JAD

JAD
95
96
97
2
98
99
3
100
101
102
103
104
105
106
lnXijt = a 0 + at + aij + bβ€²ijt Zijt + eijt
𝑑 = 1,2, … , 𝑇; 𝑖 = 1,2, … , 𝑁; 𝑗 = 1,2, … , 𝑁
Zijt
Xijt
a0
at
a ij
eijt
aij = 0
bijt = bt
lnXijt = a 0 + at + bβ€²ijt Zijt + eijt
4
107
b1 = b2 = β‹― = bT = 𝑏
lnXijt = a 0 + at + bβ€²Zijt + eijt
at
lnXit = a 0 + bβ€²Zit + eit
Xit
Zit
Zit
π‘™π‘›π‘‘π‘Ÿπ‘Žπ‘‘π‘’π‘–π‘‘ = π‘Ž0 + 𝑏1 ln(π‘Ÿπ‘”π‘‘π‘)𝑖𝑑 + 𝑏2 ln(π‘π‘œπ‘)𝑖𝑑 + 𝑏3 open𝑖𝑑 + 𝑏4 rer𝑖𝑑 +
𝑏5 lang 𝑖𝑑 + 𝑏6 ln(𝑑𝑖𝑠𝑑𝑀)𝑖 + 𝑒𝑖𝑑
π‘Œ = 𝛼𝑖42 + 𝑋′𝑖,𝑑 𝛽 + π‘πœ‡ πœ‡ + 𝑣
𝛼
𝑖42
𝑋′𝑖,𝑑
𝛼𝑖 π‘πœ‡ = 𝐼8 βŠ— 𝑖42
𝛼
𝛽𝑂𝐿𝑆 = (𝑋 β€² 𝑋)βˆ’1 (𝑋 β€² π‘Œ)
108
𝐼8
𝛽
𝛽𝐹𝐸 = (𝑋 β€² 𝑄𝑋)βˆ’1 (𝑋 β€² π‘„π‘Œ)
2 2
2 2
𝜎
πœŽπ‘£
β€²
βˆ’1
β€²
̌
𝛽𝑅𝐸 = [𝑋 β€² 𝑄𝑋 + ( 𝑣2) 𝑋 β€² (𝑃 βˆ’ 𝐽̌
336 )𝑋] [𝑋 𝑄𝑋 + ( 2 ) 𝑋 (𝑃 βˆ’ 𝐽336 )π‘Œ]
𝜎1
𝜎1
109
110
111
112
113
114
115
116