JAD 95 96 97 2 98 99 3 100 101 102 103 104 105 106 lnXijt = a 0 + at + aij + bβ²ijt Zijt + eijt π‘ = 1,2, β¦ , π; π = 1,2, β¦ , π; π = 1,2, β¦ , π Zijt Xijt a0 at a ij eijt aij = 0 bijt = bt lnXijt = a 0 + at + bβ²ijt Zijt + eijt 4 107 b1 = b2 = β― = bT = π lnXijt = a 0 + at + bβ²Zijt + eijt at lnXit = a 0 + bβ²Zit + eit Xit Zit Zit πππ‘ππππππ‘ = π0 + π1 ln(ππππ)ππ‘ + π2 ln(πππ)ππ‘ + π3 openππ‘ + π4 rerππ‘ + π5 lang ππ‘ + π6 ln(πππ π‘π€)π + πππ‘ π = πΌπ42 + πβ²π,π‘ π½ + ππ π + π£ πΌ π42 πβ²π,π‘ πΌπ ππ = πΌ8 β π42 πΌ π½ππΏπ = (π β² π)β1 (π β² π) 108 πΌ8 π½ π½πΉπΈ = (π β² ππ)β1 (π β² ππ) 2 2 2 2 π ππ£ β² β1 β² Μ π½π πΈ = [π β² ππ + ( π£2) π β² (π β π½Μ 336 )π] [π ππ + ( 2 ) π (π β π½336 )π] π1 π1 109 110 111 112 113 114 115 116
© Copyright 2024 ExpyDoc