ ǂ Ɨ G $ D % 12 D ƿ ʄ . > 1 24 ů ɠ ȋ ǀ ś ß . & ʆ ʉʅʉʆȽȘčǾ f j 1 3 1 Ɍ ɠ 2 µ ɹ Ȃ 2 . ʄj f k Ƚ Ɏ Ò 1 Ŀ D # C & = ʄ6 ũ ɠ 2 Ƚ Ș č Ǿ G Ũ & ʆ Ƚ Ș č Ǿ 3 Ę Ò ƶ ƿ j f k (SN-460, Shinano, Japan)G ƿ , ʄ 1 ũ 30 Ä ɠ G Ȩ 5 ũ ɠ Ș ) & (Ț 1)ʆ 2 w j W - Ƚ Ș č Ǿ G Ș ) & f j 2 LT 3 ʄ @ $ 15ʓ 20 m/min - C . ǔ Ȯ D , C (Nishijima & Soya, 2006; Soya et al., 2007a; Nishijima et al., 2011b)ʆ ʉʅʊʆăɵɮȅQhhǂǻņș 1 Ɍ ɠ 2 µ ɹ Ȃ 2 . ʄ] j ] 2 0 ɿ ɕ Ȕ 2 ɮ ȅ ʼn G á Ȅ . ! C & = 1 ʄz j rucǼ2ăɵɮȅ1[WȞQhhGǂǻ&ʆ fj1zjruc ɿ ɕ (50 mg/kg B.W ., i.p.)G Ũ ʄ â ɝ ɽ ɓ 2 lj Ȉ G Å ɟ & ʆ â ă ɵ ɮ ȅ G ɭ  į ʄ $ 2 ɓ G ~ K T # H à - Å ɟ ʄ $ 2 Å ɟ ɓ A â Ĵ ń 1 < 10%x s ƽ ƻ ɷ þ Ɨ - ƪ & & Q h h G 32 mm Ŗ » & ʆ dz , Q h h G Ǧ - ă ɵ ɮ ȅ 1 ÷ ď į ʄ į ɴ ɽ nj Ǩ 1 cm G Å ɟ ʄ $ A Q h h G ɭ  # & ʆ ȗ ƣ ŋ C . G ǔ Ȯ & . ʄ Å ɟ ɓ G Ǹ ä & ʆ $ 2 į ʄ Ľ Ɓ Dž G ɣ & = 1 Ŋ ƽ ƶ ȼ (Ò ƶ ƿ ~ K [ b ʄ Ŭ ƚ Ȟ Ȑ ƃ ħ ¥ ǖ ʄ Japan) G 100µl lj 1 ƞ Ė & ʆ ș į 2 ũ ɠ 2 ò ijŶɠ2.ĐɼGȘ)&ʆ ʉʅʋʆɎÒĐɼ f j G Ɏ Ò É Ǽ ʄɯ Ɏ Ò Ǽ (j f k 1 Ď ǻ )ʄɎ Ò 30 Ä Ǽ ʄɎ Ò 60 Ä Ǽ ʄɎ Ò 120 Ä Ǽ 2 5 Ǽ 1 Ä ʄ Ä Ɋ 20 mʄ 120 Ä ɠ 2 j f k Ƚ Ɏ Ò G Ș F # & ʆ Ɏ Ò ɟ Ĉ 0 Ä (Ɏ Ò É )ʄ 30 Ä ʄ 60 Ä ʄ 120 Ä 2 ů Ƴ - ~ K T Ɲ Ƶ Ė (10 kWʄ 1.2 ǘ )1 @ C ĜƔ2.ťɴʄªĢȗ.ȇʄǟʄȁȊGŗß&ʆĐɼ2 2 ůɠÉA fjGDZ ɷ Ƹ ľ 1 ʄ Đ ɼ 3 ! 7 , × É 1 Ș F D & ʆ Ƚ Ɏ Ò Đ ɼ 2 w j W G Figure 12A 1Ǖ&ʆ 13 ʉʅʌʆǬǺ2ŗß ǒ ǚ Ȳ ɶ ʈ . å Ƌ 1 ~ K T Ɲ Ƶ Ė Ȝ ǻ (NJE-2606ʄ Ŧ ũ Ź ƴ Ƿ ƃ ħ ¥ ǖ ʄ Japan) G ƿ ʄ 10 kW 2 ~ K T Ɲ G 1.2 ǘ ɠ Ƶ Ė & . ȇ G ŗ ß & ʆ ȇ 3 Hirano et al. (2006) 2ŧƜ1İʄljȼʄɧʄǷźªʄơɻʄȢģʄȢģɓʄȇʄĘȇʄȇĢ2ʐɓ ¨1Äǁ&ʆåů1t ǟʄɁĤǟʄȁȊ>ŗß&ʆŗß&ǬǺ3ƣªǛǩÀ Ǯ # ʄ U W V 2 ď ɛ 1 ƿ C : - ʅ 80 - ± Č & ʆ Đ ɼ 1 3 lj ȼ ʄ ơ ɻ ʄ Ȣ ģɓʄĘȇʄȇĢ2ʌɓ¨Gƿ&ʆ ʉʅʍʆȗƣłÄ2ƨď ǂ ǻ & Q h h A 2 ɮ ȅ ȗ (x s Á ƻ )G ƿ , ʄ 1 U W ] / T h j I l K Z (2300 STAT PLUSʄ YSI, USA)- ȗ ǥ ³ . ȗ ɘ ³ G ƨ ď & ʆ ʉʅʎʆUWV@5UW]ưĥ2ďɛ ȇ 2 U W V @ 5 U W ] 2 Ō  3 Kong et al. (2002)1 ʄ U W ] ư ĥ 2 ƨ ď 3 Passonneau & Lauderdale (1974)2 ŧ Ɯ 1 İ ) & ʆ ņ ɲ 3 ǒ ǚ Ȳ ɶ ʈ . å Ƌ 1 Ș ) & ʆ ʉʅʏʆȇɘưĥ2ďɛ Passonneau & Lauderdale (1974)2 ŧ Ɯ 1 @ C R f j (DiaSysʄGermany)1 @ B ď ɛ & ʆ ʉʅʐʆȇ¾pI2ďɛ Takeda et al. (1990)2 ŧ Ɯ 1 @ B ɾ Ɋ ƣ ª T ~ j U v J (HPLC)- ƨ ď & ʆ ʉʅʈʇʆǰȨÁƻ i c 3 ! 7 , Ġ ù ³ ±ƌ Ƭ Ȱ Ğ - Ǖ ʄǰ Ȩ Á ƻ 1 * , 3 · ɔ ǻ Ä Š Ä Ž 2 . ʄ post hoc h ] j (Dunnet)G Ș ) & ʆǍ ɡ Ä Ž 3 Pearson G ƿ & ʆŵ ļ Ɨ Ƭ 3 5%. & ʆ 14 ʊʆǮž ʊʅʈʆȗǥʄȗɘʄ51ǟȁȇUWVưĥ Ä Ɋ 20 m ʄ30ʄ60ʄ120 Ä ɠ 2 j f k Ƚ Ɏ Ò nj į 2 ȗ ǥ ʄȗ ɘ ʄ 5 1 ǟ ȁ ȇ U W V ư ĥ G Figure 3 1 Ǖ ! ʆ ȗ ǥ ³ 3 Ɏ Ò 30 Ä Ǽ . 60 Ä Ǽ 1 , Ɏ Ò É Ǽ . Ɩ Ƀ , Ʀ ę 0 ) & ʄ Ɏ Ò 120 Ä Ǽ - 46 %© & ʆ ǟ ȁ U W V ư ĥ3ɎÒœdzůɠ®ČLJ1Ʀę&ʆȗǥ.åƋ1ʄljȼʄơɻʄȢģɓʄĘȇʄȇ Ģ 2 U W V ư ĥ 3 Ɏ Ò 30 Ä Ǽ . 60 Ä Ǽ 1 , Ɏ Ò É Ǽ . Ɩ Ƀ , Ʀ ę 0 ) Exercise (20m/min, 120min) E 30 50 120 min 60 Soleus 40 100 ** ** 30 ** 10 0 0 30 ** 60 20 60 40 0 0 15 10 10 ** Glycogen (µmol/g) 0 15 Hypothalamus 10 * 5 0 ** 4 2 0 0 30 60 30 ** ** 60 120 Cortex 30 60 120 1000 20 8 ** 6 4 2 0 0 30 60 Liver 800 ** 600 ** 400 200 0 ** 5 ** 0 30 60 120 Hippocampus ** 10 5 0 15 Cerebellum 0 15 Brainstem 10 10 0 120 15 ** 5 0 120 D 20 120 5 * 6 Plantaris 80 15 Whole brain Glycogen (µmol/g) C Glycogen (µmol/g) 0 8 Blood lactate (mM) B microwave irradiation (10 kW, 1.2 s) Glycogen (µmol/g) A Blood glucose (mM) & ʄ Ɏ Ò 120 Ä Ǽ - 2 ; Ʀ ę & ʆ 0 30 60 120 ** 5 0 0 30 60 120 Fi g ure 3 B l ood pa ram ete rs a nd gl yc oge n l e vel s i n th e s kel eta l m usc le, live r, an d bra in a fter exer ci se for 0, 30, 6 0, and 120 m i n. A , E xper im en t al pr oced ure. B, B lood gluc ose and lactate levels. C, G lyco gen l ev els in sk eletal m uscl e s. D , L i ve r gl y cog en levels . E , B rain g lycog en leve ls. D ata repr esent the m ean ± SE M (n = 5-6 r a t s). *, p < 0. 05 ; **, p < 0. 01 com pare d t o p re-ex ercised rats (D unn ett’s po st hoc test). 15 ʊʅʉʆȇ¾UW]51ɘưĥ Ä Ɋ 20 mʄ 30ʄ 60ʄ 120 Ä ɠ 2 j f k Ƚ Ɏ Ò nj į 2 ȇ ¾ U W ] 5 1 ɘ ư ĥ G Table 2 1 Ǖ ! ʆ lj ȼ ʄ ơ ɻ ʄ Ȣ ģ ɓ ʄ Ę ȇ ʄ ȇ Ģ 2 U W ] ư ĥ 3 ȗ ǥ . å Ƌ 1 ʄ Ɏ Ò 30 Ä Ǽ . 60 Ä Ǽ 1 , Ɏ Ò É Ǽ . Ɩ Ƀ , Ʀ ę 0 ) & ʄ Ɏ Ò 120 Ä Ǽ - 2 ; Ʀ ę & ʆ lj ȼ ʄ ơ ɻ ʄ Ȣ ģ ɓ ʄ Ę ȇ ʄ ȇ Ģ 2 ɘ ư ĥ 3 Ɏ Ò 120 Ä Ǽ ŵļ1ɾ)&ʆ T a b l e 2 G lu c o s e a n d l a c t a t e l e v e l s i n f i v e b r a in lo c i a f t e r e x e r c is e f o r 0 , 3 0 , 6 0 , a n d 1 2 0 m in ( µ m o l / g w e t t is s u e ) . Brain region Coetex Hippocampus Hypothalamus Cerebellum Brainstem 0 min 30 min 60 min 120 min Glucose 2.6 ± 0.1 3.3 ± 0.1* 3.2 ± 0.2 1.3 ± 0.4* Lactate Glucose 1.1 ± 0.0 2.8 ± 0.1 1.9 ± 0.3* 3.4 ± 0.1* 1.9 ± 0.3 3.5 ± 0.1* 2.5 ± 0.2** 1.6 ± 0.3* Lactate Glucose 1.3 ± 0.0 2.8 ± 0.1 2.2 ± 0.3 3.2 ± 0.1 2.0 ± 0.3 3.0 ± 0.1 2.7 ± 0.4** 1.9 ± 0.3* Lactate Glucose Lactate Glucose Lactate 1.1 ± 0.1 3.1 ± 0.1 0.9 ± 0.1 2.7 ± 0.1 1.1 ± 0.1 1.9 ± 0.3* 3.7 ± 0.2 1.5 ± 0.2* 3.2 ± 0.1 1.9 ± 0.3* 1.8 ± 0.3 3.4 ± 0.1 1.5 ± 0.2 3.3 ± 0.2 1.9 ± 0.3 2.4 ± 0.2** 1.9 ± 0.4* 2.0 ± 0.2** 1.6 ± 0.3* 2.5 ± 0.2*** D a ta r e p r e s e n t th e m e a n ± s t a n d a r d e r r o r ( n = 5 - 6 r a t s ) . te s t) . 16 * , p < 0 .0 5 c o m p a r e d t o 0 m i n ( D u n n e t t ’ s p o s t h o c ʊʅʊʆȗǥʄȇ¾UW]ʄȇ¾ɘ.ȇUWV2Ǎɡ ȗ ǥ ʄ ȇ ¾ U W ] ʄ ȇ ¾ ɘ . ȇ U W V 2 Ǎ ɡ G Figure 5 1 Ǖ ! ʆ ȗ ǥ 5 1ȇUW].ȇUWV.2ɠ13¼,2ɓ¨-ɯğ1ɾƑ2ǍɡȮ=AD &ʆȇɘ.ȇUWV.2ɠ13ȢģɓGɦ¼,2ɓ¨-ȷ2ǍɡȮ=AD &ʆ A Blood glucose vs. Brain glycogen Cortex nr == 210.70 p < 0.001 10 5 0 0 2 4 6 8 !"#$%&'()*+,%"-&).'/)0112'3) 15 Hippocampus Cerebellum 21 21 nr ==0.54 15nr == 0.67 p < 0.05 p < 0.001 10 10 5 5 0 0 0 2 4 6 8 0 2 4 6 8 Hypothalamus Medulla oblongata 21 15n = 21 15nr == 0.70 r = 0.64 p < 0.01 p < 0.001 10 10 5 5 0 0 0 2 4 6 8 0 2 4 6 8 Blood glucose (mM) 15 B Brain glucose vs. Brain glycogen C Brain lactate vs. Brain glycogen Cortex 8%5/'9 nr == 210.85 p < 0.0001 10 5 0 0 1 2 3 4 5 !"#$%&'()*+,%"-&).'/)0112'3) 15 Hippocampus "& "! & ! ! n = 21 r = 0.73 p < 0.001 Medulla oblongata $ % 8'5'<'""2, '()("1( *()(+!,0!( !(.(!,!" "! '()("/( *()(+!,0&( !(.(!,!" " & # $ % :#;%/=6"6,21 15n = 21 nr == 210.59 "& r = 0.91 p < 0.001 p < 0.0001 10 10 "! 5 & '()(#!( 5 *()(+!,"1( ! 0 0 0 1 2 3 4 5 0 1 2 3 4 5 ! " 4567()&"2$%1')*+,%"-&).'/)0112'3 15 # "& ! Hypothalamus " :7;;%$6,;21 Cerebellum 15 "& 10 10 "! 5 5 & ! 0 0 0 1 2 3 4 5 0 1 2 3 4 5 15 n = 21 r = 0.74 p < 0.0001 '()(#!( *()(+!,%-( !(.(!,!& ! ! " # $ % >'?2""6)%<"%(&6/6 "& "! & # $ % '()(#!( *()(+!,%1( !(.(!,!& ! ! " # $ % @6$/6/')*+,%"-&).'/)0112'3) F i g u r e 5 C o r r e l a t i o n b e t w e e n b r a i n g l y c o g e n le v e ls a n d b lo o d g lu c o s e , b r a in g lu c o s e a n d b r a in la c t a t e . C o r r e l a t i o n b e t w e e n b r a i n g l y c o g e n l e v e l s a n d A ; b l o o d g l u c o s e , B ; b r a i n g l u c o s e , a n d C ; b r a i n l a c ta te (Pearson’s product–moment correlation test). 17 ʊʅʋʆljȼpIưĥʄ51ljȼpI.UWVưĥ2Ǎɡ pIkl2 ȵƾƶ-C A 150 NA 40 MHPG 100 10 0 ng/g wet tissue (MHPG)3 Ɏ Ò 60 Ä Ǽ - Ɏ Ò É Ǽ . Ɩ Ƀ , Ā Î ʄ Ɏ Ò 120 Ä Ǽ - 3 Ɏ Ò É Ǽ ʄ Ɏ Ò 60 Ä Ǽ 2 Ǽ . Ɩ Ƀ , ŵ ļ - C 5- t k R [ K k ɖ ɘ (5-HIAA)3 Ɏ Ò 60 Ä Ǽ . 120 Ä Ǽ - Ɏ 0 0 120 60 0 60 400 5-HT 200 5-HIAA 300 200 100 150 100 50 0 0 0 120 60 120 0 60 120 60 120 80 DOPAC 500 DA 400 300 200 100 0 0 0ɾ³GǕ&ʆ_jm2 ȵƾƶ 20 50 jR[tkR[vMmUW # 30 60 40 20 0 120 60 0 Running time (min) B Glycogen (µmol/g wet tissue) ÒÉǼ.ƖɃ,ŵļ0ɾ³GǕ&ʆ MHPG vs. glycogen 0Aʄ\tkR[vMmɖ ɘ (DOPAC) 3 Ā Î ¶ æ 1 C > 2 2 ŵ ļ0āÔ30)&ʆ$22ƨďɱ Nj 1 > ŵ ļ 0 ā Ô 3 ȡ A D 0 ) & (Fig. 6A)ʆ MHPG @ 5 5-HIAA . U W V .2ɠ13ɾȷ2ǍɡȮ=AD 15 n = 15 r = -0.66 p < 0.01 10 5 0 0 10 20 30 40 MHPG (ng/g wet tissue) 5-HIAA vs. glycogen DOPAC vs. glycogen 15 n = 15 r = -0.68 p < 0.01 10 15 13 nr == -0.49 10 5 5 0 0 50 100 150 200 00 5-HIAA (ng/g wet tissue) 20 40 60 80 DOPAC (ng/g wet tissue) Fi g ure 6 M on oam in es an d th eir m etab olites in the co rtex aft er e xerc ise for 0, 6 0, and 1 20 m i n. A, M on oam i ne s an d t he i r m et abo l i t es. D ata rep resen t the m ean ± st an dard error (n = 4 -6 ra t s). *, p < 0 . 05; ** , p < 0 . 01 co mp ared t o 0 m i n; #, p < 0. 0 5 com par ed t o 60 m i n of ex erci se (T uk ey’s po st ho c test ). B , C orrelatio n be twee n m ono am ine m etabo lites a nd glyco gen leve ls (Pe arson ’s pro duc t–m om ent c orrel at i o n t est ). & ʄ DOPAC . U W V 2 ɠ 1 3 Ǎ ɡ 3 ȡ A D 0 ) & (Fig. 6B)ʆ ʋʆǿĔ Ź Đ ɼ - 3 ʄǒ ǚ Ȳ ɶ 1 - ǔ ǜ & ȇ U W V ď ɛ Ɯ G ƿ , ʄ30ʄ60ʄ120 Ä ɠ 2 Ƚ Ɏ Ò f j 2 ȇ U W V ư ĥ 1 Ü 9 ! ī ɰ G Ɔ ȩ & ʆ 30 @ 5 60 Ä ɠ 2 Ƚ Ɏ Ò - 3 ȗ ǥ 3 Ʀ ę # " 1 ȗ ɘ > Ā Î 0 ʄ Ɏ Ò 120 Ä - 3 ȗ ǥ 46 %© ȗ ɘ 3 Ǩ ʌ ² 1 Ā Î & ʆ 2 . ǟ . ȁ Ȋ 2 U W V 3 œ dz ů ɠ ® Č LJ 1 Ǩ 90 % Ʀ ę & ʆ Ɏ Ò 30ʄ 60 Ä 2 ů Ƴ - 3 ǟ ȁ U W V 3 © , C ʄ ȗ ǥ © , A " ʄDŽ Ñ # " 1 Ɏ Ò G Dz dz , C v M ^ - C . ǿ A D C ʆ ŧ ʄɎ Ò 120 18 Ä2ůƳ-3©ȗǥȾBʄǟ?ȁȊ2UWV>ƀƥ,CʆD3ǒǚȲɶ ʉʅʈ2Ƹƛ.89åƋ-ɎÒ1@BDŽÑ,CvM^-C.ĸFDCʆ 2 . ʄlj ȼ ʄơ ɻ ʄȢ ģ ɓ ʄĘ ȇ ʄȇ Ģ 2 U W V ư ĥ 3 Ļ 1 Ý Ɏ Ò 30ʄ 60 Ä - 3 Ʀ ę # " ʄ Ɏ Ò 120 Ä - 2 ; Ǩ 50ʁ Ʀ ę & ʆ D 1 @ B ʄ ȇ U W V 3 © ȗǥG§ɞůɠɎÒů12;Ʀę!C.Æ=,ŬA.0)&ʆ2.Ʀę &ȗǥ51ȇUW].ȇUWV2ɠ1ɯğ1ɾƑ2ǍɡǔȮD&ʆ 2.Aʄȗǥ?ȇUW]3ɎÒů2ȇUWVƦę2ƙďóċ-CáȄĹ CʆA1ʄ2.ȇ¾-ĀÎ&ɘ.ȇUWV2ɠ1Ȣģɓ¢ă2ʋ ɓ¨-ȷ2ǍɡȡAD&ʆ2Ǯž3ʄɎÒů1ȇUWVɘ1ÄȦDʄm 1ǯD&áȄĹGǕ!ʆ Î,ʄŹĐɼ-3ljȼ¾pI.$2 ȵƾƶ>ďɛ&.EʄpIk l 2 ȵ ƾ ƶ - C MHPG . _ j m 2 ȵ ƾ ƶ - C 5-HIAA Ɏ Ò 120 Ä Ǽ -ĀÎ&ʆpIkl?_jm3ȇUWV2ÄȦ°ɍóċ-B (Benington & Heller, 1995a; Brown, 2004; Benarroch, 2010)ʄ Ɏ Ò ů 1 Ā Î ! C . > ü ê D , C (Newsholme et al., 1992; Pagliari & Peyrin, 1995)ʆ Ź Đ ɼ - 3 lj ȼ 2 MHPG . U W V ʄ @ 5 5-HIAA . U W V 2 ɠ 1 ȷ 2 Ǎ ɡ ȡ A D & ʆ D 3 ʄȇ U W V ȵ 1 ɡ 0 k s 2 ȵ ƾ ƶ - C DOPAC - 3 ȡ A D 0 . A ʄ© ȗǥGĨȾ!ɞůɠɎÒ1@CȇUWV2Ʀę13pIkl._j m2 ȵɍɡ,CáȄĹCʆ ɎÒ2©ȗǥ?ȇ¾_jmưĥ2ĀÎ3ɎÒů2ſDŽÑ2Ùó.DC (Nybo & Secher, 2004)ʆ Ź Đ ɼ 1 , ʄ ȗ ǥ ? _ j m Ɏ Ò ů 2 ȇ U W V Ʀ ę 2ƙďóċ.,ȡÂD&ʆDA2Ǯž3ʄ©ȗǥ?_jm2ĀÎ1§ȇU WV2ƦęɎÒů2ſDŽÑ2ǰäȠó-AáȄĹGǕï!CʆįʄÉ1 ȇUWVưĥGɾ=&ýä1œĹsvO~]æ!C/Ɔȩ!CĵȠ Cʆ 19 Ǟʌǝ ǵäȩȴ ɎÒůʄȇ3ǟ.åƋ1ƟĹÔʄȇ1CNoS?ɘǩ2ɬȠ3ĀÎ!C (Nybo & Secher, 2004)ʆ ȇ 3 ǥ ȼ 2 ; G N o S û ȼ . , C . D C ʄ Ɏ Ò 1 @ Bȇ¾2ǥ ȵ/ƍȄʄɒĶ!C38.H/ŬA1D,0ʆ Ɏ Ò ů 2 ɽ Ƅ ǟ - 3 ʄ Ⱥ ȓ ǥ ȼ - C U W V ư ĥ Ɵ Ò y (Ɏ Ò 2 ĩ ĥ ? œ dz ů ɠ )1 ® Č , Ʀ ę ! C (Gollnick et al., 1974)ʆ ŧ ʄȇ 1 > U W V 3 Č ø (Wender et al., 2000)ʄ $ D 3 m 2 Ɵ Ĺ Ô ? ȗ ƣ ǀ Ż 2 U W ] ǯ Ɂ ů 1 Ç ƿ D Ʀ ę ! C (Brown, 2004)ʆ Ɏ Ò 3 m G Ɵ Ĺ Ô (Vissing et al., 1996; Saito & Soya, 2004; Nishijima & Soya, 2006; Ohiwa et al., 2006; Soya et al., 2007a; Soya et al., 2007b; Nishijima et al., 2011b)ʄ ɞ ů ɠ Ɏ Ò 3 © ȗ ǥ G Ĩ Ⱦ ! . A (Tabata et al., 1984; Winder et al., 1987)ʄ ȇ U W V G ǟ U W V å Ƌ 1 Ʀ ę # C á Ȅ Ĺ C ʆ $ -Źǒǚ-3ʄȇUWVďɛ2Xi]cdk-C~KTƝƵĖƜG ė»ʄɞůɠɎÒů1ȇUWVƦę!C/GŬA1!C.GNjLJ. &ʆ I ] j Y K j 1 Č ø ! C ȇ 2 U W V 3 ʄȗ ƣ ǀ Ż 2 U W ] ǯ Ɂ (© ȗ ǥ ) ů1ÇƿDƦę!C.DCʆɞůɠɎÒ3©ȗǥGĨȾ!.AʄȇUW V Ç ƿ D Ʀ ę ! C . ǿ A D C ʄ D 3 ¼ Ŭ ' ) & ʆ$ - ǒ ǚ Ȳ ɶ ʉ ʈ -3ʄ©ȗǥG§ɞůɠɎÒů2ȇUWVưĥG~KTƝƵĖƜGƿ,Ɔȩ & ʆ 120 Ä ɠ 2 ɞ ů ɠ Ɏ Ò 1 @ B ȗ ǥ ³ 3 45 %© ʄ ǟ . ȁ Ȋ 2 U W V 3 90 % Ʀę&ʆɎÒů2©ȗǥ?ǟȁUWV2ƀƥ3DŽÑ2Ŕƌ.DC.A (Nybo & Secher, 2004)ʄŹ Đ ɼ - ƿ & Ɏ Ò 3 ɯ ğ 1 Ú Ɏ Ò ź ¤ - ) & . Ä C ʆ 2 . ʄȇ U W V 3 ȇ ¼ ª - Ʀ ę ¶ æ G Ǖ ʄlj ȼ ʄơ ɻ ʄȢ ģ ɓ ʄĘ ȇ ʄ ȇ Ģ 2 U W V ư ĥ ŵ ļ 1 Ǩ 50ʁ Ʀ ę & ʆ D 1 @ B ʄ © ȗ ǥ G § ɞ ů ɠ Ɏ Ò ȇUWVGƦę#C.Æ=,ŬA10)&ʆ©ȗǥ3ȇUWVGƦ ę#CȠó.,@ǑAD,C.Aʄ2Ǯž3ʄɞůɠɎÒů1ĨȾ D&©ȗǥȗƣAȇ62NoSǯɁGőʄ$2ɁGȝ&=1I] 20 ? Brain GLUT3 ? Glucose GLUT1 ? Pyruvate Lactate Mitochondria ? MCT2 Serotonin Noradrenaline ? Lactate MCT4 ? Pyruvate MCT1 Glucose Glycolysis G-6-P 5-HIAA MHPG Neuron MCT1 Glycogen Lactate ? GLUT4 Glucose ? ? GLUT1 GLUT1 Astrocyte Vessel Prolonged exhaustive exercise F i g u r e 7 B r a in g l y c o g e n m e t a b o l i s m d u r i n g p r o lo n g e d e x h a u s tiv e e x e r c is e . G - 6 - P ; g l u c o s e - 6 - p h o s p h a te , G L U T ; G l u c o s e t r a n s p o r t e r , M C T ; m o n o c a r b o x y lic a c id t r a n s p o r t e r . E n e r g y s o u r c e s f o r n e u r o n s i n c l u d e n o t o n ly b l o o d g lu c o s e b u t a l s o l a c t a t e . A s t r o c y t i c g l y c o g e n i s s y n t h e s i z e d f r o m b l o o d g l u c o s e a n d d e g r a d e d in to la c t a t e b y e x c ita t o r y n e u r o t r a n s m i t t e r s s u c h a s n o r a d r e n a lin e a n d s e r o to n in . L a c ta te is u p ta k e n n e u r o n s a n d c h a n g e d t o p y r u v a t e , w h i c h i s u s e d f o r A T P s y n th e s is in th e m ito c h o n d r ia . T h e e f f e c t o f e x e r c is e o n G L U T s a n d M C T s in th e b r a i n i s n o t e l u c i d a t e d y e t . jYKj-UWVÄȦɍ&áȄĹGǕ!ʆ0AʄŹĐɼ1, ŵ ļ 0 U W V Ʀ ę ǔ Ȯ D & 2 3 ȇ ¼ ª - 3 0 ʄlj ȼ ʄơ ɻ ʄȢ ģ ɓ ʄĘ ȇ ʄ ȇĢ2ʌɓ¨-)&ʆljȼ3ǟ62Þǹí¡?ɎÒ2wU Uʄơɻ3ɎÒů 2ȮǑʄȢģɓ3ªƧ?NoS ȵ2ȳǤʄĘȇ3ǟ2Øȳ?ĊÓ2ǴœʄȇĢ 3ìé?Ĵŏ2ȳǤ0/ʄɎÒů1ƟĹÔ!C.ǿADCɓ¨-Cʆ&),ʄ ɞůɠɎÒů2ȇUWVƦę13©ȗǥ'-0ɎÒů2m2ƟĹÔ> ɡ,C2>D0ʆ0Aʄ2Ƴ1ɡ,3ŬA-0)&ʆ 2 ñ ɶ 1 Ɉ C & = ʄ ǒ ǚ Ȳ ɶ ʉ ʉ - 3 ʄ ǃ 0 C œ dz ů ɠ (30ʄ 60ʄ 120 Ä ɠ )2 Ɏ Ò fj2ȇUWVưĥ1Ü9!īɰGƆȩ&ʆȇUWVɎÒů2m 21 ƟÒ1Ķ , Ç ƿ D Ʀ ę ! C 0 A ʄ ǟ U W V Ɏ Ò œ dz ů ɠ (ǟ Ɵ Ò y ) 1®Č,Ʀę!C@1ʄȇUWV>ɎÒœdzůɠ®ČLJ1Ʀę!C.ǿAD C ʆ © ȗ ǥ 3 Ɏ Ò ɟ Ĉ A 30ʄ 60 Ä 2 ů Ƴ - 3 Ⱦ A " ʄ 120 Ä 2 ů Ƴ - 2 ; ƽ &ʆ ǟ . ȁ Ȋ 2 U W V 3 ¹ Ș ǒ ǚ 2 ɉ B ʄ Ɏ Ò œ dz ů ɠ 1 ® Č , Ʀ ę & ʆ ȇ (lj ȼ ʄ ơ ɻ ʄ Ȣ ģ ɓ ʄ Ę ȇ ʄ ȇ Ģ )2 U W V 3 ¼ , 2 ɓ ¨ 1 , ʄ © ȗ ǥ 2 ƽ 0Ɏ Ò ɟ Ĉ A 30ʄ60 Ä 2 ů Ƴ - 3 Ʀ ę # " ʄ© ȗ ǥ G ő & 120 Ä 2 ů Ƴ - 2 ; Ʀ ę & ʆ 2.ʄƦę&ȗǥ.ȇUWV2ɠ1ɯğ1ɾƑ2ǍɡǔȮD&ʆD A2Ǯž3ʄȗǥɎÒů2ȇUWVƦę2ƙďóċ-CáȄĹGǕï!Cʆ A1ʄ2.Ȣģɓ¢ă2ʋɓ¨1,ʄȇ¾-ĀÎ&ɘ.ȇUWV. 2ɠ1ȷ2ǍɡȡAD&ʆ2Ǯž3ʄɞůɠɎÒů1ȇUWVɘ1ÄȦ D & . G Ǖ ʄ ɞ ů ɠ Ɏ Ò ů 2 I ] j Y K j m ɘ [ j (Pellerin & Magistretti, 1994)1 C ɘ 2 ǯ ƫ . , U W V ȹ ƹ , C á Ȅ Ĺ G Ǖ ï !CʆÎ,ʄI]jYKj2UWVÄȦ°ɍóċ.,ǑADCpIkl ._jm2 ȵGljȼ1,ďɛ&.EʄpIkl2 ȵƾƶ - C MHPG . _ j m 2 ȵ ƾ ƶ - C 5-HIAA Ɏ Ò 120 Ä Ǽ - Ā Î ʄ Ʀ ę &UWVưĥ.ȷ2ǍɡGǕ&ʆpIkl?_jm.$DA2 ȵ 3 ʄ Ɏ Ò ů 1 Ā Î ! C . ¹ Ș ǒ ǚ 1 , ü ê D , B (Pagliari & Peyrin, 1995)ʄ Źǒǚ2ǮžGŞœ!CʆA1ʄȇUWV ȵ1ɡ0ks2 ȵƾ ƶ - C DOPAC . ȇ U W V ư ĥ 1 Ǎ ɡ 3 0 . A ʄ© ȗ ǥ G § ɞ ů ɠ Ɏ ů 2 ȇUWVƦę13ȌćĹǗǭ¦ɐƶȼ-CpIkl._jm2 ȵ ɍ ɡ , C á Ȅ Ĺ C (Fig. 7)ʆ ŹĐɼ1,ʄȗǥ?_jmɎÒů2ȇUWVƦę2ƙďóċ-Cá ȄĹȡÂD&ʄDA3ɞůɠɎÒů2ſDŽÑ2Ƞó.,>ǑADCʆ& ),ʄȇUWV3ɞůɠɎÒů2ȇ¾_jm ȵ2ɍ?ȗǥ³2©1@ BÇƿDƦęʄ$2ƦęɞůɠɎÒů2ſDŽÑ2ǰäóċ.0C2>D0 (Fig. 8)ʆ D 1 * , 3 ʄ į ʄ Ɏ Ò É 1 ȇ U W V ư ĥ G ɾ = & ý ä 1 œ Ĺ s vO~]æ!C/GƆȩ!CĵȠCʆ 22 Central fatigue <An integrative factor?> Brain glycogen decrease <Central factors> Hypoglycaemia Increase in brain monoamines (serotonin hypothesis) Increase in brain temperature (hot brain) Increase in tryptophan/BCAA ratio in blood Increase in body temperature with dehydration <Peripheral factors> Glycogen depletion in the muscle and liver Prolonged exhaustive exercise F ig u r e 8 H y p o t h e t i c a l d i a g r a m s h o w i n g t h e b r a i n g l y c o g e n d e c r e a s e a s a n i n t e g r a t i v e f a c t o r o f c e n t r a l f a t ig u e d u r i n g p r o l o n g e d e x e r c i s e . P r o l o n g e d e x e r c i s e i n d u c e s g l y c o g e n d e p l e t i o n i n t h e m u s c le s a n d liv e r , a n d h y p o g l y c a e m i a , w h i c h c a u s e s p e r ip h e r a l f a tig u e . H y p o g ly c a e m ia e lic its e n e r g y s h o r ta g e s in th e b r a i n , a n d li k e l y i n d u c e s c e n t r a l f a t i g u e . I n c r e a s e i n b r a i n s e r o t o n i n d u e t o r i s e i n t r y p t o p h a n / B C A A r a t i o i n b lo o d a l s o i n d u c e s c e n t r a l f a t i g u e b y e l i c i t i n g l a s s i t u d e ( s e r o t o n i n h y p o t h e s i s ) . F u r t h e r m o r e , in c r e a s e s i n b o d y a n d b r a i n t e m p e r a t u r e a t t r i b u t e d d e h y d r a t i o n i n d u c e c e n t r a l f a t i g u e d i r e c t l y a n d /o r in d ir e c t l y th r o u g h i n c r e a s e s i n b r a i n n o r a d r e n a l i n e a n d s e r o t o n i n . H y p o g l y c a e m i a a n d s e r o t o n i n a r e n o t o n ly in d u c i n g f a c to r s o f c e n t r a l f a t i g u e b u t a l s o e n h a n c i n g f a c t o r s o f a s t r o c y t i c g l y c o g e n d e g r a d a t i o n . I n d e e d , w e o b s e r v e d t h a t b r a i n g l y c o g e n l e v e l s a f t e r r u n n i n g w e r e c o r r e la te d w ith th e r e s p e c tiv e b lo o d g lu c o s e a n d in c r e a s e d s e r o to n i n m e t a b o l i s m ( M a t s u i e t a l., 2 0 1 1 ) . E x e r c is e - i n d u c e d b r a i n g l y c o g e n d e c r e a s e c o u l d b e a n in te g r a tiv e f a c to r o f c e n t r a l f a t i g u e . Źǒǚ1@BʄɞůɠɎÒ1@Bȇ3ȗƣǀŻ2UW].ɘ'-0ʄȇ¾ 2Ⱥȓǥȼ-CUWVGÇƿʄA1ʄɎÒį2ȇUWVȿòijǟU WV.åƋ1ȾBʄjmU1§ȇ2 ȵɒĶ1ɚȠ-CáȄĹŬA 10)&ʆD3ɞůɠɎÒů2ſDŽÑ?ɎÒjmU1CȇƍȄæ2Qm ^2ȦŬ1*0C>D0ʆ0AʄŹǒǚ1,ʄɎÒ1@CȇU WVƦę51ȿòij2ÄċƍƊ?ƽƻLJļǽGnjŘLJ1Ɔȩ!C.3-0 ) & ʆ į 3 ȇ U W V ȵ 1 ɡ ! C ó ċ (p I k l ʄ _ j m ʄ K ] 0 / )2 ɤ Ē Ê G ƿ & Ɏ Ò 1 @ C ȇ U W V Ʀ ę 5 1 ȿ ò ij 2 Ä ċ ƍ Ɗ G Ȧ 23 Ŭ!Cǒǚʄ$,ȇUWVÄȦɗǩɤĒȔGƿ&ɎÒů2ȇUWV2ƽƻ LJļǽGŬA1!CǒǚĵȠ.0CʆǒǚA1ɍ=4ʄȇUWVGŔƌ. &ȇƍȄ2ǴœĀɍ2&=2ɎÒÁŧ?Ywj2ɟdž1*0C>D0 ʆ 24 Ǟʍǝ ǵŒ Ɏ Ò ů 2 ɽ Ƅ ǟ - 3 ʄ Ⱥ ȓ ǥ ȼ - C U W V ư ĥ Ɵ Ò y (Ɏ Ò 2 ĩ ĥ ? œ dz ů ɠ )1 ® Č , Ʀ ę ! C (Gollnick et al., 1974)ʆ ŧ ʄȇ 1 > U W V 3 Č ø (Wender et al., 2000)ʄm 2 Ɵ Ĺ Ô ? ȗ ƣ ǀ Ż 2 U W ] ǯ Ɂ ů 1 Ç ƿ D Ʀ ę ʄ $ 2 į ¿ ȝ ¸ D C (Brown, 2004) ʆ Ɏ Ò 3 m G Ɵ Ĺ Ô (Vissing et al., 1996; Saito & Soya, 2004; Nishijima & Soya, 2006; Ohiwa et al., 2006; Soya et al., 2007a; Soya et al., 2007b; Nishijima et al., 2011b)ʄ ɞ ů ɠ Ɏ Ò 3 © ȗ ǥ G Ĩ Ⱦ ! . A (Tabata et al., 1984; Winder et al., 1987)ʄ ȇ U W V G ǟ U W V å Ƌ 1 Ʀ ę # C á Ȅ Ĺ C ʆ $-Źǒǚ-3ʄȇUWVďɛ2Xi]cdk-C~KTƝƵĖ ƜGė»ʄɞůɠɎÒů1ȇUWVƦę!C/GŬA1!C.GNj LJ.&ʆŹǒǚ1@Bʄ¢2łžGı&ʆ ǒǚȲɶʉɞůɠɎÒů1ȇUWV3Ʀę!Cʒ ǒǚȲɶʉʅʈʆɞůɠɎÒ3ȇUWVGƦę#Cʒ ȇUWV3ɞůɠɎÒů1ÇƿDƦę!C/GŬA1!C&=ʄ©ȗ ǥG§ɞůɠɎÒ fj2ȇUWVưĥ1Ü9!īɰGƆȩ&ʆ$2Ǯžʄ ©ȗǥG§ɞůɠɎÒ3ɎÒ1ɡ!C.DCȇɓ¨2UWVGǟUWV .åƋ1Ʀę#C.ŬA10)&ʆ ǒǚȲɶʉʅʉʆɎÒȯdžĹȇUWVƦę3ɎÒœdzůɠ®ČĹʒ ȇUWV3ǟUWV.åƋ1ɎÒœdzůɠ®ČLJ1Ʀę!C/GŬA 1!C.GNjLJ.ʄǃ0Cœdzůɠ2ɎÒȇUWVưĥ1Ü9!īɰGƆ ȩ&ʆ$2Ǯžʄ©ȗǥG§ɞůɠɎÒ-2;ȇUWVƦęʄ$2Ʀę1 3ɞůɠɎÒ1@BĨȾD&©ȗǥ?ȇ¾2pIkl._jm ȵ 2ɍɡ!CáȄĹŬA.0)&ʆ©ȗǥ?ȇ¾_jm2ĀÎ3ɎÒů2 ſDŽÑ2Ƞó.DC.AʄDA1@),ƽ 25 CȇUWVƦęɞůɠɎ Òů2ſDŽÑ2ǰäȠó.,>D0ʆ Ź ǒ ǚ 1 @ B ʄȇ U W V ǟ U W V . å Ƌ 1 ɞ ů ɠ Ɏ Ò ů 1 Ä Ȧ ʔÇ ƿ D Ʀ ę!C.ŬA10)&ʆįʄɎÒ1@CȇUWVƦę2ÄċƍƊ?ƽƻLJ ļǽGŬA1!Cǒǚɍ=4ʄȇUWVGŔƌ.&œĹsvO~]?Ȯ Ǒ ƍ Ȅ ʂ Ȫ Ł ʔč Ǿ Ȅ Í ʃ 2 Ǵ œ Ā ɍ 2 & = 2 Ɏ Ò ʔƂ ɺ Á ŧ ʄ 5 1 Y w j 2 ɟdž1*0CáȄĹCʆ 26 ǒǚłžȤ Ùȑȴţ 1. Takashi M atsui, Taro Ishikawa, Hitoshi Ito, Masahiro Okamoto, Koshiro Inoue, Min-chul Lee, Takahiko Fujikawa, Yukio Ichitani, Kentaro Kawanaka, and Hideaki Soya (2012). Brain glycogen supercompensation following exhaustive exercise. J Physiol 590, 607–616. 2. Takashi Matsui, Shingo Soya, Masahiro Okamoto, Yukio Ichitani, Kentaro Kawanaka, and Hideaki Soya (2011). Brain glycogen decreases during prolonged exercise. J Physiol 589, 3383-3393. ǵȱȴţ 1. Takashi Matsui and Hideaki Soya (2012). Brain glycogen metabolism and central fatigue during prolonged exercise. Physiol News In press. 2. ʆȇ ¾ U W V 2 Ʀ ę . ſ Ĺ DŽ Ñ ʆ 60ʄ ż ĝ ʄĮ ǐ ȏ Ů (2010)ʆ 797-804. àȻ Ǟ 65 ò ũ Ź ª Í Õ č ¥ Ą ¥ Ȏ ņ ǒ ǚ Ȁ Ć Ð Ȼ ʄ ʄ 2010 ġ 9 Ŵ 1 2 Ǟ 5 òc|T][}\L j yIkʄ 2010 ġ 9 Ŵ 3 2010 ACSM International Student Award, American College of Sports Medicine ACSM (June 2010) ȵɄ Ź ǒ ǚ 3 ʄǞ ʎ ò Ŵ ] } g ʔş Ȃ ȸ ô ] } g ǒ ǚ Ï ł Ƈ 2 Ś Ï 1 @ B Ș F D : &ʆ1ƤĽȵ2ļGȚ:!ʆ 27 Ûǿţƹ Benington JH & Heller HC (1995a). Restoration of brain energy metabolism as the function of sleep. Prog Neurobiol 45, 347-360. Bergstrom J & Hultman E (1966). Muscle glycogen synthesis after exercise: an enhancing factor localized to the muscle cells in man. Nature 210, 309-310. Brown AM (2004). Brain glycogen re -awakened. J Neurochem 89, 537-552. Cruz NF & Dienel GA (2002). High glycogen levels in brains of rats with minimal environmental stimuli: implications for metabolic contributions of working astrocytes. J Cereb Blood Flow Metab 22, 1476-1489. Garriga J & Cusso R (1992). Effect of starvation on glycogen and glucose me tabolism in different areas of the rat brain. Brain Res 591, 277-282. Gibbs ME, Anderson DG & Hertz L (2006). Inhibition of glycogenolysis in astrocytes interrupts memory consolidation in young chickens. Glia 54, 214-222. Gollnick PD, Piehl K & Saltin B (1974). Selective glycogen depletion pattern in human muscle fibres after exercise of varying intensity and at varying pedalling rates. J Physiol 241, 45-57. Gruetter R (2003). Glycogen: the forgotten cerebral energy store. J Neurosci Res 74, 179-183. Hasegawa H, Piacentini MF, Sarre S, Michotte Y, Ishiwata T & Meeusen R (2008). Influence of brain catecholamines on the development of fatigue in exercising rats in the heat. J Physiol 586, 141-149. Herzog RI, Chan O, Yu S, Dziura J, McNay EC & Sherwin RS (2008). Effect of acute and recurrent hypoglycemia on changes in brain glycogen concentration. Endocrinology 149, 1499-1504. Hutchins DA & Rogers KJ (1970a). Physiological and drug -induced changes in the glycogen content of mouse brain. Br J Pharmacol 39, 9-25. Ide K, Schmalbruch IK, Quistorff B, Horn A & Secher NH (2000). Lactate, glucose and O2 uptake in human brain during recovery from maximal exercise. J Physiol 522, 159-164. Kong J, Shepel PN, Holden CP, Mackiewicz M, Pack AI & Geiger JD (2002). Brain glycogen decreases with increased periods of wakefulness: implications for homeostatic drive to sleep. J 28 Neurosci 22, 5581-5587. Larsen TS, Rasmussen P, Overgaard M, Secher NH & Nielsen HB (2008). Non-selective beta-adrenergic blockade prevents reduction of the cerebral metabolic ratio during exhaustive exercise in humans. J Physiol 586, 2807-2815. Morgenthaler FD, Koski DM, Kraftsik R, Henry PG & Gruetter R (2006). Biochemical quantification of total brain glycogen concentration in rats under different glycemic states. Neurochem Int 48, 616-622. Nelson SR, Schulz DW , Passonneau JV & Lowry OH (1968). Control of glycogen levels in brain. J Neurochem 15, 1271-1279. Newsholme EA, Blomstrand E & Ekblom B (1992). Physical and mental fatigue: metabolic mechanisms and importance of plasma amino acids. Br Med Bull 48, 477-495. Nishijima T, Okamoto M, Matsui T, Kita I & Soya H (2011a). Hippocampal functional hyperemia mediated by NMDA receptor/NO signaling in rats during mild exercise. J Appl Physiol, in press. Nishijima T, Piriz J, Duflot S, Fernandez AM, Gaitan G, Gomez-Pinedo U, Verdugo JM, Leroy F, Soya H, Nunez A & Torres-Aleman I (2010). Neuronal activity drives localized blood-brain-barrier transport of serum insulin-like growth factor-I into the CNS. Neuron 67, 834-846. Nybo L & Secher NH (2004). Cerebral perturbations provoked by prolonged exercise. Prog Neurobiol 72, 223-261. Obici S & Rossetti L (2003). Minireview: nutrient sensing and the regulation of insulin action and energy balance. Endocrinology 144, 5172-5178. Ohiwa N, Chang H, Saito T, Onaka T, Fujikawa T & Soya H (2007). Possible inhibitory role of prolactin-releasing peptide for ACTH release associated with running stress. Am J Physiol Regul Integr Comp Physiol 292, R497-R504. Ohiwa N, Saito T, Chang H, Nakamura T & Soya H (2006). Differential responsiveness of c -Fos expression in the rat medulla oblongata to different treadmill running speeds. Neurosci Res 54, 124-132. Oz G, Kumar A, Rao JP, Kodl CT, Chow L, Eberly LE & Seaquist ER (2009). Human brain glycogen metabolism during and after hypoglycemia. Diabetes 58, 1978-1985. 29 Oz G, Tesfaye N, Kumar A, Deelchand DK, Eberly LE & Seaquist ER (2011). Brain glycogen content and metabolism in subjects with type 1 diabetes and hypoglycemia unawareness. J Cereb Blood Flow Metab. Pagliari R & Peyrin L (1995). Norepinephrine release in the rat frontal cortex under treadmill exercise: a study with microdialysis. J Appl Physiol 78, 2121-2130. Passonneau JV & Lauderdale VR (1974). A comparison of thr ee methods of glycogen measurement in tissues. Anal Biochem 60, 405-412. Pellerin L & Magistretti PJ (1994). Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A 91, 10625-10629. Phelps CH (1972). Barbiturate -induced glycogen accumulation in brain. An electron microscopic study. Brain Res 39, 225-234. Pitsiladis YP & Maughan RJ (1999). The effects of exercise and diet manipulation on the capacity to perform prolonged exercise in the heat and in the cold in trained humans. J Physiol 517, 919-930. Quistorff B, Secher NH & Van Lieshout JJ (2008). Lactate fuels the human brain during exercise. Faseb J 22, 3443-3449. Romijn JA, Coyle EF, Sidossis LS, Gastaldelli A, Horowitz JF, Endert E & Wolfe RR (1993). Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol 265, E380-391. Saito T & Soya H (2004). Delineation of responsive AVP -containing neurons to running stress in the hypothalamus. Am J Physiol Regul Integr Comp Physiol 286, R484-R490. Secher NH, Seifert T & Van Lieshout JJ (2008). Cerebral blood flow and metabolism during exercise: implications for fatigue. J Appl Physiol 104, 306-314. Soya H, Mukai A, Deocaris CC, Ohiwa N, Chang H, Nishijima T, Fujikawa T, Togashi K & Saito T (2007a). Threshold-like pattern of neuronal activation in the hypothalamus during treadmill running: establishment of a minimum running stress (MRS) rat model. Neurosci Res 58, 341-348. Soya H, Nakamura T, Deocaris CC, Kimpara A, Iimura M, Fujikawa T, Chang H, McEwen BS & 30 Nishijima T (2007b). BDNF induction with mild exercise in the rat hippocampus. Biochem Biophys Res Commun 358, 961-967. Suh SW, Bergher JP, Anderson CM, Treadway JL, Fosgerau K & Swanson RA (2007). Astrocyte glycogen sustains neuronal phosphorylase activity during hypoglycemia: studies with the inhibitor glycogen CP-316,819 ([R-R*,S*]-5-chloro-N-[2-hydroxy-3-(methoxymethylamino )-3-oxo-1-(phenylmet hyl)propyl]-1H-indole-2-carboxamide). J Pharmacol Exp Ther 321, 45-50. Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH, Magistretti PJ & Alberini CM (2011). Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 144, 810-823. Swanson RA (1992). Physiologic coupling of glial glycogen metabolism to neuronal activity in brain. Can J Physiol Pharmacol 70 Suppl, S138-144. Swanson RA, Sagar SM & Sharp FR (1989). Regional brain glycogen stores and metabolism during complete global ischaemia. Neurol Res 11, 24-28. Takeda H, Matsumiya T & Shibuya T (1990). Detection and identification modes for the highly sensitive and simultaneous determination of various biogenic amines by coulometric high-performance liquid chromatography. J Chromatogr 515, 265-278. Vissing J, Andersen M & Diemer NH (1996). Exercise-induced changes in local cerebral glucose utilization in the rat. J Cereb Blood Flow Metab 16, 729-736. Wender R, Brown AM, Fern R, Swanson RA, Farrell K & Ransom BR (2000). Astrocytic glycogen influences axon function and survival during glucose deprivation in central white matter. The Journal of neuroscience : the official journal of the Society for Neuroscience 20, 6804-6810. Winder WW, Yang HT, Jaussi AW & Hopkins CR (1987). Epinephrine, glucose, and lactate infusion in exercising adrenodemedullated rats. J Appl Physiol 62, 1442-1447. 31
© Copyright 2024 ExpyDoc