Calcolare i seguenti limiti, motivando le risposte. 1. lim log( 1 n2 [0] 2

Calcolare i seguenti limiti, motivando le risposte.
log( n14 )
n→+∞
n2
n
5
2. lim
1−
n→+∞
n
1.
3.
2n4 + e−n
n→+∞ 5 log n + n3
4.
(−1)n
2 + 5n
+
n→+∞
n
7 + 3n
5.
6.
[0]
lim
[e−5 ]
lim
[+∞]
[ 35 ]
lim
1
(3 + sin(2n))n
p
n
lim
2n5 + 1
[0]
lim
n→+∞
[1]
n→+∞
n20 + 4n4 + 1
n→+∞
n!
√
n
8. lim
2n + 3 n
7.
lim
[0]
[3]
n→+∞
9.
10.
n2n
n→+∞ 3n
lim
lim
n→+∞
[0]
n! − (n + 1)!
n2 en
11.
n! + 2n
n→+∞ (n + 1)!
12.
lim 3n+1 − 3
[0]
lim
√
13.
14.
[−∞]
n2 −1
[−∞]
n→+∞
n + sin n
− n2 + 1
p
lim n n log n
lim
[0]
n→+∞ n3
[1]
n→+∞
15.
n2 (log n)2
√
n→+∞
n5 + 1
[0]
16.
n2 + n sin n
n→+∞ 1 + n2 + n
[1]
lim
lim
3n − (−2)n
n→+∞ 3n+1 + (−2)n+1
"
4 #
2
18. lim n 1 − 1 −
n→+∞
n
17.
[ 31 ]
lim
[8]
1
n!
1
n→+∞
nn
nn
1
20. lim
1+
n→+∞
n!
n
n+1
21. lim
n→+∞ n − 1
19.
lim
[0]
1+
[+∞]
[e2 ]
1 − (−1)n
√
n→+∞
n
r
n
n 3
23. lim
n→+∞
n
√
5
n + n4 − 1
√
24. lim
n→+∞
4n2 + 1
22.
25.
26.
27.
lim
[0]
[3]
[ 12 ]
lim n2−n
[0]
n→+∞
1
lim n2 2 n
[+∞]
n→+∞
2
lim n n
[1]
n→+∞
28.
arctan n
n→+∞ n + (−1)n
[0]
29.
en
n→+∞ nn + 2
[0]
30.
√
log3 n + 3 n
n→+∞
n − n2
[0]
31.
lim
lim
lim
lim
n→+∞
log(n + 1)
log(n − 1)
[1]
log(n3 − 1)
n→+∞ log(3n4 − 6)
p
p
33. lim
n2 + n − n2 + 1
32.
lim
[ 43 ]
n→+∞
[ 12 ]
√
3 n
34. lim
2
n→+∞ 2n
35.
2
[0]
√
lim 2n − 3
n
[+∞]
n→+∞
2