Lecture 12 - LASA Lab

Università di Padova
SECOND CYCLE DEGREE PROGRAMME (MSC
LEVEL) IN ENVIRONMENTAL ENGINEERING
MODELLING AND CONTROL OF
ENVIRONMENTAL SYSTEMS
Geographical Information Systems
Distributed Parameters Modelling
A.A. 2014-2015
University of Padua
LASA – Environmental Systems Analysis Lab
Modelling and control of environmental systems
Luca Palmeri
a.a. 2014/2015
Geographical Information Systems
GIS
ArcInfo, ArcView, GRASS, MapInfo ….
Land Management
Decision Support Systems (DSS)
Geographic modelling (distribuited parameters)
Satellite Images (Remote Sensing)
University of Padua
LASA – Environmental Systems Analysis Lab
Modelling and control of environmental systems
Luca Palmeri
a.a. 2014/2015
Geographical Information Systems
DESCRIPTION OF A PORTION OF LAND
Combine information layers
The layers used depend on the purpose
EXAMPLES:
Ø  Best location for a shop
Ø  Studies of social characteristics
(crime, unemployment, ….)
Ø  Analysis of the factors of
environmental damage
Ø  ……
University of Padua
LASA – Environmental Systems Analysis Lab
Modelling and control of environmental systems
Luca Palmeri
a.a. 2014/2015
Geographical Information Systems
A GIS consists of:
Ø Hardware (computers and periferals)
Ø Software
Ø Data
Ø Staff
Ø Training
Careful analysis of methods to interpret the
results generated by GIS analysis
University of Padua
LASA – Environmental Systems Analysis Lab
Modelling and control of environmental systems
Luca Palmeri
a.a. 2014/2015
Geographical Information Systems
The elements of a GIS are:
Coordinate Systems (scales, projections,
datum, ….)
Data (Shapefiles)
ü  Points
ü  Vectors
ü  Maps (Raster)
Data (Attributes)
ü  Tables of values
University of Padua
LASA – Environmental Systems Analysis Lab
Modelling and control of environmental systems
Luca Palmeri
a.a. 2014/2015
MONERIS
MOdelling Nutrient Emissions Into River Systems
Horst Behrendt
IGB, Berlino-DE
First Version: 1999
Research Project Water
Federal Agency for the Environment
(Umweltbundesamt)
University of Padua
LASA – Environmental Systems Analysis Lab
Modelling and control of environmental systems
Luca Palmeri
a.a. 2014/2015
MONERIS
Model characteristics
Steady state
Distribuited parameters
Spatial Scale: the hydrologic unit (sub-basin): > 50 km2
Temporal Scale: annual, pluriannual
Evaluate the emissions and residual loads conveyed
through different pathways (groundwater, surface
runoff, etc.), and fractions due to different sources
(agricultural, civil, urban spread, etc...)
University of Padua
LASA – Environmental Systems Analysis Lab
Modelling and control of environmental systems
Luca Palmeri
a.a. 2014/2015
Model structure (input data)
DATI UTILIZZATI NELL'APPLICAZIONE DEL MODELLO
INFORMAZINOI GENERALI:
2
Area del bacino (km
)
Portata media annua (m
3
/s)
Carico medio annuo di azoto inoraganico disciolto totale (t/a)
DEFLUSSI E CARICHI:
Carico medio annuo di azoto totale (t/a)
Carico medio annuo di fosforo totale (t/a)
Carico medio annuo di solidi sospesi (t/a)
STATISTICHE SULLE MUNICIPALITA':
Numero di abitanti del bacino
Territorio arabile
2
)
-SAU (km
Zone urbane (km
2
)
2
Zone industriali (km
)
2
Cave, discariche, cantieri(km
)
2
Vegetazione artificiali (km
)
Colture permanenti (km
2
Prati e pascoli (km
USO DEL SUOLO:
)
2
Terreni arabili (km
2
)
)
Terreni agricoli eterogenei (km
2
)
2
)
2
Foreste (km )
Suoli erbacei e cespugliati (km
Spazi aperti con vegetazione rada (km
Zone umide interne (km
Zone umide costiere (km
2
Acque interne (km
Acque salate (km
Altro (km
2
2
2
2
)
)
2
)
)
)
)
University of Padua
LASA – Environmental Systems Analysis Lab
Modelling and control of environmental systems
Luca Palmeri
a.a. 2014/2015
Model structure (input data)
DATI UTILIZZATI NELL'APPLICAZIONE DEL MODELLO
Erosione media annua (t/ha*a)
2
Terreno sabbioso (km
2
Terreno argilloso (km
)
)
Terreno medio impasto (km
PEDOLOGIA:
Aree umide (km
Acqutrini (km
2
2
2
)
)
)
Terreno limoso (km
2
)
Contenuto medio di azoto (%)
Contenuto medio di argilla (%)
2
Aree formate da terreni non consolidati con acquiferi poco profondi (km
GEOLOGIA:
Aree formate da terreni non consolidati con acquiferi profondi (km
2
Aree formate da terreni consolidati ad alta porosità (km
PENDENZA:
)
2
/a)
2
Altezza di pioggia media nel periodo estivo (mm/m
/a)
2
Altezza di pioggia nel periodo invernale (mm/m
/a)
2
Altezza di pioggia media annua calcolata su 60 anni (mm/m
Deposizione media annua di azoto ammoniacale (NH4
Deposizione media annua di ossidi di azoto (NOX
Deposizione media annua di ossidi di azoto (NOX
Evapotraspirazione media annua (mm/m
2
*a)
2/
-N) su breve periodo (mg/m
-N) su breve periodo (mg/m
Deposizione media annua di azoto ammoniacale (NH4
SURPLUS AGRICOLO:
)
Pendenza media del bacino (%)
Altezza di pioggia media annua (mm/m
PRECIPITAZIONI E DEPOSIZIONI
ATMOSFERICA:
)
2
/a)
2
-N) su lungo periodo (mg/m
-N) sul lungo periodo (mg/m
a)
2
2
/a)
/a)
/a)
Surplus agricolo di azoto (kg/ha/a)
Surplus agricolo di fosforo sul lungo periodo (kg/ha)
Numero di abitanti (nr)
Numero di abitanti connessi alla rete fognaria (nr)
Numero di abitanti connessi alla rete fognaria e trattati da impianto (nr)
SISTEMI URBANI:
Lunghezza media della rete fongaria (km)
Lunghezza media della rete fongaria (acque grigie e nere) (km)
Fosforo totale scaricato dagli impianti di depurazione (kg/a)
Azoto totale scaricato dagli impianti di depurazione (kg/a)
University of Padua
LASA – Environmental Systems Analysis Lab
Modelling and control of environmental systems
Luca Palmeri
a.a. 2014/2015
5. 
OVERLAND FLOW
6. 
POINT SOURCES
7. 
URBAN SYSTEMS
8. 
BACKGROUND
Retention &
losses in the
groundwater
P oi n t s o u r c e s
GROUNDWATER
P av e d u r b a n a r e a s
4. 
Retention & losses
in the unsaturated
zone
A tmo sph eri c dep ositio n
EROSION
Ti l e d r a in a g e
3. 
In te r fl o w
SURPLUS
Nutrient leaching
from the root zone
B a s e fl o w
2. 
S o rp t io n , D e s o r p ti o n
ATMOSFERIC DEPOSITION
S e d i m e n t a t io n a n d r e t e n t io n o n la n d
1. 
Er o s io n
PATHWAYS
S u r fa ce r u n o ff
Model Structure
Nutrient emissions into the river systems
Nutrient retention and losses in the river systems
Nutrient load in the rivers
Nutrient inputs into the seas
University of Padua
LASA – Environmental Systems Analysis Lab
Modelling and control of environmental systems
Luca Palmeri
a.a. 2014/2015
Pathways (description)
1.Atmosferic deposition: This pathway considers the emission due to direct atmospheric
deposition on water surfaces. Atmospheric deposition is used also in the pathways erosion, urban
systems, groundwater and tile drainage.
2.Surplus: calculate the concentration of nitrogen and phosphorus in the soil as a function of clay
content and amount of fertilizer/manure used in agricultural soil. It is not calculated a value of
emission but the results are used in pathways erosion, groundwater and tile drainage.
3.Erosion: the erosion from agricultural land is a significant release of suspended solids and
nutrients.
4.Groundwater: precipitation that infiltrates is loaded of nutrients from the soil. Before arriving to
the closure several processes can take place such as denitrification and phosphorus release
under anaerobic conditions which depend on soil characteristics. Is one of the most important
emissions.
5.Overland flow: is the surface runoff in areas not paved (not urban). The nutrient concentrations
are determined by soil type.
6.Point sources: are discharges from sewage treatment plants and industries.
7.Urban system: during the events of rain, most of the water collected from drains is bordered in
the receptor water body.
8.Tile drainage: is related to emissions from agricultural land drainage systems. Considers
calculated surplus concentrations and denitrification.
9.Background: calculate the total emissions without the anthropogenic contribution (i.e. the
"natural" system ). Recalculates the appropriate pathways in order to amend the input data.
University of Padua
LASA – Environmental Systems Analysis Lab
Modelling and control of environmental systems
Luca Palmeri
a.a. 2014/2015
Model Structure
INPUT DATA
PATHWAYS
OUTPUT DATA
CATCHMENT DESCRIPTION
(sub-model parameters)
(Nutrient emission, model report)
ATMOSPHERIC DEP.
EROSION
OVERLAND FLOW
BASIC INFO
MONERIS
TILE DRAINAGE
GROUNDWATER
URBAN AREAS
POINT SOURCES
University of Padua
LASA – Environmental Systems Analysis Lab
Modelling and control of environmental systems
Luca Palmeri
a.a. 2014/2015
Pathways of Urban Areas
University of Padua
LASA – Environmental Systems Analysis Lab
Modelling and control of environmental systems
Luca Palmeri
a.a. 2014/2015
Retention model
(empirical)
Load
1
=
Emission 1 + a ⋅ Q b
Behrendt, H., & Optiz, D. (1999)
University of Padua
LASA – Environmental Systems Analysis Lab
Modelling and control of environmental systems
Luca Palmeri
a.a. 2014/2015
Po Catchment
3/sec
è Area
Average
discharge
of Po river =arable
1504 m
National
3.4·10
ha
economic
(45 km
%)2agricultural
relevance:
land
=6 73,760
è Nutrient
loads:
• •  40
%
GDP
wheat,
6 hin barley, sugar beet, rice,
è Population =maize,
17·10fodder,
è
è
• •  horticulture
46
Employment
and
N =%100,000
t/a fruits
•  37
% Industrial production
•  P6 =
t/a
1.1·10
ha9,000
permanent
meadows
•  35 % Agriculture
6 cattle
• 
4·10
Diffuse
•  55sources
% Cattlecontribution:
•  5·106 pigs
•  N, 63 %
and pasture
•  P, 42 %
University of Padua
LASA – Environmental Systems Analysis Lab
Modelling and control of environmental systems
Luca Palmeri
a.a. 2014/2015
MONERIS – Application to the Po basin
33 sub-basins & gauge
stations
- Catchment Ids
- Net catchment
- Total catchment
- Equation: Net ßà Total
University of Padua
LASA – Environmental Systems Analysis Lab
Modelling and control of environmental systems
Luca Palmeri
a.a. 2014/2015
Runoff & River load
period 1990-1995
Total catchment runoff: source AdBP, average of measures (90-95)
$
Nutrient loads: source AdBP
$$
%
U
$
DIN (N-NH4 + N-NOx)
U
%
TN (DIN + other)
$
TP (P-PO43- + other)
Load = discharge·concentration
U
%
$
U$
%
$
U
%
U
%
U
%
$
$
U
%
$
U
%
U
%
U
%
University of Padua
LASA – Environmental Systems Analysis Lab
$
U
U %
%
Modelling and control of environmental systems
Luca Palmeri
a.a. 2014/2015
Statistics of municipals
N
W
Sub basins
E
ISTAT Sub units
S
> 6000 sub units
- Inhabitants
- Total area from stat. reports
-  Arable land
(sources ISTAT, AdBP)
0
100
University of Padua
LASA – Environmental Systems Analysis Lab
200 Kilometers
Modelling and control of environmental systems
Luca Palmeri
a.a. 2014/2015
Landuse
(corine2, EEA)
0
100
University of Padua
LASA – Environmental Systems Analysis Lab
200 Kilometers
Modelling and control of environmental systems
Luca Palmeri
a.a. 2014/2015
Geology
Hydrogeological types (source AdBP)
N
W
E
Sub basins
Consolidated high porosity
Consolidated impermeable
Unconsolidated, deep GW
Unconsolidated, shallow GW
S
0
100
University of Padua
LASA – Environmental Systems Analysis Lab
200 Kilometers
Modelling and control of environmental systems
Luca Palmeri
a.a. 2014/2015
DEM
N
W
E
S
Source USGS
80
0
University of Padua
LASA – Environmental Systems Analysis Lab
80
160 Kilometers
(1 km res.)
Modelling and control of environmental systems
Luca Palmeri
a.a. 2014/2015
Slope
N
W
E
S
Source USGS
0
100
University of Padua
LASA – Environmental Systems Analysis Lab
200 Kilometers
Modelling and control of environmental systems
Luca Palmeri
a.a. 2014/2015
Precipitation
N
W
E
1995
Cumulative:
S
Sub basins
Year 1995
Summer 1995
Winter 1995
Long term average (60-90)
0
100
University of Padua
LASA – Environmental Systems Analysis Lab
Precipitation (mm/y)
600 - 700
700 - 800
800 - 900
900 - 1000
1000 - 1100
1100 - 1200
1200 - 1300
1300 - 1400
1400 - 1500
Source GPCC
200 Kilometers
Modelling and control of environmental systems
Luca Palmeri
a.a. 2014/2015
Precipitation
N
W
E
Average 60-90
Sub basins
S
0
Precipitation (mm/y)
220 - 270
270 - 320
320 - 370
370 - 410
410 - 460
460 - 510
100
University of Padua
LASA – Environmental Systems Analysis Lab
200 Kilometers
Source GPCC
Modelling and control of environmental systems
Luca Palmeri
a.a. 2014/2015
Evapotranspiration
N
W
Sub basins
Pot. ET (mm/y)
0 - 400
400 - 800
800 - 1200
E
S
0
100
200 Kilometers
Source UNEP
University of Padua
LASA – Environmental Systems Analysis Lab
Modelling and control of environmental systems
Luca Palmeri
a.a. 2014/2015
Atmospheric Deposition
Source IGB
NH4_85_MEAN NOX_85_MEAN NH4_96_MEAN NOX_96_MEAN
[gN/m_]
[gN/m_]
[gN/m_]
[gN/m_]
1211
704
609
1310
University of Padua
LASA – Environmental Systems Analysis Lab
Modelling and control of environmental systems
Luca Palmeri
a.a. 2014/2015
Nutrient surplus
N
W
N surplus
kg N/y/ha
0 - 10
10 - 20
20 - 40
40 - 70
70 - 130
E
Agricultural surplus (N,P) = Fertilizer + Manure – Yeld
S
•  N [kg/ha/y]
•  P [kg/ha] in the long term (e.g. 50 years)
0
100
University of Padua
LASA – Environmental Systems Analysis Lab
Source AdBP
200 Kilometers
Modelling and control of environmental systems
Luca Palmeri
a.a. 2014/2015
Urban systems
N
W
Z
$
E
Z
$
S
TN from WWTP (kg/y)
Z
$
Z
$
Z
$
Z$
$
Z
Z
$
Z
$
Z
$
0 - 200
200 - 1000
1000 - 5000
5000 - 10000
10000 - 20000
20000 - 40000
40000 - 90000
90000 - 120000
120000 - 180000
180000 - 500000
300000 - 500000
Z
$
$$
Z
Z
$
Z $
Z
Z$
$
Z
Z
$
Z
$
Z
$
Z
$
Z$
$
Z
Z
$
- Total$Z inhabitants
Z
Z
$
Z
$
Z $
$
Z$
$
Z $
Z
$
Z $
Z $
$
Z
$
Z
$
Z
Z
$
Z
Z $
$
Z
$
Z
$
Z
Z
$
Z
$
Z
$
$
Z
Z
$
Zhin. $
$
Z
Z
$
Connected
Z $
$
Z
Z
Z$
$
Z$
Z$
$
Z
$
Z
$
Z
$
Z$
Z Z$
$
$
Z
Z$
Z
$
Z
$
Z
Z
$
Z
$
Z
$
$$
Z $
$Z
Z
Z -  Treated hin.
Z
$
Z
$
Z
$
Z
$
Z
$
-  P, N discharges from$ZWWTP
Z
$
Z
$
Z
$
Z
$
Z
$
Z
$
- $ZLength of combined
and separated sewers
Z
$
Z$
$
Z
Z
$
Z$
$
Z
Z
Z $
Z $
$
WWTP
Urban areas
(sources ISTAT, AdBP)
Z $
$
Z
Z
$
Z
$
Z
$
Z$
$
Z
Z
$
Z
$
$ $
Z
Z
Z
$
Z
$
Z
$
Z
$
TN emissions from WWTP
0
100
University of Padua
LASA – Environmental Systems Analysis Lab
200 Kilometers
Modelling and control of environmental systems
Luca Palmeri
a.a. 2014/2015
Basic Info - Generals
N o. LAWA
disch_s
Adress river name
IN TO
ALTO PO
ASTA PO
OR C O - MALON E - STU R A D I LAN ZO
D OR A BALTEA
ASTA PO
SESIA
gauge station name
river catchment
code
net catchment area
[km_]
Varaita
Area Torinese
Orco
Valle d'Aosta
Area Torinese
C ervo
Meirano
S. Mauro Torinese
Pont C anavese
Tavagnasco
C asale Monferrato
Vercelli
13.2
1.1.119
10.1
9.1
1.1.120
8.2
1
1
1
1
1
1
5.225,4
7.542,0
653,6
3.259,1
13.645,1
2.194,2
5.225,4
2.316,6
653,6
3.259,1
2.190,4
2.194,2
1
2
3
4
5
6
118
119
54
53
120
39
7
26
33 TIC IN O
Ticino prelacuale
Bellinzona
6.1
1
1.674,2
1.674,2
8
33
121 TIC IN O
Tresa - C eresio
Miorina (Sesto C alende)
6.3
1
6.589,7
4.915,5
9
84
85 TAN AR O
Bormida
Alessandria
14.4
1
2.515,5
2.515,5
10
85
121 TAN AR O
Stura di D emonte
Montecastello
14.2
1
7.937,6
5.422,1
11
121
122 TER D OPPIO - AGOGN A
Terdoppio
Becca
7.1
1
37.225,4
6.858,8
12
96
122 TR EBBIA - N U R E - AR D A
Alto Trebbia - Aveto
S. Salvatore
17.1
1
13
22
123 AD D A
Serio
Pizzighettone
4.5
1
7.408,5
2.852,6
14
17
19 AD D A
Valtellina
Fuentes
4.1
1
2.610,0
2.610,0
15
19
22 AD D A
Lario
Lavello
4.3
1
4.555,9
1.945,9
16
122
123 TR EBBIA - N U R E - AR D A
Basso Trebbia
Piacenza
17.2
1
42.126,4
4.322,9
17
123
124 TR EBBIA - N U R E - AR D A
N ure
C remona
17.3
1
51.307,3
1.772,5
18
124
125 TAR O
Basso Taro - Stirone
C asalmaggiore
18.3
1
52.497,2
1.189,8
19
107
125 PAR MA
Parma
Baganzola
19.2
1
706,8
20
108
125 EN ZA - C R OSTOLO
Enza
Sorbolo (Lentigione)
20.1
1
787,0
21
105
125 TAR O
Alto Taro
S. Quirico
18.2
1
1.478,6
22
125
126 ASTA PO
Parma - R eggio - Oltrepo` Mantovano
Boretto
1.5
1
55.742,8
23
109
126 EN ZA - C R OSTOLO
C rostolo
S. C laudio
20.2
1
24
11
126 OGLIO
Val C amonica
C apriolo (Sarnico)
3.1
1
25
15
126 OGLIO
Alto C hiese - Idro
Gavardo
3.4
1
26
4
8 SAR C A - MIN C IO
Sarca
N ago
2.1
1
1.062,2
1.062,2
8
27
119
120
120
120
121
121
net catchment within PO?
yes=1 catchment area GIS
no=0
[km_]
catchment area name
578,1
366,0
1.769,7
985,3
578,1
706,8
787,0
1.478,6
273,2
366,0
1.769,7
985,3
127 SAR C A - MIN C IO
Benaco
Monzambano
2.2
1
2.242,6
1.180,4
28
113
127 SEC C H IA
Basso Secchia
P.te Bacchello
21.2.113
1
1.686,2
1.686,2
29
126
127 OGLIO
Basso C hiese
Borgoforte (R oncocorr.)
3.5
1
62.911,7
4.047,9
30
127
128 SEC C H IA
Basso Secchia
R evere
21.2.127
1
68.344,0
1.503,4
31
116
128 PAN AR O
Alto Panaro
Bomporto
22.1
1
1.420,6
1.420,6
32
128
-1 PAN AR O
Basso Panaro
Pontelagoscuro
22.2
1
70.940,8
1.176,2
-2 D ELTA D EL PO
D elta del Po
Open sea
24.1
0
73.760,7
2.819,8
33
-1
University of Padua
LASA – Environmental Systems Analysis Lab
Modelling and control of environmental systems
Luca Palmeri
a.a. 2014/2015
MONERIS - Model Calibration
Discharge calc. & meas.
1000
100
10
1
1E+4
1E+3
1E+2
1E+2
1E+3
1E+4
1E+5
1E+6
suspended solids measured [t/a]
University of Padua
LASA – Environmental Systems Analysis Lab
Q meas
1500
Q calc
1000
500
0
0
100
200
10
100
300
400
500
600
[km]
1000 10000
Discharge measured
NUTRIENT LOADS
1E+6
SS calibrated
1E+5
2000
1
DIN-load calc. [t/a]
suspended solids calc.[t/a]
1E+6
10000
1E+5
1E+5
DIN
TP
1E+4
1E+3
1E+2
1E+2
1E+3
1E+4
1E+5
DIN-load measured [t/a]
1E+6
TP-load calc. [t/a]
SUSPENDED SOLIDS
Q meas&calc [m3/sec]
Soil loss calibrated in
order to obtain, where
possible, a good fit with
measured and calculated SS.
DISCHARGE
Discharge calc
Nash-Sutcliff Coeff.
1,00
Q
0,90
DIN
0,92
TP
0,90
SS
Specific runoff calibrated in order to obtain a
satisfactory balance between inflowing and outflowing
water for each sub-catchment.
1E+4
1E+3
1E+2
1E+1
1E+0
1E+0
1E+2
1E+4
TP-load measured [t/a]
1E+6
Modelling and control of environmental systems
Luca Palmeri
a.a. 2014/2015
Deviations of estimated loads by sub-basin
-100
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
DIN
University of Padua
LASA – Environmental Systems Analysis Lab
0
100
-100
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
0
100
TP
Modelling and control of environmental systems
Luca Palmeri
a.a. 2014/2015
MONERIS - LOADS from the Catchment
Background emissions
nitrogen
phosophorus
[t/a]
[%] [t/a]
[%]
914,63
2,9
6,62
0,6
0,8 0,8 1,8
0
urban
systems
WWTP
groundwater
100
8,3
20,2
17,1 14,6
14,3 13,8
0,6
0,2 0,5
erosion
10000
N meas
N calc
150000
TP load&calc [t/a]
DIN -load&calc [t/a]
10
12,0
tile drainage
200000
1.147
22,5
16,3
20
snow
100
Phosphorus
30
overland
flow
32.010
Nitrogen
40
91,5
7,9
0,0
56,0
total nutrient emission
50
[%]
26314,78 82,2 1049,00
4780,37 14,9 91,06
0,10
0,0
0,22
60
atmostpharic
dep.
Total emissions and proportion of the different pathways
nitrogen
phosophorus
[t/a]
[%] [t/a]
[%]
atmospheric deposition
1349,8
0,8
61,0
0,8
tile drainage
19834,5
12,0 1663,7
22,5
groundwater
92330,6
56,0 1056,7
14,3
overland flow
3415,3
2,1 1242,1
16,8
erosion
958,5
0,6
617,6
8,3
WWTP
22777,8
13,8 1266,5
17,1
urban systems (total)
24091,0
14,6 1496,3
20,2
total emissions
100
100
164.757
7.404
100000
50000
P meas
8000
P calc
6000
4000
2000
0
0
0
100
200
300
400
500
600
0
100
[km]
University of Padua
LASA – Environmental Systems Analysis Lab
200
300
400
500
600
[km]
Modelling and control of environmental systems
Luca Palmeri
a.a. 2014/2015
7
8
U
%
14
$%
U
4
Aosta
15
$
6
U
%
$
%
U
$
$
%
U
Bergamo
U
%
$
$
13
Milano
5
2 Torino
U
%
$
U
%
$
U$
%
1
11
16
Pavia
U
%
Piacenza
$
%
U
14
$%
U
15
U
%
$
%
U
$
2 Torino
$
U
%
U
%
$
U
%
$
U$
%
1
11
16
Pavia
%
U
$
$%
U
U
%
$$
U
%
U
%
$%
U
9
12
10
17
21
$
27
U
%
18
$
%
U
U
%
18
$
%
U
$%
U
Mantova
$%
U
U$
%
22 $%U
U
%
$
Parma
$
%
U
$
$%
U
30
U
%
32
U
% %
U
$
$
19 20 23 Modena
$
U
%
$
Ferrara 33
70
140 Kilometers
U
$%
Total P emissions [t/a]
20 - 160
160 - 370
370 - 102 0
1020 - 27 60
$%
U
Brescia
29
Cremona
Piacenza
$
U
%
0
25
Bergamo
U
%
$
$
13
Milano
5
$%
U
26
U
%
U
%
3
Total N emissions [t/a]
1000 - 4000
4000 - 8000
8000 - 25000
25000 - 42000
28 31
24
Como
6
21
U
%
4
Aosta
$
12
10
17
$
U
$%
27
Brescia
29
Cremona
$%
U
9
8
U
%
$
$%
U
U
%
$$
U
%
7
25
U
%
U
%
3
26
24
Como
$%
U
Mantova
$%
U
U$
%
22 $%U
U
%
$
Parma
$
%
U
$
$%
U
30
U
%
32
U
% %
U
$
$
19 20 23 Modena
$
U
%
$
Ferrara 33
28 31
0
70
140 Kilometers
University of Padua
LASA – Environmental Systems Analysis Lab
Modelling and control of environmental systems
Luca Palmeri
a.a. 2014/2015
CRITICAL SPOTS
7
8
14
15
4
25
6
3
13
5
2
26
24
11
27
29
16
1
TN [mg/l]
2.9 - 3
3 - 3.2
3.2 - 3.3
3.3 - 3.4
3.4 - 3.6
3.6 - 3.7
17
18
9
12
10
21
30
22
19 20 23
32
33
28 31
0
70
University of Padua
LASA – Environmental Systems Analysis Lab
140 Kilo meters
Modelling and control of environmental systems
Luca Palmeri
a.a. 2014/2015
Future scenarios
N [%]
P [%]
+5
+5
0
0
-5
-10
-5
-10
-15
-15
BAU base
BAU high
POT1
POT2
POT3
DG
2001
-20
-25
-30
-35
2008
University of Padua
LASA – Environmental Systems Analysis Lab
2016
BAU base
BAU high
POT1
POT2
POT3
DG
2001
2008
2016
Modelling and control of environmental systems
Luca Palmeri
a.a. 2014/2015