構造方程式ゼミナール 2012年11月21日 構造方程式の作成と応用 Identification Order condition Underidentified Exactly identified Overidentified k g 1 k=g-1 k > g -1 rank (A) = g-1 rank (A) = g -1 k<g-1 Rank condition k g 1 rank (A) < g -1 事例3 Klein’s Model(1950) 1950 年のクラインのモデル1 は僅 か8 本の方程式で構成され、1921 年から40 年にかけて大不況の経緯 を見事にトレースし、これを持って、 経済学は一人前の科学として船出を 遂げたと言われる。 In a book published in 1950, Lawrence Klein reported a model of the U.S. economy for the period 1921-41, which is widely known as Klein’s Model I. Klein’s Model(1950) ①Consumption Ct 0 1 Pt 2 Pt 1 3 (Wpt Wgt ) e1t ②Investment It 0 1 Pt 2 Pt 1 3 Kt 1 e2t ③Private wages Wpt 0 1 X t 2 X t 1 3 At e3t ④Equilibrium demand X t Ct It Gt ⑤Private profits Pt X t WPt Tt ⑥Capital stock Kt It Kt 1 Data for Klein’s Model, 22 yearly Observations, 1920-1941 • • • • • • • • • • • Year=date C=consumption, P=corporate profits, Wp=private wage bill, Wg=government wage bill, I=investment, Kt-1=previous year’s capital stock, X=GNP, G=government nonwage spending, T=indirect business taxes plus net exports, A=time trend measured as years from 1931 Exogenous variables G : government nonwage spending T : indirect business taxes plus net exports Wg : government wage bill A : time trend measured as years from 1931 Predetermined variables Kt-1 : previous year’s capital stock Pt-1 : corporate profits Xt-1 : gross demand The endogenous variables are each on the left-hand side of an equation Put all the endogenous variable to the left-hand side of an equation Ct 1 Pt 3Wpt 0 2 Pt 1 3Wgt e1t It 1 Pt 0 2 Pt 1 3 Kt 1 e2t Wpt 1 X t o 2 X t 1 3 At e3t X t Ct It Gt Pt X t WPt Tt If the structural equation is expressed Kt It Kt 1 by a matrix [ C1 It WPt Xt Pt Kt ] 1 1 0 −α3 0 −α1 0 2 0 1 0 0 −β1 0 3 0 0 1 −γ1 0 0 4 −1 −1 0 1 0 0 5 0 0 1 −1 1 0 for example, identification of the Equation C [ 1 Pt−1 WGt Kt−1 Xt−1 At Gt For example identification of the equation C 1 α0 α2 Tt ] α3 0 0 0 0 0 2 β0 β2 0 β3 0 0 0 0 3 γ0 0 0 0 γ2 γ3 0 0 4 0 0 0 0 0 0 1 0 5 0 0 0 0 0 0 0 −1 6 0 −1 0 0 0 1 6 0 0 0 1 0 0 0 0 = + (e1 +e2 + e3 )i Estimates of Klein’s Model I • Estimation Klein’s model by 2SLS; Klein’s model by 3SLS • Evaluation; Estimates of Klein’s Model I (Estimated Asymptotic Standard Errors in Parentheses) 2SLS C I Wp 3SLS 16.6 0.017 0.216 0.810 (1.32) (0.118) (0.107) (0.04) 20.3 0.150 0.616 -0.158 (7.54) (0.173) (0.162) (0.036) 1.5 0.439 0.157 0.13 (1.15) (0.036) (0.039) (0.029) C I Wp 16.4 0.125 0.163 0.79 (1.3) (0.108) (0.1) (0.033) 28.2 -0.013 0.756 -0.195 (6.79) (0.162) (0.153) (0.038) 1.8 0.4 0.181 0.15 (1.12) (0.032) (0.034) (0.028) OLS C I Wp I3SLS 16.2 0.193 0.09 0.796 (1.3) (0.091) (0.091) (0.04) 10.1 0.48 0.333 -0.112 (5.47) (0.097) (0.101) (0.027) 1.48 0.439 0.146 0.13 (1.27) (0.032) (0.037) (0.032) C I Wp 16.6 0.165 0.177 0.766 (1.22) (0.096) (0.09) (0.035) 42.9 -0.356 1.01 -0.26 (10.6) (0.26) (0.249) (0.051) 2.62 0.375 0.194 0.168 (1.2) (0.031) (0.032) (0.029) I3SLS(iterative three-stage least squares) References: • W. Greene (2000), Econometric Analysis, 4th edition, Prentice-Hall. • L. Klein (1950), Economic Fluctuations in the United States 1921-1941, (preface), Cowles Foundation Monograph • Robert Dixon, Simulation with Klein's Model I Using TSP, Department of Economics at the University of Melbourne • L. Klein, The dynamics of Price Flexibility: Comment, AER, Vol.40, No.4, 605-609. • L. Klein (1947), The Use of Econometric Models as a Guide to conomic Policy, Econometrica, Vol.15, No.2. • David A. Freedman (2005). Statistical Models: Theory and Practice, Cambridge University press. • David R. Brillinger(2001). Time Series-Data Analysis and Theory, Society for Industrial and Applied Mathematics Philadelphia •N. Zhang (2012) A Statistical Model for Global-Flow-of-Funds Analysis Social Systems Solutions Applied by Economic Sciences and Mathematical Solutions , Vol.3, No.1, 77-97
© Copyright 2024 ExpyDoc