g-ray spectroscopy of LMg isotopes

g-ray spectroscopy of (well deformed)
sd-shell hypernuclei
Graduate school of Science, Tohoku University
T. Koike
Hyperball-J collaboration
K Hagino, Myaing Thi Win
Three physics themes
of g-ray spectroscopy of hypernuclei
• LN interaction
– Effective LN interaction
• Spin doublet splitting
• Impurity effects induced by a L hyperon
– Change of core nucleus properties
• Change of core energy levels
• Electromagnetic properties: e.g. B(E2)
• Nuclear medium effects of baryons
– Change of L in nuclear medium
• Single L particle →B(M1)
Coupling of L to nuclear collectivity
Low-lying elementary
excitation mode
Symmetry of
nuclear vacuum
SSB
L
Shape of a nucleus
at the ground state
Collective
motion
Accessible via
g-ray spectroscopy
with a few keV
sensitivity
Single particle excitation v.s. collective excitation
From E.S. Paul, Univ. Liverpool, U.K.
Nuclear deformation and collectivity
• Nuclear shell effect
– open shell→mass distribution anisotropy
• uneven filling of magnetic sub-states
• deformed shell model: Nilsson Model
– modification of single particle energy levels
• collective model by Bohr & Mottelson
– collective elementary excitation (Nambu-Goldstone
Mode)
Spontaneous deformation
(SSB of rotational invariance)
Symmetry restoring
term
H = Hintrinsic+Hcollective
Deformed potential
(Nilsson potential)
Rotation/Vibration
Shape parameterization
R  ,    C ( 

) 1 

Axially symmetric quadrupole
=2
20≠0, 2±1=2±2=0

    Y  ,  
 0  





Axially symmetric octapole
=3
30≠0, 3±1,2,3 =0
20≠0, 2±1,2 =0
Quadrupole deformation (=2)
• Five parameters (2,0,±1,±2)
→Euler angles + a20, a22
(body-fixed frame axes are chosen to coincide with
principal axes)
• Further parameterization of a20, a22
a 20  b 2 cos g
b2: asphericity
1
a 22 
b 2 sin g
(deviation from spherical shape)
2
g: triaxiality
(difference in length along principal axis)
nuclear surface described by (b2, g)

R ( ,  )  R 0 1  b

5
16 
(cos g ( 3 cos
2
  1) 
3 sin g sin
2

 cos 2 ) 

Non collective
oblate
(b, g=60°)
triaxial
g
spherical
b
Collective
prolate
(0,0)
(b, g=0°)

R ( ,  )  R 0 1  b

5
16 
(cos g ( 3 cos
2
  1) 
3 sin g sin
2

 cos 2 ) 

Classical collective Hamiltonian of Bohr-
Mottelson for quadrupole deformation
vibration
H coll 
1
2

B bb ( b , g ) b 
2
1
2


moment of inertia

1
2

J  ( b , g ) 
2
 V coll ( b , g )
 1 , 2 , 3 ,
rotation
Axial rotation: 1D
Triaxial rotation: 3D

B gg ( b , g ) g  B bg ( b , g ) b g
2
potential
Axially symmetric shape
E ( I , K , n b , ng ) 

2
2J0
I ( I  1)  K    
2
b
(nb 
1
2
)    g ( n g  1)
Z
(laboratory fixed)
M
K
3
(body-fixed,
axis of symmetry)
K: projection of total angular
momentum I on the symmetry
axis → a good quantum number
Spectra of a deformed even-even nucleus
(collective excitation mode)
42+
E(41+)/E(21+)
31+
43+
22+
23+
gband
02+
41+
b-band
21+
0+
K=0, nb=1, ng=0
b2, J
K=0, nb=0, ng=0
g
vibrational
v.s.
rotational
K=2, nb=0, ng=1
Collective excitation (Lab. frame)
E(4+)/E(2+): Rotational v.s Vibrational
• Rotational (deformed):
E x I  
I ( I  1) 
2
2J
– E(4)/E(2)=10/3
• Vibrational (spherical):
E n  n 2
– E(4)/E(2)=2

E (4 )

E (2 )

2.1
3.1
b , Q0
(intrinsic frame) and 21+,
Intrinsic Quadrupole moment:
Experimentally

E ( 2 1 ) B ( E 2 , 2  0 )  ( 25  8 )
[MeVe
b:
b 
4
3
B(E2) (Lab. frame)
B ( E 2) 
2
2
Z
2
Q0 
A
4
fm ]
3
5
R 0 Ze b
2
,
R 0 Ze
1
2
R 0  ( 0 . 12 A 3 ) [ b ]
2
B ( E 2)  Q0
2
 b
2

1

E ( 21 )
22+ and experimental estimate of g
A rigid triaxial rotor model
r 
E2

2
E2 
1
1
1
8
sin ( 3g )
2
9

1
1
8
sin ( 3g )
2
9
Davydov and Filippov,
Nucl. Phys. 8, 237 (1958)
r v.s. g
9
8
E(22)/E(21)
7
6
5
4
3
2
1
0
10
15
20
25
g (degree)
30
35
Meyer-Ter-Vehn,
Nucl. Phys. A249, 111 (1975)
Target: AZ
A-1Z+L
p (n)
Gating on
missing mass spectrum
- (0)
p
g
A-1
LZ-1
n
g
Bp
Bn
g
A Z
L
High resolution
g-ray spectroscopy
(K-,-)
 >>0O
Weak decay
mostly via non-mesonic
in sd-shell hypernuclei
A-1
LZ
Z=20
Possible sd-shell L hypernuclei
via g-ray spectroscopy
34Cl
even-even
32S
30P
31P
mirror
Z
27Si
28Si
26Al
27Al
23Mg 24
Mg 25Mg 26Mg
22Na
19Ne 20Ne
18F
Z=9
31S
19F
23Na
21Ne 22Ne
21F
24Na
25Na
39Ca
40Ca
38K
39K
38Ar
35Cl
36Cl
34S
37Cl
39Ar
40Ar
39Cl
36S
30Si
Most abundant isotopes (target)
~10% abundance
proton decay
neutron decay
N
direct core
18
F
Sn (MeV)
9150
Sp (MeV)
5607
19
Ne
23
Mg
24
Mg
11639
13147
16532
6412
7579
11693
25
Mg
26
Al
27
Si
30
P
7331
11366
13312
11320
12064
6307
7464
5595
32
S
34
Cl
39
Ar
15042
11508
6598
8864
5142
10733
38
12074
13289
5143
5764
K
39
Ca
Z=20
40Ca
Possible sd-shell L hypernuclei
39K
via g-ray spectroscopy
35Cl
even-even
32S
mirror
Z
36Cl
37Cl
39Ar
40Ar
39Cl
34S
31P
28Si
27Al
24Mg 25Mg 26Mg
23Na
20Ne
18F
Z=9
38Ar
19F
21Ne 22Ne
24Na
30Si
Most abundant isotopes (target)
~10% abundance
proton decay
neutron decay
N
ev-ev core
18
21
41
22
02
2021)
tps
269±24
0.64(4)
340±30
1.04(9)
10Ne8
1887.3 3376.2 3616.4 3576.3
10Ne10
1633.7 4247.7 7833.4
22
12Mg10
1246.3 3308.2
4402
5965
370±13
4.2(15)
24
12Mg10
1368.7
4123
4238
6432.5
432±11
1.97(5)
26
14Si12
1795.9
4446
2783.5 3332.5
356±34
0.62(6)
30
2210.6
N.O
3402.6
324±41
0.242(30)
130±10
0.66(5)
96±21
0.86(20)
20
38
38
16S14
18Ar20
20Ca18
(e2fm4)
N.O
2167.5 5349.5 3936.7 3377.5
2206
N.O
3685
3057
Rotational v.s. Vibrational
E(4)/E(2)
3.4
3.2
Rotational
24Mg
3
E(4)/E(2)
2.8
38Ca
20Ne
2.6
22Mg
2.4
26Si
38Ar
2.2
Vibrational
2
1.8
18Ne
1.6
1.4
8
10
12
14
16
Z
18
20
22
Excitation enrgy (MeV)
21+, 22+, and 02+
18(▲) ,20Ne
8
22(▲) ,24Mg
1st 2+
2nd 2+
2nd 0+
6
26Si
4
30S
38Ar
38Ca
2
0
8
10
12
14
Z
16
18
20
b
b/bs.p.
g
10Ne8
0.694
4.36
r<2
10Ne10
0.727
4.57
17.8o
22
12Mg10
0.58
4.4
21o
24
12Mg10
0.605
4.57
22o
0.446
3.93
r<2
16S14
0.338
3.40
r<2
18Ar20
0.163
1.84
r<2
20Ca18
0.125
1.58
r<2
ev-ev core
18
20
26
14Si12
30
38
38
L hypernuclei shape with self-consistent mean
field approach by Tohoku theory group
Relativistic mean field
&
Skyrme HF+BCS
Relativistic Mean Field calculations
• self-consistent mean field
• Exchange of s, r, and  between N and L
• Potential Energy Surface (PES) of a L hypernucleus with
axially symmetric deformation: Eb
• Angular momentum not a good quantum number
Skyrme Hartree-Fock +BCS
Myaing Thi Win et al., submitted to PRC
•
•
•
•
self-consistent mean field
Skyrme-type LN interaction
PES of L hypernuclei with triaxial deformation: E(b,g)
Angular momentum not good quantum number
24Mg, 24Mg+L
L
A rough estimate based on energy expansion
around the PES minimum (b0,g0) in terms of g
E (b 0 ,g )  E (b 0 ,g 0 ) 
EL
E
"
"

L

1
D g
2
2
2
+
4.238MeV
4.11MeV
22
22+
ћ
 0 . 97
0+
numerical value
ћL
0+
24Mg
25
LMg
Energy difference between core and hypernuclei
E 28  L Si ( b , g )  E 28 Si ( b , g )
E 26  L Si ( b , g )  E 26 Si ( b , g )
E 24  L Mg (b , g )  E 24 Mg (b , g )
E 26  L Mg (b , g )  E 26 Mg (b , g )
Towards spherical shape, but through with energetically favorable path
in (b,g) plane → g deformation is important in L hypernucleus
L as a probe of a core nucleus
shape (vacuum) stability in (b,g) plane
Effects can be cleanly observed
from L hypernucleus with even-even core
Rigid
No/small changes
(Weak coupling limit)
Nuclear medium effect
on L
Soft
Large changes
(Impurity effect)
Property of core nucleus
Hyperncuelar g-ray spectroscopy of 25LMg
• Mg is the most deformed in the sd-shell
• Non-yrast state population → 22+, 02+
• Response of core to L in the sd-shell
– Change in the (b, g) plane ?
• b softness (g-ray transition ½2+→ ½1+ )
• g softness
– Similar shrinkage (no change in b and g) ?
• Possible to produce by using natural target
Use of an natural Mg target
Target
DL=1,2
(20>>5°)
Abundance
DL=0
( <5°)
direct
24Mg
0.79
(0+)
25Mg
0.10
(5/2+)
26Mg
(0+)
0.11
L
24 Mg
L
core
23Mg
L
25 Mg
L
core
24Mg
L
26 Mg
L
core
25Mg
24
LMg>
26
LMg
>25LMg
n
p
23
LMg
22Mg
LMg
23Mg
24
LNa
23Na
25
LMg
24Mg
LNa>
LNa
22Na
24
23
23
25
LNa
25
24Na
LMg
>24LNa
Use of natural Mg target and
identification of five L hypernuclei (I)
20>>5 ∩ 5>>0
20>>5 →
5>>0 →
24
LMg
25
LMg
26
LMg
79% 10% 11%
23
LNa
24
23Na(K-,-)→23
LNa
LNa
Natural Mg
27Al
23Na
27Al(K-,-)→p+26
LMg
Use of natural Mg target and
identification of five L hypernuclei (II)
Use of two targets in one experiment
1. Enriched Mg target run: A
• ID of 24LMg, 23LNa
2. Natural Mg target run: B
• ID of 25LMg
3. Spectrum subtraction of B-A
• ID of 26LMg, 24LNa
• gg coincidence is essential → Hyperball-J
• gray spectroscopy of five hypernuclear
spectroscopy in the transitional mass region in
the sd-shell
– 25LMg: even-even core 24Mg
– Mirror hypernuclei : 24LNa ⇔24LMg
– 23LNa: N=Z core
– 24LMg and 26LMg: isotope study (neutron
dependence)
J-PARC E13 experimental setup
(K-, - ) reaction @ pK = 1.5 GeV/c
Hyperball-J Ge array
Compact arrangement
Ge detector x32 (full set)
 60% relative eff., N-type, Transistor reset type
(150MeV/reset)
Total photo peak eff. ~6% for 1-MeV γray
High modularity
Adjustable geometry
E13 & E03,07 (X x-ray)
Radiation hardness:
R&D
Mechanical cooling of Ge detector
High background:
PWO background suppressor
High energy deposit and counting rate:
Baseline restoration and pile up separation
via waveform analysis
Half the array shown
電子光理学センターでの作業風景
2010年9月
Single particle energy level
h

2
2m
D
m
 r
2
2
2
 C ( ) l s  D(  ) l
2
From a text book by Ring and Schuck
Nilsson Hamiltonian (deformed S.H.O)
Anisotropic HO (axially symmetric)
h

2
2m
D
m
2
 (x  y ) 
2
2
2
m

2
KNnzL] (asymptotic Q.N.)
• K: projection of total angular
momentum along the symmetry
axis
• N: HO principal quantum number
• nz : number of nodes along the
symmetry (quantization) axis
• L: orbital angular momentum
projection onto the symmetry axis
From Table of Isotopes
2
z  C ( ) l s  D(  ) l
2
z
2
Odd-A Core
•
•
•
g.s=3/2
23
11(3)Na → g.s=3/2
25Mg
13(5) → g.s=5/2
23Mg
11(3) →
Shape driving
24, 25, 26
LMg
d3/2
(20>>5)
1/2
1/2
5/2
2S1/2
3/2
d5/2
1/2
K=3/2
K=1/2
3/2[211] 1/2[211]
23Mg
K=0
24Mg
K=5/2+ K=1/2+
K=1/2+
1/2[200]
1/2[211]
5/2[202]
25Mg
Even-core hypernucleus : 25LMg
7/2, 9/2
5/2,3/2
T=0
24
12Mg12
25 Mg
L
5/2, 3/2
Even-even core hypernucleus : 25LMg
•
9
LBe
(g.s. 0+ ,T=0)
– 84Be4 (unbound)
– E(4)/E(2)=3.75
• G(4+)=3.5MeV, G(2+)=1.5MeV
– B(E2;2+→4+)=45±14(e2fm4)
– Ec(2+)-EL(2+)=-9.8keV
– 2
•
13
LC
–
–
–
–
–
–
12
• Core: 2412Mg12 (g.s. 0+ ,T=0)
–
–
–
–
–
–
Bound (Ex<11.7MeV)
E(4)/E(2)=3.1
B(E2)↑=432(11)(e2fm4)
b=0.605, b/bs.p.=4.57
g=22o
6
(g.s. 0+ ,T=0)
6C6
E(4)/E(2)=3.17
B(E2)↑=397(e2fm4)
b=0.582, b/bs.p.=2.2
E(2+)-EL(2+) ≈-90keV
3
•Measurements of :
• DE=E(3/2+)-E(5/2+)
•spin-orbit in sd-shell
•Radial dependence
• DE(21+)=Ec(21+)-EL(21+)→b
• DE(22+)=Ec(22+)-EL(22+)→g
• EL(41)/EL(21)
Mirror hypernuclei: 24LNa & 24LMg
K=1/2
K=1/2
1/2[211]
1/2[211]
23 Na
11
12
23 Mg
12
11
K=3/2
K=3/2
3/2[211]
3/2[211]
Z=N odd-odd core: 23LNa
• Core: 2211Na11
–
–
20Ne
+p+n
16O++d
• Core: 189F9
• g.s. 1+
• Core: 3Li3
• Core:
– 4He+p+n
– +d
• g.s. 1+
• Core: 147N7
–
12C+p+n
– 3 + d
• g.s. 1+
11Na11
– 16O+p+n
– 4+d
• g.s. 3+ K3
6
22
10
5B5
–
– 2 + d
8Be+p+n
• g.s.
1+
K=0+, T=0
K=0+, T=1
3/2[211]
3/2[211]
K=3+, T=0
3/2[211]
R.H. Spear et al., PRC 11 742 (1975)
Things to do
Experimental feasibility studies
• Cross section for hyper-fragments (help needed form
theory side)
• Yield estimates
• SKSMinus resolution (larger Z of a target)
• Target thickness
• Stopping time and DSAM simulation
• …….
Summary
• L as a probe of ground state (vacuum) of sd-shell
nuclei via detection of elementary excitation mode
(collective mode) with a Ge detector sensitivity
• Importance of triaxial deformation (g)
– theoretical prediction by Myaing et al.
– detection of 22+
• Use of a natural Mg target experiment at J-PARC
– (K-,-) reaction with SKS and Hyperball-J
– g-ray spectroscopy of 25LMg
• Well deformed even-even core
• Experimental feasibility study needed
– cross section calculations are appreciated